research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydrogen-bonding chain and dimer motifs in pyridinium and morpholinium hydrogen oxalate salts

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
*Correspondence e-mail: tony.keene@ucd.ie

Edited by P. McArdle, National University of Ireland, Ireland (Received 5 November 2018; accepted 7 November 2018; online 16 November 2018)

We present here three compounds consisting of pyridinium or morpholinium hydrogen oxalates, each displaying different hydrogen-bonding motifs, resulting in chains for 4-(di­methyl­amino)­pyridinium hydrogen oxalate 0.22-hydrate, C7H11N2+·C2HO4·0.22H2O (1), dimers for 4-tert-butyl­pyridinium hydrogen oxalate, C9H14N+·C2HO4 (2), and chains for morpholin­ium hydrogen oxalate, C4H10NO+·C2HO4 (3).

1. Chemical context

Oxalate is a common ligand in coordination chemistry, utilized for its ability to chelate and bridge metal ions to form complexes and coordination polymers (Decurtins, 1999[Decurtins, S. (1999). Philos. Trans. Roy. Soc. Lond. A, 357, 3025-3040.]). Its ability to facilitate strong magnetic inter­actions and stability under differing synthetic conditions makes it a ligand of choice for the rational design of magnetic materials (Pilkington & Decurtins, 2003[Pilkington, M. & Decurtins, S. (2003). Oxalate-Based 2D and 3D Magnets. In Magnetism: Molecules to Materials II edited by J. S. Miller & M. Drillon. Weinheim: Wiley-VCH.]). As the simplest di­carb­oxy­lic acid, it can also be found in differing states of deprotonation, providing a range of hydrogen-bonding motifs. Oxalate also has the unusual property of containing a C—C bond with a bond order of slightly less than one, resulting in the carboxyl­ate moieties taking a perpendicular orientation in gas phase calculations (Herbert & Ortiz, 2000[Herbert, J. M. & Ortiz, J. V. (2000). J. Phys. Chem. A, 104, 11786-11795.]). While this structure is the most energetically favourable, the difference in energy between the 90° and 0° torsion angles is slight and is often overridden in hydrogen-bonded structures. Ammonium hydrogen oxalate salts are often useful precursors in the formation of transition metal complexes (Keene et al., 2003[Keene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131-m1133.]) and coordination polymers (Keene et al., 2004[Keene, T. D., Ogilvie, H. R., Hursthouse, M. B. & Price, D. J. (2004). Eur. J. Inorg. Chem. pp. 1007-1013.]). Our research group has an inter­est in these precursors as part of our investigations into mol­ecular magnets (Keene, et al. 2010[Keene, T. D., Zimmermann, I., Neels, A., Sereda, O., Hauser, J., Bonin, M., Hursthouse, M. B., Price, D. J. & Decurtins, S. (2010). Dalton Trans. 39, 4937-4950.]), not only for their usefulness in this role, but for the complex hydrogen-bonded structures that often arise on crystallization. Previous work from our group has focused on the structure of discrete oxalate dianions and drawn correlations between torsion angles, bond lengths and the crystal packing (Keene et al., 2012[Keene, T. D., Hursthouse, M. B. & Price, D. J. (2012). CrystEngComm, 14, 116-123.]).

2. Structural commentary

Compound 1 crystallizes in the triclinic space group P[\overline{1}]. The asymmetric unit of 1 (Fig. 1[link]) consists of two 4-di­methyl­amino­pyridinium cations, two hydrogen oxalate anions and a partial-occupancy water mol­ecule [44.3 (4)% occupancy]. The two hydrogen oxalate anions show markedly different structures with the C21–C22 moiety displaying almost perpendic­ular O—C—C—O torsion angles of −82.784 (9) and −81.855 (10)° while C41—C42 is closer to planar with torsion angles of −13.267 (11) and −12.915 (10)°. The C—C bonds (Table 1[link]) are consistent with other oxalate anions being 1.5276 (18) Å for C21–C22 and 1.5527 (18) Å for C41–C42.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °) for (1)[link]

C21—O23 1.2639 (16) C22—O28 1.196 (2)
C21—O24 1.2310 (17) C22—O27 1.2976 (19)
C21—C22 1.5276 (18) C41—C42 1.5527 (18)
       
O24—C21—O23 126.89 (13) O46—C41—O45 127.39 (13)
O28—C22—O27 125.39 (14) O43—C42—O44 122.19 (12)
[Figure 1]
Figure 1
Asymmetric unit of 1. Displacement ellipsoids are drawn at the 50% probability level.

Compound 2 crystallizes in the monoclinic space group P21/c. The asymmetric unit of 2 (Fig. 2[link]) consists of two 4-t-butyl­pyridinium cations and two hydrogen oxalate anions. Both of the hydrogen oxalate moieties are nearly planar with torsion angles of 1.39 (13)° and 1.58 (15)° for C11—C15 and 1.93 (14)° and 2.73 (15)° for C13—C23.

[Figure 2]
Figure 2
Asymmetric unit of 2. Displacement ellipsoids are drawn at the 50% probability level.

Compound 3 crystallizes in the monoclinic space group P21/c. The asymmetric unit of 3 (Fig. 3[link]) consists of one morpholinium cation and one hydrogen oxalate anion. The hydrogen oxalate moiety is near to planar with torsion angles of −11.3 (2) and −12.0 (2)°.

[Figure 3]
Figure 3
Asymmetric unit of 3. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Each of the salts displays a hydrogen-bonded network, building the three-dimensional structure of the crystal (Fig. 4[link]). In compound 1, every oxygen atom of the hydrogen oxalates and water groups takes part in hydrogen bonds (Table 2[link]). Extensive C—H⋯O inter­actions and ππ stacking [Cg1⋯Cg1(2 − x, −y, 2 − z) = 3.6418 (8) Å and Cg2Cg2(2 − x, 1 − y, 1 − z) = 3.6535 (9) Å; Cg1 and Cg2 are the centroids of the N11/C12–C16 and N31/C32–C36 rings, respectively] complete the inter­molecular inter­actions. The hydrogen oxalate moieties form a hydrogen-bonded chain along the [1[\overline{1}]0] direction.

Table 2
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O27—H27⋯O45 0.84 1.72 2.553 (2) 171
O44—H44⋯O23i 0.84 1.84 2.645 (2) 160
N31—H31⋯O45 0.88 1.87 2.672 (2) 151
N11—H11⋯O23 0.88 1.87 2.749 (2) 174
Symmetry code: (i) x-1, y+1, z.
[Figure 4]
Figure 4
Hydrogen bonding in hydrogen oxalate groups: (a) chain formed in compound 1, (b) hydrogen-bonded dimer tecton in compound 2 and (c) chain formed in compound 3. [Please include the cell axes]

In compound 2, the hydrogen oxalate moieties form hydrogen-bonded pairs (Table 3[link]) with a four-membered ring formed at the centre of the pair. The opposite sides of the oxalates form a bifurcated hydrogen bond to the 4-t-butyl­pyridinium groups, generating a supra­molecular tecton. These are then built into the three-dimensional structure through C—H⋯O inter­actions. The presence of the t-butyl groups suppresses ππ stacking due to steric inter­ference with no obvious C—H⋯π inter­actions present.

Table 3
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 2.22 2.702 (2) 116
O5—H5⋯O7 0.84 1.89 2.621 (2) 144
O4—H4⋯O1 0.84 1.95 2.667 (2) 143
O4—H4⋯O7 0.84 2.17 2.665 (2) 117
N8—H8⋯O6i 0.88 1.80 2.635 (2) 159
N10—H10⋯O2ii 0.88 1.84 2.691 (2) 162
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

In compound 3, the hydrogen oxalates form a chain along the a-axis direction. These chains form the core of the structure with hydrogen bonds (Table 4[link]) coming from the morpholinium along with C—H⋯O inter­actions that form the three-dimensional structure.

Table 4
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23⋯O26i 0.84 1.75 2.587 (2) 173
N11—H11A⋯O26ii 0.91 2.06 2.879 (2) 149
N11—H11B⋯O25iii 0.91 1.92 2.773 (2) 156
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

4. Database survey

Hydrogen-bonding motifs in hydrogen oxalate compounds often tend towards chain formation. Different chain types are formed depending on the conformation of the hydroxyl group, i.e. whether the O—H bond is cis or trans to the C—C bond. In compound 3, the hydrogen oxalate is the trans conformer and produces a chain along the a-axis direction and is comparable to compounds reported in the Cambridge Structural Database (CSD version 5.39, updated August 2018, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), such as ACOQER (Mora et al., 2017[Mora, A. J., Belandria, L. M., Delgado, G. E., Seijas, L. E., Lunar, A. & Almeida, R. (2017). Acta Cryst. B73, 968-980.]) and FOMBIU (Traut-Johnstone et al., 2014[Traut-Johnstone, T., Kriel, F. H., Hewer, R. & Williams, D. B. G. (2014). Acta Cryst. C70, 1121-1124.]). The hydrogen oxalates in compound 2 are in the cis conformation and form a hydrogen-bonded pair, as seen in a small handful of structures: the combination of this pair-wise inter­action with a birfurcated hydrogen bond to a pyridinium cation is also seen in EZECOC (Androš et al., 2011[Androš, L., Planinić, P. & Jurić, M. (2011). Acta Cryst. C67, o337-o340.]; Chen et al. 2012[Chen, X., Han, S. & Wang, R. (2012). CrystEngComm, 14, 6400-6403.],), GULQOV (Thomas et al., 2015[Thomas, S. P., Veccham, S. P. K. P., Farrugia, L. J. & Guru Row, T. N. (2015). Cryst. Growth Des. 15, 2110-2118.]; Suresh et al., 2015[Suresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E., Nangia, A. & Boldyreva, E. V. (2015). Cryst. Growth Des. 15, 3498-3510.]), LOFMAW (Hu et al., 2014[Hu, Y., Gniado, K., Erxleben, A. & McArdle, P. (2014). Cryst. Growth Des. 14, 803-813.]), YEPBAX (Said et al., 2006[Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848-1857.]), YINVUO (Martin et al., 2013[Martin, F. A., Pop, M. M., Borodi, G., Filip, X. & Kacso, I. (2013). Cryst. Growth Des. 13, 4295-4304.]) and XEJRIQ (Edwards & Schafer, 2017[Edwards, P. M. & Schafer, L. L. (2017). Org. Lett. 19, 5720-5723.]). The chain type in 1 is not seen in any hydrogen oxalate compounds in the CSD.

5. Synthesis and crystallization

Compound 1 was synthesized by adding a solution of 4-di­methyl­amino­pyridine (1.0 mmol, 122 mg) in water (10 ml) and oxalic acid dihydrate (126 mg, 1.0 mmol) in water (10 ml). The resultant solution was left to evaporate to a white powder and was then recrystallized from hot aceto­nitrile to give colourless crystals suitable for single-crystal X-ray diffraction.

The synthesis of compound 2 was achieved by addition of anhydrous oxalic acid (900 mg, 10 mmol) in distilled water (10 ml) to a non-miscible mixture of 4-t-butyl­pyridine (1.465ml, 10 mmol) and distilled water (10 ml) to give a homogenous solution. This was left to evaporate over five days and the white product recrystallized from hot methanol.

Compound 3 was synthesized by adding a solution of oxalic acid dihydrate (1271 mg, 10 mmol) in water (10 ml) to a solution of morpholine (862 µl, 871 mg, 10 mmol) in water (10 ml) and leaving the resultant solution to evaporate until crystals had formed.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In all cases, the proton of the hydrogen oxalate was placed according to C—O bond lengths (O—H = 0.84 Å). All other H atoms were positioned geometrically (N—H = 0.88, O—H = 0.97, C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = kUeq(parent atom) where k = 1.2 for all C—H and N—H groups and 1.5 for Cmethyl, Ohy­droxy and Owater.

Table 5
Experimental details

  1 2 3
Crystal data
Chemical formula C7H11N2+·C2HO4·0.22H2O C9H14N+·C2HO4 C4H10NO+·C2HO4
Mr 216.21 225.24 177.16
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 101 101 100
a, b, c (Å) 7.5241 (3), 8.2898 (3), 18.7359 (6) 9.7043 (1), 20.6128 (2), 11.3649 (2) 5.6867 (3), 12.2465 (8), 12.0831 (6)
α, β, γ (°) 89.738 (3), 79.626 (3), 64.741 (4) 90, 95.301 (1), 90 90, 113.150 (4), 90
V3) 1036.17 (7) 2263.63 (5) 773.73 (8)
Z 4 8 4
Radiation type Cu Kα Cu Kα Mo Kα
μ (mm−1) 0.95 0.84 0.13
Crystal size (mm) 0.22 × 0.12 × 0.12 0.23 × 0.21 × 0.15 0.12 × 0.08 × 0.06
 
Data collection
Diffractometer Rigaku SuperNova, Dual, Cu at zero, Atlas Rigaku SuperNova, Dual, Cu at zero, Atlas Nonius Kappa CCD
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.]) Gaussian (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.])
Tmin, Tmax 0.857, 0.918 0.875, 0.914 0.887, 1.175
No. of measured, independent and observed [I > 2σ(I)] reflections 12774, 4321, 3792 23245, 4749, 4309 6288, 1769, 1390
Rint 0.024 0.026 0.075
(sin θ/λ)max−1) 0.631 0.632 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.03 0.032, 0.086, 1.03 0.042, 0.110, 1.05
No. of reflections 4321 4749 1769
No. of parameters 290 298 111
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.61 0.30, −0.20 0.29, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.]), DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.]), COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The occupancy of the water mol­ecule in compound 1 was allowed to refine freely to 0.443 (4). Attempts to split the O27/O28 carboxyl­ate in 1 were unsuccessful, leading to a poor-quality refinement. Attempts to locate extra symmetry in compound 2 were unsuccessful, despite superficially appearing to have an inversion centre between the 4-tbpy moieties and between the hydrogen oxalate moieties.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017) for (1), (2); DENZO (Otwinowski & Minor, 1997) for (3). Cell refinement: CrysAlis PRO (Rigaku OD, 2017) for (1), (2); DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (3). Data reduction: CrysAlis PRO (Rigaku OD, 2017) for (1), (2); DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (3). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1); SHELXS97 (Sheldrick, 2008) for (2), (3). Program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b) for (1); SHELXL2018 (Sheldrick, 2015b) for (2); SHELXL2014 (Sheldrick, 2015b) for (3). For all structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-(Dimethylamino)pyridinum hydrogen oxalate 0.22-hydrate, (1) top
Crystal data top
C7H11N2+·C2HO4·0.22H2OZ = 4
Mr = 216.21F(000) = 457
Triclinic, P1Dx = 1.386 Mg m3
a = 7.5241 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.2898 (3) ÅCell parameters from 6456 reflections
c = 18.7359 (6) Åθ = 4.8–76.7°
α = 89.738 (3)°µ = 0.95 mm1
β = 79.626 (3)°T = 101 K
γ = 64.741 (4)°Block, colourless
V = 1036.17 (7) Å30.22 × 0.12 × 0.12 mm
Data collection top
Rigaku SuperNova, Dual, Cu at zero, Atlas
diffractometer
4321 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source3792 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.024
Detector resolution: 10.3196 pixels mm-1θmax = 76.8°, θmin = 4.8°
ω scansh = 99
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2017)
k = 1010
Tmin = 0.857, Tmax = 0.918l = 2323
12774 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.4606P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.64 e Å3
4321 reflectionsΔρmin = 0.60 e Å3
290 parametersExtinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0050 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C210.63947 (19)0.24757 (17)0.81649 (7)0.0209 (3)
O230.81556 (15)0.12920 (14)0.79288 (5)0.0291 (2)
O240.53451 (15)0.26088 (13)0.87673 (5)0.0291 (2)
C220.5487 (2)0.38424 (19)0.76292 (7)0.0252 (3)
O280.4407 (3)0.3678 (3)0.72680 (10)0.0782 (6)
O270.6027 (2)0.51364 (15)0.76121 (7)0.0423 (3)
H270.5438890.5879610.7329040.063*
C410.31016 (19)0.88186 (18)0.69597 (7)0.0221 (3)
C420.2033 (2)1.00318 (18)0.63889 (7)0.0229 (3)
O430.28018 (16)0.97891 (14)0.57487 (5)0.0304 (2)
O440.02609 (15)1.13493 (14)0.66442 (5)0.0287 (2)
H440.0134671.1207320.7078240.043*
O450.46062 (17)0.73901 (14)0.66943 (6)0.0362 (3)
O460.24268 (16)0.93378 (15)0.76030 (5)0.0334 (3)
N310.64826 (18)0.59063 (16)0.53471 (7)0.0265 (3)
H310.5594250.6672060.5702450.032*
C320.7864 (2)0.43279 (19)0.55026 (7)0.0255 (3)
H320.7859170.4064030.5996680.031*
C330.9265 (2)0.31050 (18)0.49705 (7)0.0230 (3)
H331.0221040.2003260.5093780.028*
C340.9289 (2)0.34848 (17)0.42281 (7)0.0218 (3)
C350.7797 (2)0.51610 (18)0.40884 (7)0.0247 (3)
H350.7739150.5471560.3601600.030*
C360.6455 (2)0.63162 (19)0.46511 (8)0.0266 (3)
H360.5478140.7436110.4551600.032*
N371.06573 (19)0.23242 (16)0.36900 (6)0.0265 (3)
C381.2241 (2)0.0656 (2)0.38514 (8)0.0308 (3)
H38A1.3065300.0046230.3394890.046*
H38B1.1636470.0034410.4141250.046*
H38C1.3082850.0932680.4126030.046*
C391.0741 (3)0.2804 (2)0.29357 (8)0.0346 (3)
H39A1.1772940.1783700.2612090.052*
H39B1.1069190.3828070.2886570.052*
H39C0.9436650.3120910.2803410.052*
N110.93551 (19)0.08918 (16)0.90258 (6)0.0271 (3)
H110.9055830.0232940.8656840.033*
C121.1096 (2)0.23848 (19)0.89417 (8)0.0279 (3)
H121.1981390.2712630.8481330.034*
C131.1617 (2)0.34363 (18)0.95003 (8)0.0253 (3)
H131.2849040.4487060.9425050.030*
C141.0325 (2)0.29652 (18)1.01939 (7)0.0232 (3)
C150.8495 (2)0.13857 (18)1.02576 (8)0.0262 (3)
H150.7567000.1014481.0708480.031*
C160.8072 (2)0.04046 (18)0.96725 (8)0.0269 (3)
H160.6845230.0645420.9722330.032*
N171.07977 (18)0.39505 (16)1.07586 (7)0.0262 (3)
C181.2723 (2)0.5515 (2)1.06937 (9)0.0313 (3)
H18A1.3803220.5131741.0624200.047*
H18B1.2918500.6318941.0275180.047*
H18C1.2739730.6144461.1138260.047*
C190.9438 (2)0.3446 (2)1.14685 (8)0.0323 (3)
H19A0.8153070.3422451.1418890.048*
H19B0.9221450.2256431.1650340.048*
H19C1.0029190.4319831.1811810.048*
O510.5352 (3)0.9043 (3)0.84705 (12)0.0266 (7)0.443 (4)
H51A0.5258781.0120020.8521570.040*0.443 (4)
H51B0.4511980.9132560.8190340.040*0.443 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C210.0200 (6)0.0189 (6)0.0233 (6)0.0069 (5)0.0074 (5)0.0009 (5)
O230.0220 (5)0.0278 (5)0.0269 (5)0.0012 (4)0.0041 (4)0.0030 (4)
O240.0244 (5)0.0274 (5)0.0272 (5)0.0045 (4)0.0021 (4)0.0080 (4)
C220.0193 (6)0.0309 (7)0.0211 (6)0.0061 (5)0.0053 (5)0.0044 (5)
O280.1000 (13)0.1124 (14)0.0845 (12)0.0817 (12)0.0781 (11)0.0698 (11)
O270.0641 (8)0.0266 (6)0.0474 (7)0.0205 (6)0.0360 (6)0.0180 (5)
C410.0213 (6)0.0214 (6)0.0222 (6)0.0077 (5)0.0051 (5)0.0044 (5)
C420.0231 (6)0.0210 (6)0.0233 (6)0.0077 (5)0.0060 (5)0.0038 (5)
O430.0304 (5)0.0302 (5)0.0232 (5)0.0064 (4)0.0048 (4)0.0080 (4)
O440.0251 (5)0.0274 (5)0.0246 (5)0.0025 (4)0.0059 (4)0.0047 (4)
O450.0408 (6)0.0238 (5)0.0241 (5)0.0037 (5)0.0041 (4)0.0051 (4)
O460.0276 (5)0.0364 (6)0.0217 (5)0.0001 (4)0.0055 (4)0.0014 (4)
N310.0249 (6)0.0253 (6)0.0263 (6)0.0084 (5)0.0040 (5)0.0018 (5)
C320.0293 (7)0.0274 (7)0.0220 (6)0.0131 (6)0.0081 (5)0.0037 (5)
C330.0258 (6)0.0217 (6)0.0224 (6)0.0095 (5)0.0090 (5)0.0046 (5)
C340.0254 (6)0.0220 (6)0.0213 (6)0.0121 (5)0.0078 (5)0.0027 (5)
C350.0281 (7)0.0261 (7)0.0231 (6)0.0124 (6)0.0115 (5)0.0070 (5)
C360.0248 (7)0.0237 (7)0.0319 (7)0.0090 (5)0.0112 (5)0.0054 (5)
N370.0321 (6)0.0245 (6)0.0208 (6)0.0106 (5)0.0046 (5)0.0014 (4)
C380.0301 (7)0.0240 (7)0.0334 (8)0.0077 (6)0.0047 (6)0.0020 (6)
C390.0454 (9)0.0386 (8)0.0198 (7)0.0191 (7)0.0041 (6)0.0018 (6)
N110.0347 (6)0.0228 (6)0.0261 (6)0.0115 (5)0.0141 (5)0.0063 (4)
C120.0322 (7)0.0270 (7)0.0255 (7)0.0127 (6)0.0083 (6)0.0016 (5)
C130.0253 (6)0.0211 (6)0.0285 (7)0.0076 (5)0.0092 (5)0.0008 (5)
C140.0278 (7)0.0207 (6)0.0268 (7)0.0132 (5)0.0127 (5)0.0043 (5)
C150.0293 (7)0.0230 (7)0.0264 (7)0.0100 (6)0.0085 (5)0.0011 (5)
C160.0292 (7)0.0200 (6)0.0315 (7)0.0081 (5)0.0125 (6)0.0021 (5)
N170.0286 (6)0.0251 (6)0.0278 (6)0.0122 (5)0.0116 (5)0.0075 (5)
C180.0317 (7)0.0270 (7)0.0376 (8)0.0109 (6)0.0179 (6)0.0101 (6)
C190.0384 (8)0.0353 (8)0.0256 (7)0.0167 (7)0.0100 (6)0.0065 (6)
O510.0255 (12)0.0223 (12)0.0306 (13)0.0075 (9)0.0093 (9)0.0031 (9)
Geometric parameters (Å, º) top
C21—O231.2639 (16)C38—H38B0.9800
C21—O241.2310 (17)C38—H38C0.9800
C21—C221.5276 (18)C39—H39A0.9800
C22—O281.196 (2)C39—H39B0.9800
C22—O271.2976 (19)C39—H39C0.9800
O27—H270.8400N11—H110.8800
C41—C421.5527 (18)N11—C121.3476 (19)
C41—O451.2608 (17)N11—C161.3467 (19)
C41—O461.2222 (17)C12—H120.9500
C42—O431.2112 (17)C12—C131.363 (2)
C42—O441.3161 (16)C13—H130.9500
O44—H440.8400C13—C141.418 (2)
N31—H310.8800C14—C151.4243 (19)
N31—C321.3500 (19)C14—N171.3388 (18)
N31—C361.3476 (19)C15—H150.9500
C32—H320.9500C15—C161.364 (2)
C32—C331.360 (2)C16—H160.9500
C33—H330.9500N17—C181.4593 (18)
C33—C341.4234 (18)N17—C191.4630 (19)
C34—C351.4251 (19)C18—H18A0.9800
C34—N371.3386 (18)C18—H18B0.9800
C35—H350.9500C18—H18C0.9800
C35—C361.360 (2)C19—H19A0.9800
C36—H360.9500C19—H19B0.9800
N37—C381.4641 (19)C19—H19C0.9800
N37—C391.4641 (18)O51—H51A0.8694
C38—H38A0.9800O51—H51B0.8714
O23—C21—C22115.43 (11)N37—C39—H39A109.5
O24—C21—O23126.89 (13)N37—C39—H39B109.5
O24—C21—C22117.66 (11)N37—C39—H39C109.5
O28—C22—C21121.46 (14)H39A—C39—H39B109.5
O28—C22—O27125.39 (14)H39A—C39—H39C109.5
O27—C22—C21113.14 (12)H39B—C39—H39C109.5
C22—O27—H27109.5C12—N11—H11119.9
O45—C41—C42114.75 (11)C16—N11—H11119.9
O46—C41—C42117.86 (12)C16—N11—C12120.22 (12)
O46—C41—O45127.39 (13)N11—C12—H12119.2
O43—C42—C41121.78 (12)N11—C12—C13121.67 (14)
O43—C42—O44122.19 (12)C13—C12—H12119.2
O44—C42—C41116.02 (11)C12—C13—H13119.9
C42—O44—H44109.5C12—C13—C14120.14 (13)
C32—N31—H31119.8C14—C13—H13119.9
C36—N31—H31119.8C13—C14—C15116.37 (12)
C36—N31—C32120.39 (12)N17—C14—C13121.90 (13)
N31—C32—H32119.1N17—C14—C15121.73 (13)
N31—C32—C33121.76 (13)C14—C15—H15119.9
C33—C32—H32119.1C16—C15—C14120.14 (13)
C32—C33—H33120.2C16—C15—H15119.9
C32—C33—C34119.66 (13)N11—C16—C15121.46 (13)
C34—C33—H33120.2N11—C16—H16119.3
C33—C34—C35116.72 (12)C15—C16—H16119.3
N37—C34—C33121.39 (12)C14—N17—C18121.00 (12)
N37—C34—C35121.88 (12)C14—N17—C19121.01 (12)
C34—C35—H35120.0C18—N17—C19117.93 (12)
C36—C35—C34120.06 (13)N17—C18—H18A109.5
C36—C35—H35120.0N17—C18—H18B109.5
N31—C36—C35121.40 (13)N17—C18—H18C109.5
N31—C36—H36119.3H18A—C18—H18B109.5
C35—C36—H36119.3H18A—C18—H18C109.5
C34—N37—C38120.70 (12)H18B—C18—H18C109.5
C34—N37—C39120.23 (12)N17—C19—H19A109.5
C38—N37—C39118.64 (12)N17—C19—H19B109.5
N37—C38—H38A109.5N17—C19—H19C109.5
N37—C38—H38B109.5H19A—C19—H19B109.5
N37—C38—H38C109.5H19A—C19—H19C109.5
H38A—C38—H38B109.5H19B—C19—H19C109.5
H38A—C38—H38C109.5H51A—O51—H51B104.5
H38B—C38—H38C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O27—H27···O450.841.722.553 (2)171
O44—H44···O23i0.841.842.645 (2)160
N31—H31···O450.881.872.672 (2)151
C33—H33···O43ii0.952.543.447 (2)160
C35—H35···O28iii0.952.393.204 (2)143
C39—H39A···O51iv0.982.543.367 (2)143
N11—H11···O230.881.872.749 (2)174
C12—H12···O46ii0.952.443.101 (2)126
C13—H13···O24ii0.952.493.363 (2)154
C15—H15···O51v0.952.373.254 (2)155
C16—H16···O240.952.503.189 (2)129
C18—H18C···O51vi0.982.413.204 (2)138
C19—H19A···O24vii0.982.513.474 (2)167
C19—H19B···O23vi0.982.663.355 (2)128
C19—H19B···O46v0.982.493.419 (2)158
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y1, z; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+2; (vi) x+2, y, z+2; (vii) x+1, y, z+2.
4-tert-Butylpyridinium hydrogen oxalate (2) top
Crystal data top
C9H14N+·C2HO4F(000) = 960
Mr = 225.24Dx = 1.322 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.7043 (1) ÅCell parameters from 12822 reflections
b = 20.6128 (2) Åθ = 4.3–76.7°
c = 11.3649 (2) ŵ = 0.84 mm1
β = 95.301 (1)°T = 101 K
V = 2263.63 (5) Å3Block, colourless
Z = 80.23 × 0.21 × 0.15 mm
Data collection top
Rigaku SuperNova, Dual, Cu at zero, Atlas
diffractometer
4749 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4309 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.3196 pixels mm-1θmax = 76.9°, θmin = 4.3°
ω scansh = 126
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2017)
k = 2525
Tmin = 0.875, Tmax = 0.914l = 1413
23245 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.6305P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.30 e Å3
4749 reflectionsΔρmin = 0.19 e Å3
298 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0014 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25550 (8)0.43622 (3)0.70494 (6)0.02235 (17)
O20.32304 (8)0.44362 (4)0.52213 (7)0.02470 (17)
O30.33459 (8)0.31095 (4)0.51650 (7)0.02367 (17)
O50.26234 (8)0.30529 (3)0.69505 (6)0.02384 (17)
H50.2365800.3312940.7455480.036*
C110.29745 (10)0.33807 (5)0.60229 (9)0.0178 (2)
C150.29057 (10)0.41332 (5)0.61104 (9)0.0176 (2)
O40.18857 (9)0.46451 (4)0.92146 (7)0.02595 (18)
H40.1959340.4396680.8637860.039*
O60.08701 (8)0.32454 (3)1.07151 (6)0.02113 (16)
O70.15176 (9)0.33744 (4)0.88866 (7)0.02549 (18)
N80.01187 (9)0.13839 (4)0.77806 (8)0.02008 (18)
H80.0484590.1415290.7102670.024*
O90.13464 (11)0.45509 (4)1.10604 (8)0.0384 (2)
N100.58139 (9)0.10354 (4)0.82435 (8)0.01965 (18)
H100.6187850.0967840.8909360.024*
C120.02998 (10)0.18412 (5)0.96208 (9)0.0197 (2)
H120.0177860.2190141.0166580.024*
C130.12757 (10)0.35674 (5)0.98830 (9)0.0180 (2)
C140.11752 (10)0.07878 (5)0.90662 (9)0.0190 (2)
H140.1670760.0405370.9227490.023*
C160.43731 (11)0.07692 (5)0.41698 (9)0.0235 (2)
H16A0.5379030.0755520.3983490.035*
H16B0.4061520.0365160.4563620.035*
H16C0.3922510.0818870.3438060.035*
C170.33134 (11)0.11400 (6)1.07311 (10)0.0242 (2)
H17A0.3480240.0731401.0300590.036*
H17B0.3674290.1501941.0235170.036*
H17C0.3782450.1129171.1458420.036*
C180.56068 (10)0.16819 (5)0.65500 (9)0.0195 (2)
H180.5875450.2056270.6098130.023*
C190.43104 (10)0.06991 (5)0.68462 (9)0.0190 (2)
H190.3658580.0394430.6603990.023*
C200.02689 (11)0.18748 (5)0.85519 (9)0.0206 (2)
H200.0771670.2250230.8362790.025*
C210.44818 (12)0.19745 (5)0.43687 (10)0.0252 (2)
H21A0.4062180.2013090.3619930.038*
H21B0.4205370.2345750.4875130.038*
H21C0.5491920.1966990.4212930.038*
C220.49071 (11)0.06006 (5)0.78815 (9)0.0201 (2)
H220.4679530.0224850.8343170.024*
C230.14999 (11)0.43045 (5)1.01214 (9)0.0225 (2)
C240.17490 (11)0.12303 (5)1.10438 (9)0.0188 (2)
C250.11670 (11)0.06294 (5)1.17200 (9)0.0236 (2)
H25A0.1582920.0594121.2471000.035*
H25B0.0160640.0671131.1875370.035*
H25C0.1386370.0239971.1244600.035*
C260.61575 (10)0.15684 (5)0.76097 (9)0.0206 (2)
H260.6786450.1871890.7891600.025*
C270.46546 (10)0.12460 (5)0.61422 (9)0.0169 (2)
C280.39912 (10)0.13457 (5)0.49908 (9)0.0182 (2)
C290.10559 (10)0.12926 (5)0.98989 (9)0.0171 (2)
C300.24103 (11)0.13659 (5)0.52676 (10)0.0226 (2)
H30A0.2082510.0943100.5572500.034*
H30B0.2165970.1701100.5862090.034*
H30C0.1974930.1466380.4544780.034*
C310.14953 (13)0.18296 (5)1.18272 (10)0.0266 (2)
H31A0.1869100.2213881.1401800.040*
H31B0.0498650.1885241.2029400.040*
H31C0.1955740.1773651.2552500.040*
C320.05806 (11)0.08431 (5)0.80202 (9)0.0204 (2)
H320.0663100.0498220.7463590.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0307 (4)0.0184 (3)0.0189 (4)0.0006 (3)0.0073 (3)0.0010 (3)
O20.0365 (4)0.0178 (4)0.0214 (4)0.0019 (3)0.0111 (3)0.0021 (3)
O30.0313 (4)0.0191 (4)0.0218 (4)0.0018 (3)0.0088 (3)0.0017 (3)
O50.0372 (4)0.0159 (3)0.0196 (4)0.0009 (3)0.0094 (3)0.0001 (3)
C110.0185 (4)0.0175 (5)0.0174 (5)0.0004 (3)0.0024 (4)0.0005 (4)
C150.0177 (4)0.0173 (5)0.0181 (5)0.0008 (3)0.0026 (4)0.0002 (4)
O40.0394 (4)0.0177 (4)0.0226 (4)0.0059 (3)0.0126 (3)0.0031 (3)
O60.0262 (4)0.0187 (3)0.0192 (4)0.0015 (3)0.0063 (3)0.0004 (3)
O70.0383 (4)0.0204 (4)0.0189 (4)0.0040 (3)0.0090 (3)0.0024 (3)
N80.0217 (4)0.0220 (4)0.0169 (4)0.0020 (3)0.0041 (3)0.0022 (3)
O90.0653 (6)0.0252 (4)0.0281 (4)0.0146 (4)0.0230 (4)0.0097 (3)
N100.0224 (4)0.0207 (4)0.0162 (4)0.0006 (3)0.0040 (3)0.0003 (3)
C120.0223 (5)0.0162 (4)0.0203 (5)0.0002 (4)0.0007 (4)0.0006 (4)
C130.0181 (4)0.0180 (5)0.0179 (5)0.0008 (3)0.0023 (4)0.0011 (4)
C140.0220 (5)0.0161 (4)0.0189 (5)0.0004 (4)0.0024 (4)0.0008 (4)
C160.0273 (5)0.0262 (5)0.0171 (5)0.0030 (4)0.0036 (4)0.0035 (4)
C170.0213 (5)0.0301 (5)0.0214 (5)0.0026 (4)0.0038 (4)0.0023 (4)
C180.0218 (5)0.0182 (5)0.0187 (5)0.0019 (4)0.0022 (4)0.0011 (4)
C190.0221 (5)0.0165 (4)0.0184 (5)0.0013 (4)0.0021 (4)0.0013 (4)
C200.0209 (5)0.0179 (5)0.0230 (5)0.0009 (4)0.0020 (4)0.0036 (4)
C210.0299 (6)0.0247 (5)0.0219 (5)0.0049 (4)0.0072 (4)0.0067 (4)
C220.0251 (5)0.0168 (5)0.0183 (5)0.0003 (4)0.0017 (4)0.0004 (4)
C230.0279 (5)0.0196 (5)0.0213 (5)0.0048 (4)0.0086 (4)0.0028 (4)
C240.0217 (5)0.0183 (5)0.0165 (5)0.0009 (4)0.0029 (4)0.0006 (4)
C250.0266 (5)0.0244 (5)0.0199 (5)0.0030 (4)0.0026 (4)0.0060 (4)
C260.0217 (5)0.0205 (5)0.0200 (5)0.0026 (4)0.0033 (4)0.0006 (4)
C270.0177 (4)0.0167 (4)0.0162 (4)0.0018 (3)0.0008 (4)0.0016 (3)
C280.0207 (5)0.0184 (5)0.0158 (4)0.0008 (4)0.0031 (4)0.0005 (4)
C290.0175 (4)0.0169 (4)0.0166 (5)0.0024 (3)0.0003 (4)0.0015 (4)
C300.0211 (5)0.0243 (5)0.0227 (5)0.0023 (4)0.0036 (4)0.0013 (4)
C310.0361 (6)0.0250 (5)0.0193 (5)0.0003 (4)0.0057 (4)0.0043 (4)
C320.0240 (5)0.0183 (5)0.0189 (5)0.0016 (4)0.0016 (4)0.0011 (4)
Geometric parameters (Å, º) top
O1—C151.2429 (12)C13—C231.5551 (14)
O2—C151.2526 (12)C14—C291.4041 (14)
O3—C111.2075 (12)C14—C321.3732 (14)
O5—C111.3230 (12)C16—C281.5350 (14)
C11—C151.5560 (13)C17—C241.5382 (14)
O4—C231.3291 (13)C18—C261.3820 (14)
O6—C131.2485 (12)C18—C271.3982 (14)
O7—C131.2429 (12)C19—C221.3735 (14)
N8—C201.3379 (14)C19—C271.4046 (14)
N8—C321.3460 (14)C21—C281.5310 (14)
O9—C231.2035 (13)C24—C251.5374 (14)
N10—C221.3469 (13)C24—C291.5243 (13)
N10—C261.3390 (14)C24—C311.5293 (14)
C12—C201.3816 (15)C27—C281.5248 (13)
C12—C291.3999 (14)C28—C301.5379 (14)
O3—C11—O5121.67 (9)C25—C24—C17109.09 (8)
O3—C11—C15122.06 (9)C29—C24—C17108.48 (8)
O5—C11—C15116.26 (8)C29—C24—C25108.90 (8)
O1—C15—O2127.77 (9)C29—C24—C31111.65 (8)
O1—C15—C11116.76 (9)C31—C24—C17109.55 (9)
O2—C15—C11115.47 (8)C31—C24—C25109.13 (9)
C20—N8—C32121.35 (9)N10—C26—C18120.70 (9)
C26—N10—C22121.26 (9)C18—C27—C19117.17 (9)
C20—C12—C29119.95 (9)C18—C27—C28122.83 (9)
O6—C13—C23115.87 (9)C19—C27—C28120.00 (9)
O7—C13—O6128.26 (9)C16—C28—C30109.00 (8)
O7—C13—C23115.88 (9)C21—C28—C16109.11 (8)
C32—C14—C29120.45 (9)C21—C28—C30109.47 (8)
C26—C18—C27120.05 (9)C27—C28—C16108.66 (8)
C22—C19—C27120.64 (9)C27—C28—C21111.87 (8)
N8—C20—C12120.67 (9)C27—C28—C30108.68 (8)
N10—C22—C19120.16 (9)C12—C29—C14117.31 (9)
O4—C23—C13115.21 (9)C12—C29—C24122.86 (9)
O9—C23—O4122.11 (10)C14—C29—C24119.83 (9)
O9—C23—C13122.68 (10)N8—C32—C14120.26 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.842.222.702 (2)116
O5—H5···O70.841.892.621 (2)144
O4—H4···O10.841.952.667 (2)143
O4—H4···O70.842.172.665 (2)117
N8—H8···O6i0.881.802.635 (2)159
N10—H10···O2ii0.881.842.691 (2)162
C12—H12···O60.952.463.310 (2)149
C14—H14···O2iii0.952.623.563 (2)174
C18—H18···O3iv0.952.503.446 (2)172
C19—H19···O4iii0.952.553.498 (2)175
C20—H20···O70.952.483.329 (2)148
C22—H22···O2iii0.952.623.523 (2)159
C26—H26···O3ii0.952.583.060 (2)112
C32—H32···O9i0.952.633.144 (2)114
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z+1/2; (iii) x, y1/2, z+3/2; (iv) x1, y, z.
Morpholinium hydrogen oxalate (3) top
Crystal data top
C4H10NO+·C2HO4F(000) = 376
Mr = 177.16Dx = 1.521 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.6867 (3) ÅCell parameters from 1705 reflections
b = 12.2465 (8) Åθ = 2.9–27.5°
c = 12.0831 (6) ŵ = 0.13 mm1
β = 113.150 (4)°T = 100 K
V = 773.73 (8) Å3Block, colourless
Z = 40.12 × 0.08 × 0.06 mm
Data collection top
Nonius Kappa CCD
diffractometer
1769 independent reflections
Radiation source: Nonius FR591 rotating anode, Rotating Anode1390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.3°
φ and ω scans to fill Ewald Sphereh = 57
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
k = 1515
Tmin = 0.887, Tmax = 1.175l = 1515
6288 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2356P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.29 e Å3
1769 reflectionsΔρmin = 0.26 e Å3
111 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015bb), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.128 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O260.15522 (19)0.29264 (8)0.49858 (9)0.0209 (3)
O230.6961 (2)0.22022 (8)0.44496 (10)0.0241 (3)
H230.84540.24520.46780.036*
O140.5274 (2)0.36802 (9)0.17836 (10)0.0269 (3)
O240.6384 (2)0.36286 (9)0.54702 (11)0.0303 (3)
O250.1977 (2)0.17448 (9)0.36656 (10)0.0269 (3)
N110.6060 (2)0.57855 (10)0.28681 (11)0.0201 (3)
H11A0.61780.62190.34990.024*
H11B0.62870.62120.23010.024*
C220.2790 (3)0.24484 (12)0.44633 (13)0.0181 (3)
C210.5606 (3)0.28215 (12)0.48638 (13)0.0187 (3)
C130.7757 (3)0.41615 (13)0.22554 (14)0.0242 (4)
H13A0.80320.45660.16070.029*
H13B0.90630.35780.25410.029*
C120.8090 (3)0.49324 (12)0.32829 (14)0.0216 (4)
H12A0.79710.45220.39650.026*
H12B0.97970.52810.35630.026*
C160.3484 (3)0.52708 (13)0.23515 (14)0.0229 (4)
H16A0.21530.58410.20350.027*
H16B0.31670.48590.29840.027*
C150.3368 (3)0.45091 (13)0.13495 (15)0.0257 (4)
H15A0.16550.41660.09970.031*
H15B0.36290.49310.07080.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O260.0142 (6)0.0220 (5)0.0276 (6)0.0011 (4)0.0095 (4)0.0038 (4)
O230.0133 (6)0.0254 (6)0.0359 (6)0.0027 (4)0.0121 (5)0.0082 (5)
O140.0195 (6)0.0230 (6)0.0355 (7)0.0009 (5)0.0078 (5)0.0072 (5)
O240.0223 (6)0.0305 (6)0.0433 (7)0.0095 (5)0.0185 (5)0.0158 (5)
O250.0181 (6)0.0322 (6)0.0313 (6)0.0061 (5)0.0107 (5)0.0122 (5)
N110.0204 (7)0.0183 (6)0.0230 (7)0.0013 (5)0.0101 (5)0.0016 (5)
C220.0144 (8)0.0174 (7)0.0224 (8)0.0008 (6)0.0073 (6)0.0010 (5)
C210.0157 (8)0.0191 (7)0.0226 (7)0.0010 (6)0.0090 (6)0.0015 (6)
C130.0152 (8)0.0261 (8)0.0302 (9)0.0022 (6)0.0075 (6)0.0026 (7)
C120.0156 (8)0.0251 (8)0.0240 (8)0.0001 (6)0.0077 (6)0.0002 (6)
C160.0162 (8)0.0256 (8)0.0280 (8)0.0008 (6)0.0099 (7)0.0007 (6)
C150.0164 (8)0.0299 (9)0.0284 (9)0.0011 (6)0.0062 (7)0.0050 (6)
Geometric parameters (Å, º) top
O26—C221.2596 (18)C22—C211.548 (2)
O23—H230.8400C13—H13A0.9900
O23—C211.3127 (18)C13—H13B0.9900
O14—C131.4263 (19)C13—C121.511 (2)
O14—C151.4260 (19)C12—H12A0.9900
O24—C211.2062 (18)C12—H12B0.9900
O25—C221.2389 (18)C16—H16A0.9900
N11—H11A0.9100C16—H16B0.9900
N11—H11B0.9100C16—C151.509 (2)
N11—C121.4902 (19)C15—H15A0.9900
N11—C161.4876 (19)C15—H15B0.9900
C21—O23—H23109.5C12—C13—H13B109.3
C15—O14—C13110.06 (11)N11—C12—C13109.36 (12)
H11A—N11—H11B108.1N11—C12—H12A109.8
C12—N11—H11A109.6N11—C12—H12B109.8
C12—N11—H11B109.6C13—C12—H12A109.8
C16—N11—H11A109.6C13—C12—H12B109.8
C16—N11—H11B109.6H12A—C12—H12B108.3
C16—N11—C12110.42 (12)N11—C16—H16A109.9
O26—C22—C21114.79 (13)N11—C16—H16B109.9
O25—C22—O26127.01 (14)N11—C16—C15108.91 (12)
O25—C22—C21118.19 (13)H16A—C16—H16B108.3
O23—C21—C22113.60 (12)C15—C16—H16A109.9
O24—C21—O23125.08 (14)C15—C16—H16B109.9
O24—C21—C22121.29 (13)O14—C15—C16110.95 (12)
O14—C13—H13A109.3O14—C15—H15A109.4
O14—C13—H13B109.3O14—C15—H15B109.4
O14—C13—C12111.78 (12)C16—C15—H15A109.4
H13A—C13—H13B107.9C16—C15—H15B109.4
C12—C13—H13A109.3H15A—C15—H15B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O23—H23···O26i0.841.752.587 (2)173
N11—H11A···O26ii0.912.062.879 (2)149
N11—H11A···O24ii0.912.272.945 (2)131
N11—H11B···O23iii0.912.513.166 (2)130
N11—H11B···O25iii0.911.922.773 (2)156
C12—H12A···O240.992.573.534 (2)164
C12—H12B···O24iv0.992.423.395 (2)167
C16—H16A···O23iii0.992.643.156 (2)113
C16—H16A···O25v0.992.433.378 (2)161
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x, y+1/2, z+1/2.
 

References

First citationAndroš, L., Planinić, P. & Jurić, M. (2011). Acta Cryst. C67, o337–o340.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, X., Han, S. & Wang, R. (2012). CrystEngComm, 14, 6400–6403.  Web of Science CrossRef CAS Google Scholar
First citationDecurtins, S. (1999). Philos. Trans. Roy. Soc. Lond. A, 357, 3025–3040.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdwards, P. M. & Schafer, L. L. (2017). Org. Lett. 19, 5720–5723.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerbert, J. M. & Ortiz, J. V. (2000). J. Phys. Chem. A, 104, 11786–11795.  CrossRef Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationHu, Y., Gniado, K., Erxleben, A. & McArdle, P. (2014). Cryst. Growth Des. 14, 803–813.  CrossRef Google Scholar
First citationKeene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131–m1133.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKeene, T. D., Hursthouse, M. B. & Price, D. J. (2012). CrystEngComm, 14, 116–123.  CrossRef Google Scholar
First citationKeene, T. D., Ogilvie, H. R., Hursthouse, M. B. & Price, D. J. (2004). Eur. J. Inorg. Chem. pp. 1007–1013.  Web of Science CrossRef Google Scholar
First citationKeene, T. D., Zimmermann, I., Neels, A., Sereda, O., Hauser, J., Bonin, M., Hursthouse, M. B., Price, D. J. & Decurtins, S. (2010). Dalton Trans. 39, 4937–4950.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMartin, F. A., Pop, M. M., Borodi, G., Filip, X. & Kacso, I. (2013). Cryst. Growth Des. 13, 4295–4304.  CrossRef Google Scholar
First citationMora, A. J., Belandria, L. M., Delgado, G. E., Seijas, L. E., Lunar, A. & Almeida, R. (2017). Acta Cryst. B73, 968–980.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPilkington, M. & Decurtins, S. (2003). Oxalate–Based 2D and 3D Magnets. In Magnetism: Molecules to Materials II edited by J. S. Miller & M. Drillon. Weinheim: Wiley-VCH.  Google Scholar
First citationRigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSaid, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E., Nangia, A. & Boldyreva, E. V. (2015). Cryst. Growth Des. 15, 3498–3510.  CrossRef Google Scholar
First citationThomas, S. P., Veccham, S. P. K. P., Farrugia, L. J. & Guru Row, T. N. (2015). Cryst. Growth Des. 15, 2110–2118.  CrossRef CAS Google Scholar
First citationTraut-Johnstone, T., Kriel, F. H., Hewer, R. & Williams, D. B. G. (2014). Acta Cryst. C70, 1121–1124.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds