research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­tris­­(benzohydrazide-κ2N,O)(isophthalato-κO)samarium(III) nitrate

CROSSMARK_Color_square_no_text.svg

aDivision of Chemistry, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand, bDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok, 65000, Thailand, and cMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by T. J. Prior, University of Hull, England (Received 18 September 2018; accepted 30 October 2018; online 6 November 2018)

The first benzohydrazide complex of a lanthanide is reported. In the title compound, [Sm(C8H4O4)(C7H8N2O)3(H2O)2]NO3, systematic name di­aqua­tris­(benzohydrazide-κ2N,O)(isophthalato-κO)samarium(III) nitrate, the SmIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic geometry by three oxygen atoms and three nitro­gen atoms from three benzhydrazide (bzz) ligands, one oxygen atom from the isophthalate (itp2−) ligand, and two oxygen atoms from coordinated water mol­ecules. The nitrate group is disordered over two sets of sites with occupancy factors of 0.310 (17) and 0.690 (17). In the crystal, adjacent mol­ecules are linked into chains via pairs of O—H⋯O and N—H⋯O hydrogen bonds between the carboxyl­ate acceptor and the coordinated water and amine NH2 donors. Mol­ecules are further stacked by ππ inter­actions involving the benzene ring of the itp2− ligands, forming double chains that extend in the b-axis direction. These double chains are further linked into a three-dimensional supra­molecular network via hydrogen bonds (O—H⋯O, N—H⋯O and C—H⋯O) between the complex mol­ecule and the nitrate groups along with C—H⋯π and ππ inter­actions involving the benzene rings of the bzz and itp2− ligands.

1. Chemical context

Research on lanthanide-based coordination compounds is one of the most active fields in chemistry and materials science. Distinct from transition metal centers, lanthanide ions often demonstrate high and variable coordination numbers as well as diverse coordination geometries, which can lead to versatile structures and topologies (Cotton & Raithby, 2017[Cotton, S. A. & Raithby, P. R. (2017). Coord. Chem. Rev. 340, 220-231.]). They are also very attractive luminescent centers for the high colour purity and relatively long lifetimes arising from electronic transitions within the partially filled 4f orbitals, which make them potential candidates for applications in lighting, photon­ics and as luminescent probes and sensors (Parker, 2000[Parker, D. (2000). Coord. Chem. Rev. 205, 109-130.]; Bünzli & Piguet, 2005[Bünzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048-1077.]; Cui et al., 2018[Cui, Y., Zhang, J., He, H. & Qian, G. (2018). Chem. Soc. Rev. 47, 5740-5785.]). Besides the metal ions, the organic ligands also have significant effects on the construction of novel lanthanide coordination compounds and their potential applications (Lu et al., 2012[Lu, W.-G., Zhong, D.-C., Jiang, L. & Lu, T.-B. (2012). Cryst. Growth Des. 12, 3675-3683.]; Xu et al., 2016[Xu, H., Cao, C.-S., Kang, X. M. & Zhao, B. (2016). Dalton Trans. 45, 18003-18017.]; You et al., 2018[You, L.-X., Zhao, B.-B., Liu, H.-J., Wang, S.-J., Xiong, G., He, Y.-K., Ding, F., Joos, J. J., Smet, P. F. & Sun, Y.-G. (2018). CrystEngComm, 20, 615-623.]). It is well-known that lanthanide ions have a high affinity for and prefer to bind to hard donor atoms such as oxygen-containing organic ligands, for instance aromatic carb­oxy­lic acids. Terephthalic acid and its derivatives have thus been widely employed in the synthesis of novel lanthanide-based coordination compounds with inter­esting architectures and photoluminescence properties (Karmakar et al., 2016[Karmakar, A., Hazra, S., Guedes da Silva, M. F. C., Paul, A. & Pombeiro, A. J. L. (2016). CrystEngComm, 18, 1337-1349.]; Park & Oh, 2016[Park, J. & Oh, M. (2016). CrystEngComm, 18, 8372-8376.]). These ligands can exhibit various coordination modes when coordinated to the metal centers, as well as serving as antennas or sensitizers to absorb light and transfer energy to the excited states of the central lanthanide ions (Bünzli & Piguet, 2005[Bünzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048-1077.]). Aromatic organic compounds containing the hydrazide group have been used widely as chemical receptors for sensing anions (Ran et al., 2017[Ran, X., Gao, Q., Zhang, Y. & Guo, L. (2017). RSC Adv. 7, 56016-56022.]; Liu et al., 2018[Liu, F., Fan, C., Tu, Y. & Pu, S. (2018). RSC Adv. 8, 31113-31120.]), but have received less attention as metal chelators. In a search for new structural chemistry, we employed benzhydrazide (bzz) and isoterephthalic acid (H2itp) as ligands to react with Sm(NO3)3·6H2O under hydro­thermal conditions, and the crystal structure determination of the title compound is reported herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The asymmetric unit comprises one SmIII ion, three benzhydrazide (bzz) ligands, one completely deprotonated isophthalate (itp2−) ligand, two coordinated water mol­ecules, and one disordered NO3 ion. The hydrazide group of the bzz ligand adopts a bidentate μ2-η1:η1 chelating coordination mode, whereas the carboxyl­ate groups of the fully deprotonated itp2− ligand display a μ1-η1:η0 monodentate coordination fashion. The SmIII ion is nine-coordinated by three oxygen atoms (O1, O2, O3) and three nitro­gen atoms (N1, N3, N5) of three different bzz ligands, one oxygen atom (O4) from the completely deprotonated itp2− ligand, and other two oxygen atoms (O8, O9) from the coordinated water mol­ecules. The central metal SmIII atom can be described as having a distorted tricapped trigonal–prismatic geometry, Fig. 2[link], with the Sm—N and the Sm—O bond lengths in the ligand ranging from 2.633 (2) to 2.694 (2) Å and 2.340 (2) to 2.478 (2) Å, respectively, and the N/O—Sm—N/O bond angles fall in the range 60.97 (6) to 145.24 (6)°. These values are comparable to other reported values for oxygen/nitro­gen-coordinated SmIII complexes (Alipour et al., 2016[Alipour, M., Akintola, O., Buchholz, A., Mirzaei, M., Eshtiagh-Hosseini, H., Görls, H. & Plass, W. (2016). Eur. J. Inorg. Chem. pp. 5356-5365.]; An et al., 2016[An, R., Zhao, H., Hu, H.-M., Wang, X., Yang, M.-L. & Xue, G. (2016). Inorg. Chem. 55, 871-876.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
View of the distorted tricapped trigonal–prismatic coordination geometry of the central SmIII atom.

3. Supra­molecular features

As can be seen in Fig. 3[link], one carboxyl­ate group of the itp2− ligand adopts a monodentate coordination mode to the SmIII ion, while the other acts as an acceptor of hydrogen-bonding inter­actions (Table 1[link]) involving the water mol­ecules and the amine NH2 group of the bzz ligand of an adjacent complex mol­ecules. This arrangement gives rise to chains extending along the b-axis direction by offset ππ inter­actions between the benzene rings of symmetry-related itp2− ligands, Fig. 4[link], with a centroid to centroid distance of Cg4⋯Cg4i = 3.692 (2) Å and a dihedral angle = 0.0 (2)° [Cg4 is the centroid of the C23–C29 ring; symmetry code: (i) 2 − x, 1 − y, 1 − z). Fig. 5[link] shows the crystal packing of the title compound along the a axis. The three-dimensional supra­mol­ecular architecture of the crystal is sustained by numerous O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds between the complex mol­ecules and the nitrate groups along with weak C—H⋯π inter­actions between the aromatic C—H bonds and the benzene rings of the bzz ligands, Table 1[link]. Furthermore, weak aromatic ππ stacking inter­actions involving the bzz ligands [Cg1⋯Cg1ii = 3.882 (2) Å, dihedral angle = 0.0 (5)°; Cg1 is the centroid of the C2–C7 ring; symmetry code: (ii) 1 − x, −y, 2 − z;] , and the bzz and itp2− ligands [Cg2⋯Cg4iii = 3.715 (3) Å, dihedral angle = 4.7 (9)°; Cg2 is the centroid of the C9–C14 ring; symmetry code: (iii) 1 − x, 1 − y, 1 − z], are also observed, which help further to stabilize the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C2–C7 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O7i 0.83 (2) 1.75 (2) 2.574 (2) 168 (3)
O8—H8B⋯O5 0.84 (2) 1.76 (2) 2.585 (3) 166 (3)
O9—H9A⋯O12Aii 0.83 (2) 2.22 (2) 2.988 (2) 156 (3)
O9—H9A⋯O12Bii 0.83 (2) 2.09 (2) 2.888 (2) 162 (3)
O9—H9B⋯O6ii 0.83 (2) 1.81 (2) 2.633 (2) 170 (3)
N1—H1A⋯O6i 0.88 (2) 2.14 (2) 3.012 (3) 172 (2)
N1—H1B⋯O6ii 0.88 (2) 2.14 (2) 2.965 (3) 156 (3)
N2—H2⋯O11Ai 0.87 (2) 2.22 (3) 2.936 (2) 140 (2)
N2—H2⋯O12Bi 0.87 (2) 2.10 (2) 2.946 (3) 164 (3)
N3—H3B⋯O4ii 0.88 (2) 2.53 (2) 3.344 (3) 155 (3)
N4—H4⋯O10B 0.87 (2) 2.18 (2) 3.040 (3) 176 (3)
N4—H4⋯O12A 0.87 (2) 2.31 (3) 2.970 (2) 133 (3)
N5—H5A⋯O5iii 0.88 (2) 2.07 (2) 2.878 (3) 152 (2)
N5—H5B⋯O5 0.87 (2) 2.67 (2) 3.199 (3) 120 (2)
N5—H5B⋯O7iv 0.87 (2) 2.15 (2) 2.940 (3) 151 (2)
N6—H6⋯O10Av 0.87 (2) 2.22 (3) 2.961 (2) 142 (2)
N6—H6⋯O11Bv 0.87 (2) 2.28 (2) 3.115 (3) 159 (3)
C10—H10⋯O10B 0.93 2.36 3.282 (2) 173
C11—H11⋯Cg1vi 0.93 3.10 3.866 (2) 137
C13—H13⋯Cg3vii 0.93 3.02 3.712 (4) 132
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) -x+2, -y+1, -z+1; (v) x+1, y-1, z; (vi) x-1, y+1, z; (vii) x-1, y, z.
[Figure 3]
Figure 3
View of a supra­molecular chain formed by O—H⋯O and N—H⋯O hydrogen bonds.
[Figure 4]
Figure 4
View of a supra­molecular double chain sustained by O—H⋯O and N—H⋯O hydrogen bonding along with ππ stacking inter­actions.
[Figure 5]
Figure 5
The crystal packing of the title compound, viewed along the a axis. The nitrate mol­ecules are shown with a space-filling model.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 20 hits for the benzohydrazide complexes with transition metal ions, but none of them involves a lanthanide ion. The most typical coordination mode of benzohydrazide ligands in structures appears to be a bidentate chelating mode with metal centers through nitro­gen and oxygen donor atoms (BOHYCU, Nyburg et al., 1971[Nyburg, S. C., Baker, R. J. & Szymanski, J. T. (1971). Inorg. Chem. 10, 138-146.]; EKAMIM, Odunola et al., 2003[Odunola, O. A., Adeoye, I. O., Woods, J. A. O. & Gelebe, A. C. (2003). Synth. React. Inorg. Met.-Org. Chem. 33, 205-221.]; EZARED, EZARIH, Patel et al., 2011[Patel, R. N., Singh, A., Shukla, K. K., Patel, D. K. & Sondhiya, V. P. (2011). Transition Met. Chem. 36, 179-187.]; XUQYUD01, Thiam et al., 2009[Thiam, E. I., Barry, A. H., Navaza, A., Retailleau, P., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, m1014.]). In these complexes, the nitro­gen atoms of the hydrazide group serve as donors for hydrogen bonding.

5. Synthesis and crystallization

A mixture of Sm(NO3)3·6H2O (44.5 mg, 0.1 mmol), bzz (27.4 mg, 0.2 mmol), H2itp (16.5 mg, 0.1 mmol), and H2O (4 ml) was sealed in a 15 ml Teflon-lined steel autoclave and heated at 373 K for 24 h. The mixture was cooled to room temperature and light-yellow block-shaped crystals of the title compound were obtained in 79% yield (35.2 mg, based on SmIII source). Analysis calculated (%) for C29H32N7O12Sm (1376.80): C 42.43; H 3.93; N 11.94%. Found: C 42.46; H 3.96; N 11.90%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference maps. The H atoms bonded to C atoms were treated as riding atoms in geometrically idealized position with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C). The H atoms bonded to O and N atoms were located in a difference-Fourier map, but were refined with distance restraints of O—H = 0.84 ± 0.01 Å and N—H = 0.88 ± 0.01 Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). The nitrate group is disordered over two sets of sites, with occupancy factors of 0.310 (17) and 0.690 (17).

Table 2
Experimental details

Crystal data
Chemical formula [Sm(C8H4O4)(C7H8N2O)3(H2O)2]NO3
Mr 820.96
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 11.0784 (12), 11.2518 (13), 15.3590 (18)
α, β, γ (°) 84.039 (4), 78.487 (4), 62.042 (3)
V3) 1656.9 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.84
Crystal size (mm) 0.22 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker D8 QUEST CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.698, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 52341, 7637, 6577
Rint 0.056
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.053, 1.05
No. of reflections 7637
No. of parameters 531
No. of restraints 55
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.36
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Diaquatris(benzohydrazide-κ2N,O)(isophthalato-κO)samarium(III) nitrate top
Crystal data top
[Sm(C8H4O4)(C7H8N2O)3(H2O)2]NO3Z = 2
Mr = 820.96F(000) = 826
Triclinic, P1Dx = 1.645 Mg m3
a = 11.0784 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2518 (13) ÅCell parameters from 9800 reflections
c = 15.3590 (18) Åθ = 3.1–27.3°
α = 84.039 (4)°µ = 1.84 mm1
β = 78.487 (4)°T = 296 K
γ = 62.042 (3)°Block, light yellow
V = 1656.9 (3) Å30.22 × 0.2 × 0.2 mm
Data collection top
Bruker D8 QUEST CMOS
diffractometer
7637 independent reflections
Radiation source: microfocus sealed x-ray tube, Incoatec Iµus6577 reflections with I > 2σ(I)
GraphiteDouble Bounce Multilayer Mirror monochromatorRint = 0.056
Detector resolution: 10.5 pixels mm-1θmax = 27.6°, θmin = 3.1°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1414
Tmin = 0.698, Tmax = 0.746l = 1920
52341 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0209P)2 + 0.7036P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
7637 reflectionsΔρmax = 0.47 e Å3
531 parametersΔρmin = 0.36 e Å3
55 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sm10.64247 (2)0.20819 (2)0.60370 (2)0.02461 (4)
O10.68088 (19)0.03820 (18)0.72193 (12)0.0396 (4)
O20.41572 (18)0.28637 (17)0.69227 (12)0.0384 (4)
O30.67732 (18)0.29498 (17)0.73343 (12)0.0368 (4)
O40.74767 (17)0.32614 (15)0.50425 (11)0.0320 (4)
O50.93740 (19)0.16420 (17)0.43030 (15)0.0507 (5)
O60.69780 (16)0.79297 (15)0.48404 (12)0.0337 (4)
O70.88238 (19)0.81877 (17)0.42352 (14)0.0466 (5)
O80.7757 (2)0.05576 (18)0.48831 (14)0.0409 (5)
H8A0.799 (3)0.0206 (17)0.470 (2)0.069 (11)*
H8B0.836 (3)0.079 (3)0.465 (2)0.075 (12)*
O90.50028 (18)0.28060 (17)0.48404 (12)0.0316 (4)
H9A0.548 (2)0.243 (3)0.4371 (11)0.036 (8)*
H9B0.431 (2)0.267 (3)0.493 (2)0.055 (10)*
O10A0.1374 (12)0.878 (2)0.7680 (9)0.066 (5)0.310 (17)
O10B0.1940 (8)0.8003 (8)0.7345 (4)0.0735 (19)0.690 (17)
O11A0.266 (2)0.9732 (16)0.7463 (14)0.088 (5)0.310 (17)
O11B0.2010 (9)0.9791 (7)0.7585 (5)0.079 (2)0.690 (17)
O12A0.357 (2)0.7680 (15)0.7052 (12)0.076 (5)0.310 (17)
O12B0.3861 (6)0.8098 (8)0.6970 (5)0.0613 (16)0.690 (17)
N10.5415 (2)0.0317 (2)0.60532 (14)0.0312 (5)
H1A0.589 (2)0.0320 (19)0.5659 (13)0.036 (8)*
H1B0.4578 (15)0.074 (3)0.5919 (19)0.048 (9)*
N20.5377 (2)0.0322 (2)0.68934 (14)0.0347 (5)
H20.487 (2)0.073 (2)0.7027 (18)0.042 (8)*
N30.4835 (2)0.4741 (2)0.62389 (15)0.0358 (5)
H3A0.534 (3)0.503 (3)0.6428 (18)0.047 (9)*
H3B0.448 (3)0.520 (3)0.5775 (14)0.062 (10)*
N40.3651 (2)0.5034 (2)0.68984 (14)0.0331 (5)
H40.313 (3)0.5874 (13)0.7034 (19)0.050 (9)*
N50.8956 (2)0.1034 (2)0.63928 (15)0.0318 (5)
H5A0.930 (3)0.0158 (11)0.6346 (18)0.040 (8)*
H5B0.949 (2)0.131 (3)0.6035 (15)0.037 (8)*
N60.8946 (2)0.1288 (2)0.72747 (15)0.0356 (5)
H60.9703 (18)0.084 (2)0.7502 (17)0.044 (8)*
N7A0.2522 (11)0.8721 (11)0.7372 (13)0.032 (4)0.310 (17)
N7B0.2615 (8)0.8629 (9)0.7303 (8)0.056 (2)0.690 (17)
C10.6114 (3)0.0239 (2)0.74407 (17)0.0325 (6)
C20.6105 (3)0.0903 (3)0.83308 (18)0.0368 (6)
C30.5432 (4)0.1672 (4)0.8608 (2)0.0667 (10)
H30.4956090.1813940.8228570.080*
C40.5465 (5)0.2234 (4)0.9454 (3)0.0846 (13)
H4A0.5008470.2754560.9639000.101*
C50.6148 (4)0.2039 (4)1.0014 (2)0.0693 (10)
H50.6162390.2421751.0581180.083*
C60.6809 (4)0.1287 (4)0.9749 (2)0.0681 (10)
H6A0.7282900.1152801.0133700.082*
C70.6789 (4)0.0715 (3)0.8912 (2)0.0563 (8)
H70.7245850.0192980.8739230.068*
C80.3369 (2)0.4028 (3)0.71862 (16)0.0310 (5)
C90.2075 (3)0.4315 (3)0.78336 (17)0.0409 (7)
C100.1151 (3)0.5588 (4)0.8150 (2)0.0631 (9)
H100.1335620.6309370.7965800.076*
C110.0048 (4)0.5792 (6)0.8740 (3)0.0937 (15)
H110.0669250.6650740.8950520.112*
C120.0318 (5)0.4751 (7)0.9009 (3)0.0989 (17)
H120.1121580.4895720.9410590.119*
C130.0568 (4)0.3492 (6)0.8701 (3)0.0827 (13)
H130.0364160.2783590.8889770.099*
C140.1782 (3)0.3254 (4)0.8102 (2)0.0588 (9)
H140.2386320.2393520.7886980.071*
C150.7799 (3)0.2250 (2)0.77007 (17)0.0335 (6)
C160.7760 (3)0.2465 (3)0.86489 (18)0.0394 (6)
C170.8465 (4)0.1409 (4)0.9196 (2)0.0587 (9)
H170.9018440.0549550.8966590.070*
C180.8347 (4)0.1631 (5)1.0086 (3)0.0787 (12)
H180.8810110.0916931.0454690.094*
C190.7552 (4)0.2898 (5)1.0424 (3)0.0776 (12)
H190.7482370.3045741.1020610.093*
C200.6865 (4)0.3939 (4)0.9889 (2)0.0665 (10)
H200.6336080.4800111.0121340.080*
C210.6941 (3)0.3734 (3)0.9001 (2)0.0529 (8)
H210.6442980.4448450.8643860.064*
C220.8656 (2)0.2830 (2)0.45328 (16)0.0280 (5)
C230.9215 (2)0.3801 (2)0.42054 (15)0.0243 (5)
C240.8477 (2)0.5137 (2)0.44522 (15)0.0233 (5)
H240.7618530.5434310.4822570.028*
C250.9000 (2)0.6041 (2)0.41547 (15)0.0239 (5)
C260.8210 (2)0.7487 (2)0.44296 (16)0.0275 (5)
C271.0285 (3)0.5579 (2)0.36103 (17)0.0336 (6)
H271.0649150.6172940.3410620.040*
C281.1032 (3)0.4249 (3)0.33605 (19)0.0398 (6)
H281.1892940.3951130.2993180.048*
C291.0498 (2)0.3361 (2)0.36574 (17)0.0331 (6)
H291.1000710.2464650.3489070.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm10.02326 (7)0.01824 (6)0.03323 (7)0.01103 (5)0.00329 (5)0.00044 (4)
O10.0417 (10)0.0396 (10)0.0507 (11)0.0292 (9)0.0171 (9)0.0155 (9)
O20.0333 (10)0.0308 (10)0.0500 (11)0.0170 (8)0.0014 (8)0.0011 (8)
O30.0314 (10)0.0306 (9)0.0443 (11)0.0085 (8)0.0096 (8)0.0066 (8)
O40.0293 (9)0.0208 (8)0.0441 (10)0.0136 (7)0.0044 (8)0.0035 (7)
O50.0391 (11)0.0220 (9)0.0847 (15)0.0165 (8)0.0179 (10)0.0171 (9)
O60.0241 (9)0.0201 (8)0.0562 (11)0.0096 (7)0.0036 (8)0.0069 (8)
O70.0390 (10)0.0245 (9)0.0792 (14)0.0221 (8)0.0088 (10)0.0119 (9)
O80.0371 (10)0.0243 (10)0.0609 (13)0.0182 (9)0.0106 (9)0.0149 (9)
O90.0272 (10)0.0291 (9)0.0395 (11)0.0144 (8)0.0041 (8)0.0002 (8)
O10A0.034 (5)0.093 (11)0.072 (7)0.031 (6)0.010 (4)0.008 (7)
O10B0.058 (3)0.078 (4)0.100 (4)0.048 (3)0.002 (3)0.017 (3)
O11A0.071 (10)0.050 (6)0.152 (12)0.030 (7)0.025 (9)0.011 (6)
O11B0.079 (5)0.052 (3)0.103 (4)0.020 (3)0.028 (4)0.016 (2)
O12A0.058 (8)0.051 (7)0.078 (7)0.014 (5)0.016 (6)0.020 (6)
O12B0.047 (2)0.084 (4)0.058 (3)0.034 (2)0.0040 (18)0.014 (3)
N10.0333 (12)0.0280 (11)0.0354 (12)0.0163 (10)0.0081 (10)0.0026 (9)
N20.0415 (13)0.0336 (12)0.0398 (12)0.0271 (11)0.0086 (10)0.0078 (10)
N30.0352 (13)0.0315 (12)0.0379 (13)0.0162 (10)0.0008 (10)0.0016 (10)
N40.0304 (11)0.0271 (11)0.0343 (12)0.0093 (10)0.0023 (9)0.0047 (9)
N50.0268 (11)0.0254 (11)0.0417 (13)0.0120 (9)0.0010 (10)0.0031 (10)
N60.0268 (11)0.0359 (12)0.0439 (13)0.0126 (10)0.0095 (10)0.0014 (10)
N7A0.018 (5)0.027 (6)0.038 (9)0.000 (4)0.017 (5)0.018 (5)
N7B0.066 (5)0.072 (5)0.046 (5)0.044 (4)0.007 (4)0.005 (4)
C10.0306 (13)0.0241 (12)0.0408 (15)0.0122 (11)0.0054 (11)0.0041 (11)
C20.0374 (14)0.0297 (13)0.0412 (15)0.0150 (12)0.0072 (12)0.0067 (11)
C30.088 (3)0.081 (3)0.064 (2)0.065 (2)0.033 (2)0.0345 (19)
C40.104 (3)0.103 (3)0.078 (3)0.077 (3)0.032 (3)0.050 (2)
C50.078 (3)0.071 (2)0.050 (2)0.030 (2)0.0131 (19)0.0227 (18)
C60.086 (3)0.074 (2)0.051 (2)0.040 (2)0.0280 (19)0.0132 (18)
C70.072 (2)0.061 (2)0.0528 (19)0.0429 (19)0.0210 (17)0.0143 (16)
C80.0278 (13)0.0377 (14)0.0286 (13)0.0150 (11)0.0084 (10)0.0012 (11)
C90.0301 (14)0.0648 (19)0.0301 (14)0.0244 (14)0.0032 (11)0.0007 (13)
C100.0447 (18)0.083 (3)0.051 (2)0.0249 (18)0.0114 (15)0.0221 (18)
C110.054 (2)0.134 (4)0.074 (3)0.035 (3)0.026 (2)0.038 (3)
C120.060 (3)0.179 (6)0.059 (3)0.064 (3)0.017 (2)0.014 (3)
C130.075 (3)0.144 (4)0.059 (2)0.080 (3)0.007 (2)0.021 (3)
C140.0502 (19)0.087 (3)0.0506 (19)0.0439 (19)0.0074 (15)0.0128 (18)
C150.0331 (14)0.0297 (13)0.0428 (15)0.0184 (12)0.0061 (12)0.0020 (11)
C160.0355 (14)0.0465 (16)0.0438 (16)0.0234 (13)0.0098 (12)0.0026 (13)
C170.057 (2)0.064 (2)0.055 (2)0.0227 (17)0.0228 (17)0.0007 (17)
C180.078 (3)0.099 (3)0.059 (2)0.033 (2)0.035 (2)0.008 (2)
C190.076 (3)0.120 (4)0.051 (2)0.053 (3)0.017 (2)0.012 (2)
C200.073 (2)0.078 (3)0.056 (2)0.041 (2)0.0006 (19)0.0246 (19)
C210.0538 (19)0.0540 (19)0.0530 (19)0.0261 (16)0.0056 (15)0.0091 (15)
C220.0292 (13)0.0189 (11)0.0365 (14)0.0116 (10)0.0051 (11)0.0014 (10)
C230.0227 (11)0.0205 (11)0.0303 (12)0.0105 (9)0.0044 (10)0.0005 (9)
C240.0215 (11)0.0209 (11)0.0283 (12)0.0106 (9)0.0039 (9)0.0006 (9)
C250.0238 (11)0.0197 (11)0.0314 (12)0.0117 (9)0.0075 (10)0.0002 (9)
C260.0268 (12)0.0204 (11)0.0382 (14)0.0123 (10)0.0081 (11)0.0005 (10)
C270.0320 (13)0.0282 (13)0.0448 (15)0.0201 (11)0.0016 (11)0.0016 (11)
C280.0286 (13)0.0324 (14)0.0534 (17)0.0154 (11)0.0117 (12)0.0102 (12)
C290.0290 (13)0.0210 (12)0.0448 (15)0.0099 (10)0.0032 (11)0.0087 (11)
Geometric parameters (Å, º) top
Sm1—O12.4415 (17)C3—C41.385 (5)
Sm1—O22.3973 (17)C4—H4A0.9300
Sm1—O32.4775 (17)C4—C51.348 (5)
Sm1—O42.4024 (16)C5—H50.9300
Sm1—O82.3397 (19)C5—C61.344 (5)
Sm1—O92.4827 (18)C6—H6A0.9300
Sm1—N12.694 (2)C6—C71.375 (4)
Sm1—N32.680 (2)C7—H70.9300
Sm1—N52.633 (2)C8—C91.487 (3)
O1—C11.243 (3)C9—C101.381 (4)
O2—C81.240 (3)C9—C141.380 (4)
O3—C151.246 (3)C10—H100.9300
O4—C221.277 (3)C10—C111.384 (5)
O5—C221.238 (3)C11—H110.9300
O6—C261.262 (3)C11—C121.346 (7)
O7—C261.244 (3)C12—H120.9300
O8—H8A0.834 (10)C12—C131.358 (7)
O8—H8B0.837 (10)C13—H130.9300
O9—H9A0.825 (10)C13—C141.395 (5)
O9—H9B0.831 (10)C14—H140.9300
O10A—N7A1.238 (12)C15—C161.490 (4)
O10B—N7B1.234 (8)C16—C171.383 (4)
O11A—N7A1.242 (13)C16—C211.380 (4)
O11B—N7B1.235 (8)C17—H170.9300
O12A—N7A1.257 (12)C17—C181.384 (5)
O12B—N7B1.238 (8)C18—H180.9300
N1—H1A0.875 (10)C18—C191.368 (6)
N1—H1B0.878 (10)C19—H190.9300
N1—N21.413 (3)C19—C201.356 (5)
N2—H20.871 (10)C20—H200.9300
N2—C11.320 (3)C20—C211.387 (5)
N3—H3A0.870 (10)C21—H210.9300
N3—H3B0.878 (10)C22—C231.492 (3)
N3—N41.410 (3)C23—C241.384 (3)
N4—H40.867 (10)C23—C291.387 (3)
N4—C81.322 (3)C24—H240.9300
N5—H5A0.879 (10)C24—C251.388 (3)
N5—H5B0.871 (10)C25—C261.501 (3)
N5—N61.410 (3)C25—C271.385 (3)
N6—H60.873 (10)C27—H270.9300
N6—C151.319 (3)C27—C281.379 (3)
C1—C21.489 (3)C28—H280.9300
C2—C31.373 (4)C28—C291.381 (3)
C2—C71.370 (4)C29—H290.9300
C3—H30.9300
O1—Sm1—O372.08 (6)C7—C2—C1117.9 (2)
O1—Sm1—O9133.85 (6)C7—C2—C3118.2 (3)
O1—Sm1—N160.97 (6)C2—C3—H3120.1
O1—Sm1—N3125.95 (7)C2—C3—C4119.8 (3)
O1—Sm1—N567.85 (6)C4—C3—H3120.1
O2—Sm1—O177.69 (6)C3—C4—H4A119.5
O2—Sm1—O379.96 (6)C5—C4—C3121.0 (3)
O2—Sm1—O4131.15 (6)C5—C4—H4A119.5
O2—Sm1—O980.28 (6)C4—C5—H5120.2
O2—Sm1—N168.37 (6)C6—C5—C4119.6 (3)
O2—Sm1—N361.71 (6)C6—C5—H5120.2
O2—Sm1—N5134.49 (7)C5—C6—H6A119.8
O3—Sm1—O9141.80 (6)C5—C6—C7120.5 (3)
O3—Sm1—N1127.30 (6)C7—C6—H6A119.8
O3—Sm1—N367.24 (7)C2—C7—C6120.9 (3)
O3—Sm1—N562.03 (6)C2—C7—H7119.5
O4—Sm1—O1144.08 (6)C6—C7—H7119.5
O4—Sm1—O390.56 (6)O2—C8—N4121.2 (2)
O4—Sm1—O978.51 (6)O2—C8—C9120.1 (2)
O4—Sm1—N1141.91 (6)N4—C8—C9118.7 (2)
O4—Sm1—N370.39 (6)C10—C9—C8122.9 (3)
O4—Sm1—N576.25 (6)C14—C9—C8117.6 (3)
O8—Sm1—O195.65 (7)C14—C9—C10119.5 (3)
O8—Sm1—O2137.16 (6)C9—C10—H10120.0
O8—Sm1—O3138.72 (7)C9—C10—C11120.1 (4)
O8—Sm1—O476.66 (6)C11—C10—H10120.0
O8—Sm1—O974.43 (7)C10—C11—H11119.9
O8—Sm1—N171.49 (7)C12—C11—C10120.2 (4)
O8—Sm1—N3138.35 (7)C12—C11—H11119.9
O8—Sm1—N576.77 (7)C11—C12—H12119.6
O9—Sm1—N173.31 (6)C11—C12—C13120.8 (4)
O9—Sm1—N374.63 (7)C13—C12—H12119.6
O9—Sm1—N5145.24 (6)C12—C13—H13119.8
N3—Sm1—N1123.90 (7)C12—C13—C14120.4 (4)
N5—Sm1—N1115.01 (7)C14—C13—H13119.8
N5—Sm1—N3117.67 (7)C9—C14—C13119.0 (4)
C1—O1—Sm1124.68 (16)C9—C14—H14120.5
C8—O2—Sm1126.68 (16)C13—C14—H14120.5
C15—O3—Sm1120.32 (16)O3—C15—N6121.8 (2)
C22—O4—Sm1130.94 (14)O3—C15—C16120.6 (2)
Sm1—O8—H8A144 (2)N6—C15—C16117.5 (2)
Sm1—O8—H8B104 (3)C17—C16—C15121.6 (3)
H8A—O8—H8B109 (3)C21—C16—C15119.1 (3)
Sm1—O9—H9A110.4 (19)C21—C16—C17119.2 (3)
Sm1—O9—H9B117 (2)C16—C17—H17120.0
H9A—O9—H9B106 (3)C16—C17—C18120.1 (3)
Sm1—N1—H1A114.3 (18)C18—C17—H17120.0
Sm1—N1—H1B109.2 (19)C17—C18—H18119.9
H1A—N1—H1B105 (3)C19—C18—C17120.2 (4)
N2—N1—Sm1111.02 (14)C19—C18—H18119.9
N2—N1—H1A107.0 (17)C18—C19—H19120.0
N2—N1—H1B110.1 (19)C20—C19—C18120.0 (4)
N1—N2—H2119.1 (18)C20—C19—H19120.0
C1—N2—N1117.4 (2)C19—C20—H20119.6
C1—N2—H2123.5 (18)C19—C20—C21120.7 (4)
Sm1—N3—H3A106 (2)C21—C20—H20119.6
Sm1—N3—H3B116 (2)C16—C21—C20119.7 (3)
H3A—N3—H3B113 (3)C16—C21—H21120.1
N4—N3—Sm1111.54 (14)C20—C21—H21120.1
N4—N3—H3A107 (2)O4—C22—C23118.50 (19)
N4—N3—H3B103 (2)O5—C22—O4123.6 (2)
N3—N4—H4116 (2)O5—C22—C23117.9 (2)
C8—N4—N3117.1 (2)C24—C23—C22120.8 (2)
C8—N4—H4126 (2)C24—C23—C29119.3 (2)
Sm1—N5—H5A106.2 (18)C29—C23—C22119.9 (2)
Sm1—N5—H5B113.6 (18)C23—C24—H24119.5
H5A—N5—H5B110 (2)C23—C24—C25120.9 (2)
N6—N5—Sm1111.50 (14)C25—C24—H24119.5
N6—N5—H5A107.1 (18)C24—C25—C26121.1 (2)
N6—N5—H5B108.7 (18)C27—C25—C24118.8 (2)
N5—N6—H6119.2 (19)C27—C25—C26120.1 (2)
C15—N6—N5117.6 (2)O6—C26—C25119.4 (2)
C15—N6—H6123.1 (19)O7—C26—O6123.5 (2)
O10A—N7A—O11A116.6 (12)O7—C26—C25117.1 (2)
O10A—N7A—O12A124.6 (13)C25—C27—H27119.6
O11A—N7A—O12A118.5 (13)C28—C27—C25120.9 (2)
O10B—N7B—O11B118.4 (7)C28—C27—H27119.6
O10B—N7B—O12B119.9 (7)C27—C28—H28120.1
O11B—N7B—O12B121.7 (7)C27—C28—C29119.8 (2)
O1—C1—N2120.8 (2)C29—C28—H28120.1
O1—C1—C2120.2 (2)C23—C29—H29119.9
N2—C1—C2119.0 (2)C28—C29—C23120.3 (2)
C3—C2—C1123.9 (3)C28—C29—H29119.9
Sm1—O1—C1—N220.2 (3)C3—C2—C7—C60.4 (5)
Sm1—O1—C1—C2159.95 (17)C3—C4—C5—C60.0 (7)
Sm1—O2—C8—N48.8 (3)C4—C5—C6—C70.2 (6)
Sm1—O2—C8—C9171.58 (16)C5—C6—C7—C20.4 (6)
Sm1—O3—C15—N624.0 (3)C7—C2—C3—C40.3 (5)
Sm1—O3—C15—C16155.18 (18)C8—C9—C10—C11178.8 (3)
Sm1—O4—C22—O517.8 (4)C8—C9—C14—C13179.2 (3)
Sm1—O4—C22—C23161.23 (15)C9—C10—C11—C120.1 (6)
Sm1—N1—N2—C116.1 (3)C10—C9—C14—C131.1 (5)
Sm1—N3—N4—C812.0 (3)C10—C11—C12—C130.7 (7)
Sm1—N5—N6—C1517.1 (3)C11—C12—C13—C140.4 (7)
O1—C1—C2—C3176.1 (3)C12—C13—C14—C90.5 (6)
O1—C1—C2—C75.1 (4)C14—C9—C10—C110.8 (5)
O2—C8—C9—C10179.7 (3)C15—C16—C17—C18176.6 (3)
O2—C8—C9—C141.7 (4)C15—C16—C21—C20178.2 (3)
O3—C15—C16—C17146.7 (3)C16—C17—C18—C191.1 (6)
O3—C15—C16—C2129.8 (4)C17—C16—C21—C201.6 (5)
O4—C22—C23—C240.4 (3)C17—C18—C19—C200.7 (6)
O4—C22—C23—C29179.4 (2)C18—C19—C20—C210.9 (6)
O5—C22—C23—C24178.7 (2)C19—C20—C21—C162.0 (5)
O5—C22—C23—C290.4 (4)C21—C16—C17—C180.1 (5)
N1—N2—C1—O10.1 (4)C22—C23—C24—C25179.5 (2)
N1—N2—C1—C2179.8 (2)C22—C23—C29—C28179.2 (2)
N2—C1—C2—C33.8 (4)C23—C24—C25—C26179.3 (2)
N2—C1—C2—C7175.0 (3)C23—C24—C25—C270.6 (3)
N3—N4—C8—O24.0 (4)C24—C23—C29—C280.1 (4)
N3—N4—C8—C9175.7 (2)C24—C25—C26—O69.3 (3)
N4—C8—C9—C100.0 (4)C24—C25—C26—O7170.6 (2)
N4—C8—C9—C14178.0 (2)C24—C25—C27—C280.5 (4)
N5—N6—C15—O32.7 (4)C25—C27—C28—C290.2 (4)
N5—N6—C15—C16176.5 (2)C26—C25—C27—C28179.2 (2)
N6—C15—C16—C1732.5 (4)C27—C25—C26—O6172.0 (2)
N6—C15—C16—C21151.0 (3)C27—C25—C26—O78.1 (4)
C1—C2—C3—C4179.0 (3)C27—C28—C29—C230.0 (4)
C1—C2—C7—C6179.3 (3)C29—C23—C24—C250.4 (3)
C2—C3—C4—C50.1 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C2–C7 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O8—H8A···O7i0.83 (2)1.75 (2)2.574 (2)168 (3)
O8—H8B···O50.84 (2)1.76 (2)2.585 (3)166 (3)
O9—H9A···O12Aii0.83 (2)2.22 (2)2.988 (2)156 (3)
O9—H9A···O12Bii0.83 (2)2.09 (2)2.888 (2)162 (3)
O9—H9B···O6ii0.83 (2)1.81 (2)2.633 (2)170 (3)
N1—H1A···O6i0.88 (2)2.14 (2)3.012 (3)172 (2)
N1—H1B···O6ii0.88 (2)2.14 (2)2.965 (3)156 (3)
N2—H2···O11Ai0.87 (2)2.22 (3)2.936 (2)140 (2)
N2—H2···O12Bi0.87 (2)2.10 (2)2.946 (3)164 (3)
N3—H3B···O4ii0.88 (2)2.53 (2)3.344 (3)155 (3)
N4—H4···O10B0.87 (2)2.18 (2)3.040 (3)176 (3)
N4—H4···O12A0.87 (2)2.31 (3)2.970 (2)133 (3)
N5—H5A···O5iii0.88 (2)2.07 (2)2.878 (3)152 (2)
N5—H5B···O50.87 (2)2.67 (2)3.199 (3)120 (2)
N5—H5B···O7iv0.87 (2)2.15 (2)2.940 (3)151 (2)
N6—H6···O10Av0.87 (2)2.22 (3)2.961 (2)142 (2)
N6—H6···O11Bv0.87 (2)2.28 (2)3.115 (3)159 (3)
C10—H10···O10B0.932.363.282 (2)173
C11—H11···Cg1vi0.933.103.866 (2)137
C13—H13···Cg3vii0.933.023.712 (4)132
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y1, z; (vi) x1, y+1, z; (vii) x1, y, z.
 

Funding information

The authors acknowledge financial support provided from the NRCT and administered by the Division of Research Administration at Thammasat University under grant No. 25/2560. This work was also partially supported by the Thailand Research Fund under grant No. RTA6180007.

References

First citationAlipour, M., Akintola, O., Buchholz, A., Mirzaei, M., Eshtiagh-Hosseini, H., Görls, H. & Plass, W. (2016). Eur. J. Inorg. Chem. pp. 5356–5365.  Web of Science CrossRef Google Scholar
First citationAn, R., Zhao, H., Hu, H.-M., Wang, X., Yang, M.-L. & Xue, G. (2016). Inorg. Chem. 55, 871–876.  CrossRef PubMed Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J. G. & Piguet, C. (2005). Chem. Soc. Rev. 34, 1048–1077.  PubMed Google Scholar
First citationCotton, S. A. & Raithby, P. R. (2017). Coord. Chem. Rev. 340, 220–231.  CrossRef Google Scholar
First citationCui, Y., Zhang, J., He, H. & Qian, G. (2018). Chem. Soc. Rev. 47, 5740–5785.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarmakar, A., Hazra, S., Guedes da Silva, M. F. C., Paul, A. & Pombeiro, A. J. L. (2016). CrystEngComm, 18, 1337–1349.  CrossRef Google Scholar
First citationLiu, F., Fan, C., Tu, Y. & Pu, S. (2018). RSC Adv. 8, 31113–31120.  CrossRef Google Scholar
First citationLu, W.-G., Zhong, D.-C., Jiang, L. & Lu, T.-B. (2012). Cryst. Growth Des. 12, 3675–3683.  Web of Science CrossRef CAS Google Scholar
First citationNyburg, S. C., Baker, R. J. & Szymanski, J. T. (1971). Inorg. Chem. 10, 138–146.  CrossRef Google Scholar
First citationOdunola, O. A., Adeoye, I. O., Woods, J. A. O. & Gelebe, A. C. (2003). Synth. React. Inorg. Met.-Org. Chem. 33, 205–221.  CrossRef Google Scholar
First citationPark, J. & Oh, M. (2016). CrystEngComm, 18, 8372–8376.  CrossRef Google Scholar
First citationParker, D. (2000). Coord. Chem. Rev. 205, 109–130.  Web of Science CrossRef CAS Google Scholar
First citationPatel, R. N., Singh, A., Shukla, K. K., Patel, D. K. & Sondhiya, V. P. (2011). Transition Met. Chem. 36, 179–187.  CrossRef Google Scholar
First citationRan, X., Gao, Q., Zhang, Y. & Guo, L. (2017). RSC Adv. 7, 56016–56022.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThiam, E. I., Barry, A. H., Navaza, A., Retailleau, P., Gaye, M. & Sall, A. S. (2009). Acta Cryst. E65, m1014.  CrossRef IUCr Journals Google Scholar
First citationXu, H., Cao, C.-S., Kang, X. M. & Zhao, B. (2016). Dalton Trans. 45, 18003–18017.  CrossRef PubMed Google Scholar
First citationYou, L.-X., Zhao, B.-B., Liu, H.-J., Wang, S.-J., Xiong, G., He, Y.-K., Ding, F., Joos, J. J., Smet, P. F. & Sun, Y.-G. (2018). CrystEngComm, 20, 615–623.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds