research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of 5,5′-(propane-2,2-di­yl)bis­­(2-hy­dr­oxy­benzaldehyde) and 5,5′-(propane-2,2-di­yl)bis­­(2-hy­dr­oxy­isophthalaldehyde)

CROSSMARK_Color_square_no_text.svg

aUS Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, MD 21005, USA, and bUS Army Research Laboratory, RDRL-WML-G, Aberdeen Proving Ground, MD 21005, USA
*Correspondence e-mail: rosario.c.sausa.civ@mail.mil

Edited by A. J. Lough, University of Toronto, Canada (Received 31 October 2018; accepted 16 November 2018; online 22 November 2018)

The title compounds 5,5′-(propane-2,2-di­yl)bis­(2-hy­droxy­benzaldehyde), C17H16O4, (1), and 5,5′-(propane-2,2-di­yl)bis­(2-hy­droxy­isophthalaldehyde), C19H16O6, (2), crystallize with one mol­ecule in the asymmetric unit. In mol­ecule (1), a >C(CH3)2 group bridges two nearly planar salicyl­aldehyde groups [r.m.s deviations = 0.010 (1) and 0.025 (2) Å], each comprising a planar phenyl ring bonded with a hydroxyl and an aldehyde group. Similarly, compound (2) has the same bridging group, but it connects two nearly planar appendants [r.m.s deviations = 0.034 (1) and 0.035 (1) Å], each comprising a phenyl ring bonded with a hydroxyl and two aldehyde groups. Mol­ecule (1) exhibits a bridge angle of 109.5 (2)° with the salicyl­aldehyde planes subtending a dihedral angle of 88.4 (1)°. In contrast, mol­ecule (2) presents a bridge angle of 108.9 (2)° with its appendants subtending a dihedral angle of 79.6 (3)°. Both mol­ecules exhibit two intra­molecular O—H⋯O hydrogen bonds involving the phenolic H atoms and carboxyl O-atom acceptors. In the crystal of (2), O—H⋯O hydrogen bonds between one of the hydroxyl H atoms and a carboxyl O atom from a symmetry-related mol­ecule form a chain along [10[\overline{1}]]. In addition, (2) exhibits a strong visible luminescence when excited with ultraviolet radiation.

1. Chemical context

As polymers play an undeniable role in our everyday lives, extensive resources and safety evaluations are devoted toward the development and marketing of the most suitable and effective polymer species for a given application (Andrady & Neal 2009[Andrady, A. L. & Neal, M. A. (2009). Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1977-1984.]; Fenichell 1996[Fenichell, S. (1996). Plastic: the Making of a Synthetic Century. New York: HarperBusiness.]; Teegarden 2004[Teegarden, D. M. (2004). Polymer Chemistry: Introduction to an Indispensable Science. Arlington, VA: NSTA Press.]). Bisphenols, salicyl­aldehydes, and their derivatives have fueled much inter­est in recent years because they are key precursors for many present and future compounds. Bisphenols typically serve as scaffolds for producing thermoplastics and polymer resins, whereas salicyl­aldehydes and derivatives are commonly used to synthesize metal-chelating agents for analytical, biological, or material science applications (Lim & Tanski, 2007[Lim, C. F. & Tanski, J. M. (2007). J. Chem. Crystallogr. 37, 587-595.]; Guieu et al., 2012[Guieu, S., Brandão, P., Rocha, J. & Silva, A. M. S. (2012). Acta Cryst. E68, o1404.], 2013[Guieu, S., Rocha, J. & Silva, A. M. S. (2013). Tetrahedron, 69, 9329-9334.]; Barba & Betanzos, 2007[Barba, V. & Betanzos, I. J. (2007). Organomet. Chem. 692, 4903-4908.]; Vančo et al., 2005[Vančo, J., Marek, J. & Švajlenová, O. (2005). Acta Cryst. E61, o4209-o4211.]; Baisch et al., 2017[Baisch, U., Scicluna, M. C., Näther, C. & Vella-Zarb, L. (2017). Acta Cryst. E73, 155-158.]; Kalinowski & Richardson, 2005[Kalinowski, D. S. & Richardson, D. R. (2005). Pharmacol. Rev. 57, 547-583.], Mounika et al., 2010[Mounika, K., Pragathi, A. & Gyanakumari, C. (2010). J. Sci. Res. 2, 513-524.]). As part of our ongoing work on the synthesis and characterization of novel compounds, as well as our effort to eliminate or replace toxic reagents with greener chemicals in the polymer production process, we have synthesized the title compounds, 5,5′-(propane-2,2-di­yl)bis­(2-hy­droxy­benzaldehyde (1) and 5,5′-(propane-2,2-di­yl)bis­(2-hy­droxy­isophthalaldehyde (2). These precursor compounds present a >C(CH3)2 group that bridges two salicyl­aldehyde moieties (1) or two phenyl groups with an hydroxyl and two aldehyde appendants (2). The various functional groups in these mol­ecules determine their chemical and physical properties, and the ability to modify them provides the title compounds with a wide versatility and the multifunctionality required for synthesizing safer and better performance materials for future civilian and military applications. For instance, the title compounds may be used for the non-toxic, iso­cyanate-free synthesis of polyurethanes (Maisonneuve et al., 2015[Maisonneuve, L., Lamarzelle, O., Rix, E., Grau, E. & Cramail, H. (2015). Chem. Rev. 115, 12407-12439.]). In addition, (2) is a new, solid-state photoluminescence material that emits radiation in the spectroscopic range between 490 and 590 nm upon ultraviolet light excitation, with potential use as an organic light emitting diode, laser frequency harmonic generator, or photoelectric converter.

[Scheme 1]

2. Structural commentary

Both title compounds have one mol­ecule in their asymmetric unit. Their mol­ecular structures (Fig. 1[link]) typify bis­phenols and salicyl­aldehyde derivatives, and their bond lengths and angles are in the usual ranges (Lim & Tanski, 2007[Lim, C. F. & Tanski, J. M. (2007). J. Chem. Crystallogr. 37, 587-595.]; Guieu et al., 2012[Guieu, S., Brandão, P., Rocha, J. & Silva, A. M. S. (2012). Acta Cryst. E68, o1404.], 2013[Guieu, S., Rocha, J. & Silva, A. M. S. (2013). Tetrahedron, 69, 9329-9334.]; Eriksson & Eriksson, 2001[Eriksson, J. & Eriksson, L. (2001). Acta Cryst. C57, 1308-1312.]; Barba & Betanzos, 2007[Barba, V. & Betanzos, I. J. (2007). Organomet. Chem. 692, 4903-4908.]; Vančo et al., 2005[Vančo, J., Marek, J. & Švajlenová, O. (2005). Acta Cryst. E61, o4209-o4211.]; Baisch et al., 2017[Baisch, U., Scicluna, M. C., Näther, C. & Vella-Zarb, L. (2017). Acta Cryst. E73, 155-158.]). In the mol­ecule of (1), the salicyl­aldehyde fragment containing atom C4 (S1A) is near planar [r.m.s. deviation = 0.010 (1) Å], with a maximum out-of-plane deviation of 0.020 (2) Å for the O1 atom. Similarly, its companion salicyl­aldehyde fragment (S1B) is near planar [r.m.s. deviation = 0.025 (2)], with a maximum out-of-plane deviation of 0.050 (2) Å for the O3 atom. The bridge angle C4—C1—C11 measures 109.5 (2)° and the S1A and S1B planes subtend a dihedral angle of 88.4 (1)°. Mol­ecule (1) exhibits two intra­molecular hydrogen bonds between the phenolic hydrogen atoms and carboxyl O-atom acceptors (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.93 2.642 (3) 145
O3—H3⋯O4 0.82 1.90 2.619 (4) 145
[Figure 1]
Figure 1
Mol­ecular conformation and atom-numbering scheme for mol­ecules (1) (top) and (2) (bottom). Non-hydrogen atoms are shown with 50% probability displacement ellipsoids.

Mol­ecule (2) presents two near planar appendants, denoted A1 and A2 for the appendants containing C4 and C11, respectively, [r.m.s deviation = 0.034 (1) Å (A1) and 0.035 (1) Å (A2), with maximum out-of-plane deviations of 0.068 (2) Å for atom O2 (A1) and −0.060 (2) Å for atom O5 (A2)]. Each appendant comprises a hydroxyl and two aldehyde groups. Similar to (1), the salicyl­aldehyde fragments with atoms C4–C9/C11/O1/O2 (S2A) or C12–C17/C18/O6/O5 (S2B) in (2) adopt a near planar geometry [r.m.s. deviation = 0.024 (1) Å for S2A and 0.036 (1) Å for S2B]. The additional carbonyl groups C10—O3 and C18—O4 on the phenyl rings are twisted slightly out of the S2A and S2B planes, respectively, as evidenced by their respective torsion angles C5—C6—C10—O3 [−2.9 (4)°] and C13—C14—C18—O4 [−179.1 (3)°]. These additional groups increase the steric hindrance between the appendants and methyl bridge groups in (2), perhaps decreasing both the bridge angle C4—C1—C12 [108.9 (2)°] and the dihedral angle between the A1 and A2 planes [88.4 (1)°] relative to (1). Mol­ecule (2) presents two intra­molecular hydrogen bonds involving the phenolic hydrogen atoms with the carboxyl O-atom acceptors (Table 2[link]), similar to (1).

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.88 2.605 (3) 146
O5—H5A⋯O4 0.94 (4) 2.00 (4) 2.745 (3) 135 (3)
O5—H5A⋯O3i 0.94 (4) 2.14 (4) 2.841 (2) 131 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Both (1) and (2) exhibit several intra­molecular H⋯H contacts that are shorter than the sum of the H-atom van der Waals radii. These contacts occur between the methyl group H atoms and adjacent phenyl group H atoms [H3C⋯H16 = 2.2538 (1) Å, shortest in (1); H3A⋯H5 = 2.1643 (1) Å and H2A⋯H9 = 2.1890 (1) Å, shorter than others in (2)]. Superimposition of the atoms C1/C2/C3/C4/C11 of (1) with the corresponding atoms of (2) (see Fig. 2[link]), yields an r.m.s. deviation of 0.011 Å with the S1A and S2B planes subtending a dihedral angle of 9.82 (4)° and the S1B and S2B planes subtending an angle of 35.1 (1)°.

[Figure 2]
Figure 2
An overlay of (1) (red) and (2) (green), where the atoms C1/C2/C3/C4/C11 of (1) are superimposed with the corresponding atoms of (2).

3. Supra­molecular features

Fig. 3[link] shows the packing of (1) along the a axis. van der Waals contacts between the O atoms and H atoms of adjacent mol­ecules [O1⋯H3Bi = 2.628 Å; symmetry code: (i) 1 − x, 1 − y, −z] dominate the inter­molecular inter­actions. In addition, bifurcated contacts between atom C17 and atoms H3 and O3 of adjacent mol­ecules [C17⋯H3ii = 2.887 Å; C17⋯O3ii = 2.811 (4) Å; symmetry code: (ii) x, ½ − y, −½ + z] contribute to the crystal packing. As in mol­ecule (1), O⋯H contacts play a key role in the inter­molecular inter­actions of (2). However, unlike (1), these inter­actions result mostly from hydrogen bonding between the phenolic hydrogen atoms and the carboxyl oxygen atoms of adjacent mol­ecules [O5—H5A⋯O1 = 2.841 (2) Å; θ = 131 (3)°; Table 2[link].) As a result, each mol­ecule becomes both a hydrogen-bond donor and acceptor. This feature links a mol­ecule at both ends with its adjacent inverted mol­ecules, thus forming undulating chains along [10[\overline{1}]] (Figs. 4[link] and 5[link]).

[Figure 3]
Figure 3
Crystal packing of (1) along the a axis. Red dashed lines show the intra­molecular O—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
Hydrogen bonding of (2) showing both its intra- and inter­molecular hydrogen bonds, depicted as blue dashed lines.
[Figure 5]
Figure 5
Crystal packing of (2) viewed along the b axis showing both the intra- and inter­molecular hydrogen bonds (red dashed lines).

4. Database survey

A search of the Cambridge Structural Database (CSD web inter­face, August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and the Crystallography Open Database (Gražulis et al., 2009[Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726-729.]) yields a number of compounds containing the bis­phenol or salicyl­aldehyde group. For examples, see Lim & Tanski, 2007[Lim, C. F. & Tanski, J. M. (2007). J. Chem. Crystallogr. 37, 587-595.]; Guieu et al., 2012[Guieu, S., Brandão, P., Rocha, J. & Silva, A. M. S. (2012). Acta Cryst. E68, o1404.], 2013[Guieu, S., Rocha, J. & Silva, A. M. S. (2013). Tetrahedron, 69, 9329-9334.]; Eriksson & Eriksson, 2001[Eriksson, J. & Eriksson, L. (2001). Acta Cryst. C57, 1308-1312.]; Barba & Betanzos, 2007[Barba, V. & Betanzos, I. J. (2007). Organomet. Chem. 692, 4903-4908.]; Vančo et al., 2005[Vančo, J., Marek, J. & Švajlenová, O. (2005). Acta Cryst. E61, o4209-o4211.]; Baisch et al., 2017[Baisch, U., Scicluna, M. C., Näther, C. & Vella-Zarb, L. (2017). Acta Cryst. E73, 155-158.]. The compounds 4-[2-(4-hy­droxy­phen­yl)propan-2-yl]phenol (3), a common chemical known also as bis­phenol A, (Lim & Tanski; CCDC 617706, CEGYOC03) and 5-[(3-formyl-4-hy­droxy­phen­yl)meth­yl]-2-hy­droxy­benzaldehyde (4) (Barba & Betanzos, 2007[Barba, V. & Betanzos, I. J. (2007). Organomet. Chem. 692, 4903-4908.]; CCDC 642298, VILCID) merit comparison to (1) and (2) and further discussion. Mol­ecule (3) presents a submolecular structure of the title compounds, as it only lacks the aldehyde groups found in (1) or (2). In contrast, (4) exhibits a pair of salicyl­aldehyde groups as (1) or (2), except that they are linked by a >CH2 bridge, instead of a >C(CH3)2 bridge.

Compound (3) crystallizes with three independent mol­ecules in the asymmetric unit. Each mol­ecule presents a pair of planar phenol fragments [r.m.s. deviations = 0.013 (2) and 0.028 (2) Å; 0.0039 (4) and 0.0078 (5) Å; and 0.0055 (6) and 0.0039 (3) Å] subtending dihedral angles of 77.81 (3), 86.15 (4) and 84.34 (4)°, respectively, and respective bridge angles of 109.2 (1), 109.5 (1), and 108.1 (1)°. In general, both (1) and (2) have similar geometric parameters to (3), although their corresponding phenol groups are less planar than those of (3). This manifestation results most likely because the phenyl groups of the title compounds contain aldehyde groups in addition to the hydroxyl groups. The O atoms of these aldehyde groups participate in hydrogen bonding with the hydroxyl H atoms, thus partially displacing the hydroxyl O atoms away from the phenol planes. A superimposition of the atoms in (1) with the corresponding atoms of one of the three structures of (3) shows that the differences in the atom positions of the two structures are hardly discernible (Fig. 6[link]) [r.m.s. deviation = 0.115 Å; maximum displacement = 0.217 (2) Å between the O2 atom of (1) and its counterpart of (3)]. An overlay of structure (1) onto either structure two or three of (3) yields comparable results. A similar analysis of structures (2) and (3) yields a r.m.s. deviation of 1.14 Å with maximum displacement of 0.605 (2) Å for the C6 atom of (2) and its counterpart in (3). Again, we obtain comparable results overlaying either structure two or three of (3) onto (1).

[Figure 6]
Figure 6
Superimposition of the non-hydrogen atoms of (3) (green) onto the corresponding atoms of (1) (red).

Mol­ecule (4) exhibits a pair of near planar salicyl­aldehyde fragments [r.m.s. deviation = 0.0153 (2) and 0.0238 (9) Å] forming a dihedral angle of 85.96 (4)°, similar to (1). Its bridge angle of 113.6 (1)° is much greater than that of (1) or (2), however. A superimposition of the salicyl­aldehyde group atoms of (4) (C4 through C9, C10, O1, and O2) with corresponding atoms of (1) reveals nearly identical atomic positions of the two groups [r.m.s. deviation = 0.0160 Å], with the companion salicyl­aldehyde group planes [centroid-to-centroid distance measuring = 4.68 (2) Å] subtending a dihedral angle of 6.81°. A similar analysis for structures (2) and (4) yields a r.m.s. deviation = 0.027 Å with companion salicyl­aldehyde groups planes [centroid-to-centroid distance measuring = 4.21 (1) Å] forming a dihedral angle of 7.4 (1)°.

5. Synthesis and crystallization

The title compounds were synthesized following modified literature procedures (Özdemir et al., 2015[Özdemir, H. S., Şahin, E., Çakıcı, M. & Kılıç, H. (2015). Tetrahedron, 71, 2882-2890.] and Masurier et al., 2008[Masurier, N., Moreau, E., Lartigue, C., Gaumet, V., Chezal, J., Heitz, A., Teulade, J. & Chavignon, O. (2008). J. Org. Chem. 73, 5989-5992.] for compounds (1) and (2), respectively).

Compound (1): A combination of compound (3) (10.0 g, 43.8 mmol, 1.0 equiv.), paraformaldehyde (16.7 g, 556.1 mmol, 12.7 equiv.), and magnesium(II) chloride (35.2 g, 173.1 mmol, 4.0 equiv.) were suspended in tetra­hydro­furan (THF, 500 mL), placed under a stream of N2, and stirred. Then, tri­ethyl­amine (49 mL, 351.6 mmol, 8.0 equiv.) was added dropwise to the reaction mixture at ambient temperature and stirred under reflux for 16 h. At the conclusion of the reaction, the mixture was cooled to room temperature before the addition of diethyl ether (500 mL). The organic solution was sequentially extracted with aqueous 1 M HCl (3 × 500 mL) and water (3 × 500 mL), dried over Na2SO­4 or MgSO4, filtered, and the volatiles were removed under reduced pressure. The solid residue was purified with a series of hexane washes and then dried under vacuum to afford the desired product (1) as a white solid (11.3 g, 39.7 mmol, 91% yield). Slow diffusion of hexa­nes into a benzene solution saturated with (1) afforded single crystals of (1).

Compound (2): A mixture of (3) (10.0 g, 43.8 mmol, 1.0 equiv.) and hexa­methyl­ene­tetra­mine (19.1 g, 183.3 mmol, 4.2 equiv.) was dissolved in tri­fluoro­acetic acid (TFA, 60 mL) under ambient conditions. The reaction mixture was stirred at 403 K for 2.5 h and subsequently cooled to room temperature before aqueous HCl (3M, 150 mL) was added slowly. The reaction mixture was stirred at 383 K for 16 h, cooled to room temperature, and the resulting organic phase extracted with di­chloro­methane (DCM, 3 × 150 mL). Then, this organic phase was dried over MgSO4, filtered, and the volatiles were removed under reduced pressure. The resulting solid was purified with a series of hexa­nes washes and dried under vacuum to afford the novel product (2) as a neon yellow solid (9.97 g, 29.3 mmol, 67% yield). Slow evaporation of a DCM solution saturated with (2) afforded single crystals suitable for X-ray diffractometry.

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts (δ) are given in ppm: (1) 1H NMR (CDCl3, 400.13 MHz): δ 1.70 (s, 6H), 6.92 (d, J = 8.7 Hz, 2H), 7.35 (dd, J1 = 8.7 Hz, J2 = 2.5 Hz, 2H), 7.43 (d, J = 2.5 Hz, 2H), 9.86 (s, 2H), 10.93 (s, 2H) ppm. 13C NMR (CDCl3, 100.62 MHz): δ 30.47, 41.86, 117.85, 120.15, 130.92, 136.20, 141.67, 160.10, 196.74 ppm. (2) 1H NMR (CDCl3, 400.13 MHz): δ 1.75 (s, 6H), 7.81 (s, 4H), 10.19 (s, 4H), 11.53 (s, 2H) ppm. 13C NMR (CDCl3, 100.62 MHz): δ 30.31, 30.59, 42.08, 123.05, 135.53, 141.31, 162.20, 191.99 ppm; low-resolution mass spectrometry (atmospheric pressure ionization); Thermo Fisher Scientific (ISQ–EC): m/z [M]+: calculated = 340.33; measured: 340; and luminescence spectrum (Horiba Jobin Yvon Fluoro­max 3 Spectrofluorimeter): 10−5M/aceto­nitrile; λexc = 356 nm; λem = 539 nm (full width half maximum = 100 nm).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms for (1) and most in (2) were refined in a riding-model approximation with C—H = 0.93 or 0.96 Å, Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl) and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). In (2), atoms H10, H11, H18, and H5A were refined independently with isotropic displacement parameters.

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula C17H16O4 C19H16O6
Mr 284.30 340.32
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 298 298
a, b, c (Å) 16.6108 (6), 12.0803 (6), 7.0946 (4) 13.4327 (4), 7.9920 (3), 15.2062 (5)
β (°) 90.396 (4) 90.348 (3)
V3) 1423.59 (12) 1632.42 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.10
Crystal size (mm) 0.35 × 0.3 × 0.28 0.34 × 0.32 × 0.28
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dualflex, EosS2 Rigaku Oxford Diffraction SuperNova, Dualflex, EosS2
Absorption correction Multi-scan (CrysAlis PRO; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) Multi-scan (CrysAlis PRO; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.])
Tmin, Tmax 0.861, 1.000 0.810, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6271, 2589, 2036 13629, 3331, 2586
Rint 0.017 0.029
(sin θ/λ)max−1) 0.602 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.122, 1.10 0.056, 0.167, 1.04
No. of reflections 2589 3331
No. of parameters 195 249
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.20 0.25, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009). Software used to prepare material for publication: Mercury (Macrae et al., 2008) for (2).

5,5'-(Propane-2,2-diyl)bis(2-hydroxybenzaldehyde) (1) top
Crystal data top
C17H16O4F(000) = 600
Mr = 284.30Dx = 1.326 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.6108 (6) ÅCell parameters from 2453 reflections
b = 12.0803 (6) Åθ = 2.1–25.2°
c = 7.0946 (4) ŵ = 0.09 mm1
β = 90.396 (4)°T = 298 K
V = 1423.59 (12) Å3Irregular, clear colourless
Z = 40.35 × 0.3 × 0.28 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dualflex, EosS2
diffractometer
2036 reflections with I > 2σ(I)
Detector resolution: 8.0945 pixels mm-1Rint = 0.017
ω scansθmax = 25.3°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlisPro; Bourhis et al., 2015)
h = 2020
Tmin = 0.861, Tmax = 1.000k = 1114
6271 measured reflectionsl = 86
2589 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.7348P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.21 e Å3
2589 reflectionsΔρmin = 0.20 e Å3
195 parametersExtinction correction: SHELXL-2016/4 (Sheldrick 2016), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0035 (12)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60832 (9)0.41639 (19)0.2405 (3)0.0801 (6)
O20.52036 (10)0.26273 (16)0.0724 (3)0.0736 (5)
H20.5624020.2932700.1041870.110*
O30.01645 (12)0.31117 (19)0.6564 (4)0.1054 (9)
H30.0283890.3155250.6079480.158*
O40.08657 (10)0.34768 (16)0.3823 (4)0.0932 (7)
C10.24872 (11)0.53761 (17)0.2163 (3)0.0461 (5)
C20.26777 (14)0.6426 (2)0.3303 (4)0.0721 (8)
H2A0.2187700.6819980.3548210.108*
H2B0.3035230.6889540.2596960.108*
H2C0.2929210.6223720.4475590.108*
C30.21711 (14)0.5742 (2)0.0216 (4)0.0662 (7)
H3A0.1997910.5104780.0484810.099*
H3B0.2592840.6112120.0455020.099*
H3C0.1725400.6238990.0374360.099*
C40.32352 (11)0.46576 (17)0.1856 (3)0.0411 (5)
C50.31596 (13)0.36340 (18)0.0949 (3)0.0482 (5)
H50.2649230.3392910.0591340.058*
C60.38080 (13)0.29743 (19)0.0566 (3)0.0524 (6)
H60.3733390.2304040.0055450.063*
C70.45731 (12)0.33011 (19)0.1102 (3)0.0486 (5)
C80.46721 (11)0.43126 (19)0.2017 (3)0.0448 (5)
C90.40007 (11)0.49711 (18)0.2366 (3)0.0430 (5)
H90.4073860.5648080.2967660.052*
C100.54638 (13)0.4685 (2)0.2607 (3)0.0600 (7)
H100.5500840.5374950.3184120.072*
C110.18592 (11)0.47158 (16)0.3248 (3)0.0420 (5)
C120.20564 (13)0.4232 (2)0.4976 (3)0.0569 (6)
H120.2583930.4284400.5414460.068*
C130.15019 (15)0.3682 (2)0.6053 (4)0.0699 (8)
H130.1656230.3362180.7191300.084*
C140.07106 (14)0.36060 (19)0.5433 (4)0.0651 (7)
C150.04964 (12)0.40537 (18)0.3714 (4)0.0519 (6)
C160.10733 (12)0.45953 (18)0.2658 (3)0.0469 (5)
H160.0922780.4890910.1497900.056*
C170.03227 (14)0.3944 (2)0.3020 (5)0.0717 (8)
H170.0441070.4260190.1855080.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (9)0.1197 (17)0.0831 (13)0.0130 (10)0.0031 (8)0.0127 (12)
O20.0616 (10)0.0765 (13)0.0828 (13)0.0281 (9)0.0117 (10)0.0046 (10)
O30.0797 (13)0.0857 (15)0.152 (2)0.0139 (12)0.0501 (14)0.0595 (15)
O40.0470 (10)0.0713 (13)0.162 (2)0.0120 (9)0.0304 (12)0.0243 (13)
C10.0356 (10)0.0403 (11)0.0624 (14)0.0016 (9)0.0024 (9)0.0008 (10)
C20.0487 (13)0.0455 (14)0.122 (2)0.0000 (11)0.0113 (14)0.0231 (15)
C30.0496 (13)0.0670 (17)0.0819 (18)0.0083 (12)0.0080 (12)0.0270 (14)
C40.0368 (10)0.0402 (11)0.0463 (12)0.0006 (9)0.0021 (8)0.0001 (9)
C50.0441 (11)0.0461 (13)0.0543 (13)0.0033 (10)0.0030 (10)0.0045 (10)
C60.0619 (14)0.0427 (12)0.0527 (13)0.0055 (11)0.0038 (11)0.0083 (11)
C70.0479 (12)0.0526 (14)0.0456 (12)0.0123 (10)0.0096 (9)0.0050 (11)
C80.0372 (10)0.0559 (13)0.0413 (12)0.0023 (9)0.0039 (8)0.0064 (10)
C90.0412 (11)0.0419 (11)0.0459 (12)0.0021 (9)0.0021 (9)0.0013 (9)
C100.0406 (12)0.0845 (18)0.0551 (14)0.0010 (12)0.0014 (10)0.0087 (13)
C110.0357 (10)0.0377 (11)0.0526 (13)0.0041 (8)0.0020 (9)0.0049 (10)
C120.0436 (12)0.0644 (15)0.0625 (15)0.0130 (11)0.0022 (11)0.0059 (12)
C130.0669 (16)0.0731 (18)0.0698 (17)0.0226 (13)0.0113 (13)0.0274 (14)
C140.0550 (14)0.0443 (14)0.096 (2)0.0109 (11)0.0266 (14)0.0164 (14)
C150.0404 (11)0.0390 (12)0.0762 (17)0.0021 (9)0.0084 (11)0.0042 (12)
C160.0408 (11)0.0457 (12)0.0543 (13)0.0015 (9)0.0011 (9)0.0026 (10)
C170.0424 (13)0.0641 (17)0.109 (2)0.0049 (12)0.0080 (14)0.0208 (16)
Geometric parameters (Å, º) top
O1—C101.216 (3)C5—C61.368 (3)
O2—H20.8200C6—H60.9300
O2—C71.355 (2)C6—C71.381 (3)
O3—H30.8200C7—C81.393 (3)
O3—C141.354 (3)C8—C91.393 (3)
O4—C171.210 (3)C8—C101.449 (3)
C1—C21.536 (3)C9—H90.9300
C1—C31.539 (3)C10—H100.9300
C1—C41.532 (3)C11—C121.395 (3)
C1—C111.526 (3)C11—C161.376 (3)
C2—H2A0.9600C12—H120.9300
C2—H2B0.9600C12—C131.372 (3)
C2—H2C0.9600C13—H130.9300
C3—H3A0.9600C13—C141.386 (4)
C3—H3B0.9600C14—C151.379 (4)
C3—H3C0.9600C15—C161.385 (3)
C4—C51.399 (3)C15—C171.450 (3)
C4—C91.373 (3)C16—H160.9300
C5—H50.9300C17—H170.9300
C7—O2—H2109.5C6—C7—C8118.96 (19)
C14—O3—H3109.5C7—C8—C9119.45 (19)
C2—C1—C3107.6 (2)C7—C8—C10120.7 (2)
C4—C1—C2112.22 (17)C9—C8—C10119.8 (2)
C4—C1—C3107.89 (18)C4—C9—C8122.5 (2)
C11—C1—C2107.77 (18)C4—C9—H9118.8
C11—C1—C3111.89 (17)C8—C9—H9118.8
C11—C1—C4109.48 (16)O1—C10—C8124.9 (3)
C1—C2—H2A109.5O1—C10—H10117.6
C1—C2—H2B109.5C8—C10—H10117.6
C1—C2—H2C109.5C12—C11—C1120.33 (18)
H2A—C2—H2B109.5C16—C11—C1123.53 (19)
H2A—C2—H2C109.5C16—C11—C12116.1 (2)
H2B—C2—H2C109.5C11—C12—H12118.7
C1—C3—H3A109.5C13—C12—C11122.5 (2)
C1—C3—H3B109.5C13—C12—H12118.7
C1—C3—H3C109.5C12—C13—H13120.2
H3A—C3—H3B109.5C12—C13—C14119.6 (2)
H3A—C3—H3C109.5C14—C13—H13120.2
H3B—C3—H3C109.5O3—C14—C13118.6 (3)
C5—C4—C1119.71 (17)O3—C14—C15121.8 (2)
C9—C4—C1123.83 (18)C15—C14—C13119.5 (2)
C9—C4—C5116.42 (18)C14—C15—C16119.2 (2)
C4—C5—H5118.7C14—C15—C17120.0 (2)
C6—C5—C4122.5 (2)C16—C15—C17120.7 (2)
C6—C5—H5118.7C11—C16—C15123.0 (2)
C5—C6—H6119.9C11—C16—H16118.5
C5—C6—C7120.2 (2)C15—C16—H16118.5
C7—C6—H6119.9O4—C17—C15125.7 (3)
O2—C7—C6119.0 (2)O4—C17—H17117.2
O2—C7—C8122.0 (2)C15—C17—H17117.2
O2—C7—C8—C9180.0 (2)C5—C6—C7—C80.5 (3)
O2—C7—C8—C100.0 (3)C6—C7—C8—C90.2 (3)
O3—C14—C15—C16176.9 (2)C6—C7—C8—C10179.8 (2)
O3—C14—C15—C173.8 (4)C7—C8—C9—C40.6 (3)
C1—C4—C5—C6177.4 (2)C7—C8—C10—O11.6 (4)
C1—C4—C9—C8178.02 (19)C9—C4—C5—C60.5 (3)
C1—C11—C12—C13176.4 (2)C9—C8—C10—O1178.4 (2)
C1—C11—C16—C15175.8 (2)C10—C8—C9—C4179.4 (2)
C2—C1—C4—C5175.9 (2)C11—C1—C4—C556.3 (3)
C2—C1—C4—C96.4 (3)C11—C1—C4—C9126.0 (2)
C2—C1—C11—C1267.3 (2)C11—C12—C13—C140.7 (4)
C2—C1—C11—C16109.9 (2)C12—C11—C16—C151.6 (3)
C3—C1—C4—C565.7 (2)C12—C13—C14—O3176.5 (2)
C3—C1—C4—C9112.0 (2)C12—C13—C14—C152.1 (4)
C3—C1—C11—C12174.6 (2)C13—C14—C15—C161.6 (4)
C3—C1—C11—C168.2 (3)C13—C14—C15—C17177.7 (2)
C4—C1—C11—C1255.0 (3)C14—C15—C16—C110.3 (3)
C4—C1—C11—C16127.7 (2)C14—C15—C17—O40.2 (4)
C4—C5—C6—C70.9 (3)C16—C11—C12—C131.1 (3)
C5—C4—C9—C80.3 (3)C16—C15—C17—O4179.1 (2)
C5—C6—C7—O2179.3 (2)C17—C15—C16—C11179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.932.642 (3)145
O3—H3···O40.821.902.619 (4)145
5,5'-(propane-2,2-diyl)bis(2-hydroxyisophthalaldehyde) (2) top
Crystal data top
C19H16O6F(000) = 712
Mr = 340.32Dx = 1.385 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.4327 (4) ÅCell parameters from 4266 reflections
b = 7.9920 (3) Åθ = 2.0–26.0°
c = 15.2062 (5) ŵ = 0.10 mm1
β = 90.348 (3)°T = 298 K
V = 1632.42 (9) Å3Irregular, yellow
Z = 40.34 × 0.32 × 0.28 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dualflex, EosS2
diffractometer
3331 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.0945 pixels mm-1θmax = 26.4°, θmin = 2.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlisPro; Bourhis et al., 2015)
k = 89
Tmin = 0.810, Tmax = 1.000l = 1919
13629 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.085P)2 + 0.540P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3331 reflectionsΔρmax = 0.25 e Å3
249 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56797 (16)0.2277 (3)0.75859 (13)0.0451 (5)
C20.5020 (3)0.0866 (3)0.79457 (17)0.0744 (8)
H2A0.4332390.1154320.7862340.112*
H2B0.5154380.0717100.8561590.112*
H2C0.5162300.0154360.7638050.112*
C30.67756 (19)0.1817 (3)0.77738 (16)0.0650 (7)
H3A0.7195480.2745190.7624690.098*
H3B0.6957070.0861630.7427240.098*
H3C0.6856180.1557200.8386520.098*
C40.55349 (14)0.2495 (2)0.65879 (12)0.0398 (4)
C50.62192 (14)0.3416 (3)0.61068 (13)0.0425 (5)
H50.6743450.3926700.6405540.051*
C60.61570 (15)0.3610 (3)0.51995 (13)0.0442 (5)
C70.53582 (16)0.2880 (3)0.47460 (13)0.0477 (5)
C80.46395 (15)0.2017 (3)0.52114 (14)0.0470 (5)
C90.47444 (15)0.1818 (3)0.61219 (14)0.0458 (5)
H90.4265790.1208830.6424070.055*
C100.69131 (19)0.4569 (3)0.47277 (17)0.0598 (6)
H100.683 (2)0.462 (3)0.4070 (19)0.073 (8)*
C110.37722 (19)0.1293 (4)0.4765 (2)0.0669 (7)
H110.324 (2)0.068 (3)0.5214 (17)0.065 (7)*
C120.53648 (14)0.3898 (3)0.80494 (12)0.0400 (5)
C130.44519 (15)0.4626 (3)0.78465 (13)0.0449 (5)
H130.4070230.4159130.7397120.054*
C140.40839 (15)0.6016 (3)0.82828 (13)0.0460 (5)
C150.46436 (15)0.6737 (3)0.89671 (13)0.0421 (5)
C160.55783 (14)0.6066 (3)0.91700 (13)0.0426 (5)
C170.59223 (14)0.4663 (3)0.87119 (12)0.0422 (5)
H170.6544340.4226340.8854790.051*
C180.31154 (19)0.6673 (4)0.80118 (17)0.0662 (7)
H180.277 (2)0.595 (4)0.755 (2)0.087 (9)*
C190.61762 (17)0.6814 (3)0.98792 (16)0.0571 (6)
H190.5921 (19)0.790 (3)1.0142 (17)0.067 (7)*
O10.36389 (14)0.1404 (3)0.39694 (14)0.0851 (7)
O20.53075 (14)0.3050 (3)0.38619 (10)0.0706 (5)
H20.4796520.2607760.3677540.106*
O30.75935 (14)0.5285 (3)0.50684 (12)0.0779 (6)
O40.27133 (14)0.7886 (3)0.83289 (13)0.0869 (7)
O50.43151 (13)0.8023 (2)0.94557 (11)0.0565 (4)
H5A0.366 (3)0.834 (4)0.932 (2)0.096 (10)*
O60.69410 (13)0.6221 (3)1.01611 (13)0.0749 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0571 (12)0.0433 (12)0.0349 (10)0.0031 (9)0.0028 (8)0.0021 (9)
C20.119 (2)0.0514 (15)0.0532 (14)0.0140 (15)0.0114 (14)0.0062 (12)
C30.0797 (16)0.0667 (16)0.0484 (13)0.0329 (13)0.0166 (12)0.0045 (11)
C40.0436 (10)0.0397 (11)0.0362 (10)0.0046 (8)0.0029 (8)0.0034 (8)
C50.0428 (10)0.0440 (11)0.0405 (11)0.0006 (9)0.0066 (8)0.0020 (9)
C60.0460 (10)0.0449 (12)0.0417 (11)0.0012 (9)0.0013 (8)0.0007 (9)
C70.0560 (12)0.0477 (12)0.0392 (11)0.0097 (10)0.0085 (9)0.0048 (9)
C80.0427 (10)0.0479 (12)0.0503 (12)0.0050 (9)0.0095 (9)0.0094 (10)
C90.0422 (10)0.0467 (12)0.0486 (12)0.0006 (9)0.0004 (9)0.0036 (9)
C100.0656 (14)0.0639 (16)0.0498 (13)0.0071 (12)0.0004 (11)0.0063 (12)
C110.0536 (13)0.0721 (17)0.0746 (18)0.0058 (12)0.0217 (13)0.0220 (14)
C120.0458 (10)0.0433 (11)0.0309 (9)0.0013 (8)0.0006 (8)0.0046 (8)
C130.0458 (10)0.0547 (13)0.0343 (10)0.0009 (9)0.0045 (8)0.0014 (9)
C140.0433 (10)0.0585 (13)0.0362 (10)0.0051 (9)0.0001 (8)0.0039 (9)
C150.0458 (10)0.0432 (11)0.0374 (10)0.0001 (9)0.0060 (8)0.0037 (8)
C160.0427 (10)0.0480 (12)0.0373 (10)0.0043 (9)0.0007 (8)0.0004 (9)
C170.0395 (9)0.0497 (12)0.0373 (10)0.0015 (9)0.0003 (8)0.0034 (9)
C180.0561 (13)0.0870 (19)0.0555 (14)0.0234 (13)0.0084 (11)0.0153 (14)
C190.0472 (12)0.0662 (16)0.0578 (14)0.0025 (11)0.0040 (10)0.0106 (12)
O10.0752 (12)0.1010 (15)0.0786 (13)0.0110 (11)0.0387 (10)0.0277 (11)
O20.0875 (13)0.0870 (14)0.0371 (8)0.0030 (10)0.0139 (8)0.0001 (8)
O30.0766 (12)0.0875 (14)0.0697 (12)0.0279 (11)0.0005 (9)0.0071 (10)
O40.0695 (11)0.1126 (16)0.0784 (13)0.0418 (11)0.0131 (10)0.0226 (12)
O50.0581 (9)0.0565 (10)0.0550 (9)0.0090 (8)0.0009 (7)0.0105 (8)
O60.0604 (10)0.0890 (14)0.0753 (12)0.0004 (9)0.0174 (9)0.0135 (10)
Geometric parameters (Å, º) top
C1—C21.537 (3)C12—C11.536 (3)
C1—C31.542 (3)C12—C171.393 (3)
C2—H2A0.9600C13—C121.390 (3)
C2—H2B0.9600C13—H130.9300
C2—H2C0.9600C13—C141.386 (3)
C3—H3A0.9600C14—C181.460 (3)
C3—H3B0.9600C15—C141.404 (3)
C3—H3C0.9600C16—C151.398 (3)
C4—C11.539 (3)C16—C191.468 (3)
C4—C51.389 (3)C17—C161.400 (3)
C4—C91.383 (3)C17—H170.9300
C5—H50.9300C18—H181.02 (3)
C5—C61.390 (3)C19—H191.02 (3)
C6—C71.399 (3)O1—C111.225 (3)
C6—C101.464 (3)O2—C71.353 (3)
C7—C81.384 (3)O2—H20.8200
C8—C91.400 (3)O3—C101.194 (3)
C8—C111.464 (3)O4—C181.211 (3)
C9—H90.9300O5—C151.344 (3)
C10—H101.01 (3)O5—H5A0.94 (3)
C11—H111.10 (3)O6—C191.208 (3)
C2—C1—C3108.1 (2)C4—C9—H9118.8
C2—C1—C4111.37 (18)C8—C9—H9118.8
C4—C1—C3108.94 (17)C6—C10—H10115.5 (16)
C12—C1—C2107.15 (18)O3—C10—C6124.8 (2)
C12—C1—C3112.43 (17)O3—C10—H10119.8 (16)
C12—C1—C4108.90 (16)C8—C11—H11113.7 (13)
C1—C2—H2A109.5O1—C11—C8122.7 (3)
C1—C2—H2B109.5O1—C11—H11123.6 (13)
C1—C2—H2C109.5C13—C12—C1119.75 (17)
H2A—C2—H2B109.5C13—C12—C17116.53 (19)
H2A—C2—H2C109.5C17—C12—C1123.62 (17)
H2B—C2—H2C109.5C12—C13—H13118.5
C1—C3—H3A109.5C14—C13—C12123.06 (18)
C1—C3—H3B109.5C14—C13—H13118.5
C1—C3—H3C109.5C13—C14—C15119.53 (18)
H3B—C3—H3A109.5C13—C14—C18118.2 (2)
H3B—C3—H3C109.5C15—C14—C18122.3 (2)
H3C—C3—H3A109.5C16—C15—C14118.81 (19)
C5—C4—C1119.94 (17)O5—C15—C14123.20 (19)
C9—C4—C1123.58 (18)O5—C15—C16117.97 (19)
C9—C4—C5116.48 (18)C15—C16—C17119.76 (18)
C4—C5—H5118.5C15—C16—C19119.5 (2)
C4—C5—C6123.06 (18)C17—C16—C19120.73 (19)
C6—C5—H5118.5C12—C17—C16122.25 (18)
C5—C6—C7118.93 (19)C12—C17—H17118.9
C5—C6—C10120.46 (19)C16—C17—H17118.9
C7—C6—C10120.6 (2)C14—C18—H18113.3 (17)
C8—C7—C6119.40 (18)O4—C18—C14125.1 (2)
O2—C7—C6118.8 (2)O4—C18—H18121.4 (17)
O2—C7—C8121.82 (19)C16—C19—H19116.9 (14)
C7—C8—C9119.73 (18)O6—C19—C16124.2 (2)
C7—C8—C11121.0 (2)O6—C19—H19119.0 (15)
C9—C8—C11119.3 (2)C7—O2—H2109.5
C4—C9—C8122.31 (19)C15—O5—H5A113 (2)
C1—C4—C5—C6177.43 (18)C12—C13—C14—C18179.9 (2)
C1—C4—C9—C8179.08 (19)C12—C17—C16—C150.2 (3)
C1—C12—C17—C16174.81 (18)C12—C17—C16—C19178.5 (2)
C4—C5—C6—C71.5 (3)C13—C12—C1—C271.0 (2)
C4—C5—C6—C10178.8 (2)C13—C12—C1—C3170.37 (19)
C5—C4—C1—C2164.9 (2)C13—C12—C1—C449.6 (2)
C5—C4—C1—C345.8 (3)C13—C12—C17—C161.6 (3)
C5—C4—C1—C1277.2 (2)C13—C14—C18—O4179.1 (3)
C5—C4—C9—C81.0 (3)C14—C13—C12—C1175.04 (19)
C5—C6—C7—C81.5 (3)C14—C13—C12—C171.5 (3)
C5—C6—C7—O2179.06 (19)C15—C14—C18—O41.2 (4)
C5—C6—C10—O32.9 (4)C15—C16—C19—O6172.1 (2)
C6—C7—C8—C93.0 (3)C16—C15—C14—C132.2 (3)
C6—C7—C8—C11177.5 (2)C16—C15—C14—C18178.1 (2)
C7—C6—C10—O3176.9 (2)C17—C12—C1—C2105.3 (2)
C7—C8—C9—C41.8 (3)C17—C12—C1—C313.3 (3)
C7—C8—C11—O10.3 (4)C17—C12—C1—C4134.15 (19)
C9—C4—C1—C215.2 (3)C17—C16—C15—C142.2 (3)
C9—C4—C1—C3134.4 (2)C17—C16—C15—O5176.20 (18)
C9—C4—C1—C12102.7 (2)C17—C16—C19—O66.2 (4)
C9—C4—C5—C62.7 (3)C19—C16—C15—C14179.5 (2)
C9—C8—C11—O1179.2 (2)C19—C16—C15—O52.1 (3)
C10—C6—C7—C8178.3 (2)O2—C7—C8—C9177.5 (2)
C10—C6—C7—O21.2 (3)O2—C7—C8—C111.9 (3)
C11—C8—C9—C4178.8 (2)O5—C15—C14—C13176.02 (19)
C12—C13—C14—C150.4 (3)O5—C15—C14—C183.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.882.605 (3)146
O5—H5A···O40.94 (4)2.00 (4)2.745 (3)135 (3)
O5—H5A···O3i0.94 (4)2.14 (4)2.841 (2)131 (3)
Symmetry code: (i) x1/2, y+3/2, z+1/2.
 

Footnotes

Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Research Fellow.

Acknowledgements

We thank Dr J. Orlicki for the use of the Fluoro­max Spectrofluorimeter and helpful discussions regarding this work and Mr E. Napadensky for helping acquire the mass spectra. This research was supported in part by an appointment to the Postgraduate Research Participation Program at the US Army Research Laboratory by the Oak Ridge Institute for Science and Education through an inter­agency agreement between the US Department of Energy and the USARL.

References

First citationAndrady, A. L. & Neal, M. A. (2009). Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1977–1984.  CrossRef Google Scholar
First citationBaisch, U., Scicluna, M. C., Näther, C. & Vella-Zarb, L. (2017). Acta Cryst. E73, 155–158.  CrossRef IUCr Journals Google Scholar
First citationBarba, V. & Betanzos, I. J. (2007). Organomet. Chem. 692, 4903–4908.  CrossRef Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEriksson, J. & Eriksson, L. (2001). Acta Cryst. C57, 1308–1312.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFenichell, S. (1996). Plastic: the Making of a Synthetic Century. New York: HarperBusiness.  Google Scholar
First citationGražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726–729.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuieu, S., Brandão, P., Rocha, J. & Silva, A. M. S. (2012). Acta Cryst. E68, o1404.  CrossRef IUCr Journals Google Scholar
First citationGuieu, S., Rocha, J. & Silva, A. M. S. (2013). Tetrahedron, 69, 9329–9334.  CrossRef Google Scholar
First citationKalinowski, D. S. & Richardson, D. R. (2005). Pharmacol. Rev. 57, 547–583.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLim, C. F. & Tanski, J. M. (2007). J. Chem. Crystallogr. 37, 587–595.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaisonneuve, L., Lamarzelle, O., Rix, E., Grau, E. & Cramail, H. (2015). Chem. Rev. 115, 12407–12439.  CrossRef Google Scholar
First citationMasurier, N., Moreau, E., Lartigue, C., Gaumet, V., Chezal, J., Heitz, A., Teulade, J. & Chavignon, O. (2008). J. Org. Chem. 73, 5989–5992.  CrossRef Google Scholar
First citationMounika, K., Pragathi, A. & Gyanakumari, C. (2010). J. Sci. Res. 2, 513–524.  Google Scholar
First citationÖzdemir, H. S., Şahin, E., Çakıcı, M. & Kılıç, H. (2015). Tetrahedron, 71, 2882–2890.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeegarden, D. M. (2004). Polymer Chemistry: Introduction to an Indispensable Science. Arlington, VA: NSTA Press.  Google Scholar
First citationVančo, J., Marek, J. & Švajlenová, O. (2005). Acta Cryst. E61, o4209–o4211.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds