research communications
Hydrogen-bonding chain and dimer motifs in pyridinium and morpholinium hydrogen oxalate salts
aSchool of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
*Correspondence e-mail: tony.keene@ucd.ie
We present here three compounds consisting of pyridinium or morpholinium hydrogen oxalates, each displaying different hydrogen-bonding motifs, resulting in chains for 4-(dimethylamino)pyridinium hydrogen oxalate 0.22-hydrate, C7H11N2+·C2HO4−·0.22H2O (1), dimers for 4-tert-butylpyridinium hydrogen oxalate, C9H14N+·C2HO4− (2), and chains for morpholinium hydrogen oxalate, C4H10NO+·C2HO4− (3).
Keywords: oxalate; hydrogen bonding; ammonium cations; crystal structure.
1. Chemical context
Oxalate is a common ligand in coordination chemistry, utilized for its ability to chelate and bridge metal ions to form complexes and coordination polymers (Decurtins, 1999). Its ability to facilitate strong magnetic interactions and stability under differing synthetic conditions makes it a ligand of choice for the rational design of magnetic materials (Pilkington & Decurtins, 2003). As the simplest dicarboxylic acid, it can also be found in differing states of deprotonation, providing a range of hydrogen-bonding motifs. Oxalate also has the unusual property of containing a C—C bond with a bond order of slightly less than one, resulting in the carboxylate moieties taking a perpendicular orientation in gas phase calculations (Herbert & Ortiz, 2000). While this structure is the most energetically favourable, the difference in energy between the 90° and 0° torsion angles is slight and is often overridden in hydrogen-bonded structures. Ammonium hydrogen oxalate salts are often useful precursors in the formation of transition metal complexes (Keene et al., 2003) and coordination polymers (Keene et al., 2004). Our research group has an interest in these precursors as part of our investigations into molecular magnets (Keene, et al. 2010), not only for their usefulness in this role, but for the complex hydrogen-bonded structures that often arise on crystallization. Previous work from our group has focused on the structure of discrete oxalate dianions and drawn correlations between torsion angles, bond lengths and the crystal packing (Keene et al., 2012).
2. Structural commentary
Compound 1 crystallizes in the triclinic P. The of 1 (Fig. 1) consists of two 4-dimethylaminopyridinium cations, two hydrogen oxalate anions and a partial-occupancy water molecule [44.3 (4)% occupancy]. The two hydrogen oxalate anions show markedly different structures with the C21–C22 moiety displaying almost perpendicular O—C—C—O torsion angles of −82.784 (9) and −81.855 (10)° while C41—C42 is closer to planar with torsion angles of −13.267 (11) and −12.915 (10)°. The C—C bonds (Table 1) are consistent with other oxalate anions being 1.5276 (18) Å for C21–C22 and 1.5527 (18) Å for C41–C42.
|
Compound 2 crystallizes in the monoclinic P21/c. The of 2 (Fig. 2) consists of two 4-t-butylpyridinium cations and two hydrogen oxalate anions. Both of the hydrogen oxalate moieties are nearly planar with torsion angles of 1.39 (13)° and 1.58 (15)° for C11—C15 and 1.93 (14)° and 2.73 (15)° for C13—C23.
Compound 3 crystallizes in the monoclinic P21/c. The of 3 (Fig. 3) consists of one morpholinium cation and one hydrogen oxalate anion. The hydrogen oxalate moiety is near to planar with torsion angles of −11.3 (2) and −12.0 (2)°.
3. Supramolecular features
Each of the salts displays a hydrogen-bonded network, building the three-dimensional structure of the crystal (Fig. 4). In compound 1, every oxygen atom of the hydrogen oxalates and water groups takes part in hydrogen bonds (Table 2). Extensive C—H⋯O interactions and π–π stacking [Cg1⋯Cg1(2 − x, −y, 2 − z) = 3.6418 (8) Å and Cg2⋯Cg2(2 − x, 1 − y, 1 − z) = 3.6535 (9) Å; Cg1 and Cg2 are the centroids of the N11/C12–C16 and N31/C32–C36 rings, respectively] complete the intermolecular interactions. The hydrogen oxalate moieties form a hydrogen-bonded chain along the [10] direction.
In compound 2, the hydrogen oxalate moieties form hydrogen-bonded pairs (Table 3) with a four-membered ring formed at the centre of the pair. The opposite sides of the oxalates form a bifurcated hydrogen bond to the 4-t-butylpyridinium groups, generating a supramolecular tecton. These are then built into the three-dimensional structure through C—H⋯O interactions. The presence of the t-butyl groups suppresses π–π stacking due to steric interference with no obvious C—H⋯π interactions present.
|
In compound 3, the hydrogen oxalates form a chain along the a-axis direction. These chains form the core of the structure with hydrogen bonds (Table 4) coming from the morpholinium along with C—H⋯O interactions that form the three-dimensional structure.
4. Database survey
Hydrogen-bonding motifs in hydrogen oxalate compounds often tend towards chain formation. Different chain types are formed depending on the conformation of the hydroxyl group, i.e. whether the O—H bond is cis or trans to the C—C bond. In compound 3, the hydrogen oxalate is the trans conformer and produces a chain along the a-axis direction and is comparable to compounds reported in the Cambridge Structural Database (CSD version 5.39, updated August 2018, Groom et al., 2016), such as ACOQER (Mora et al., 2017) and FOMBIU (Traut-Johnstone et al., 2014). The hydrogen oxalates in compound 2 are in the cis conformation and form a hydrogen-bonded pair, as seen in a small handful of structures: the combination of this pair-wise interaction with a birfurcated hydrogen bond to a pyridinium cation is also seen in EZECOC (Androš et al., 2011; Chen et al. 2012,), GULQOV (Thomas et al., 2015; Suresh et al., 2015), LOFMAW (Hu et al., 2014), YEPBAX (Said et al., 2006), YINVUO (Martin et al., 2013) and XEJRIQ (Edwards & Schafer, 2017). The chain type in 1 is not seen in any hydrogen oxalate compounds in the CSD.
5. Synthesis and crystallization
Compound 1 was synthesized by adding a solution of 4-dimethylaminopyridine (1.0 mmol, 122 mg) in water (10 ml) and oxalic acid dihydrate (126 mg, 1.0 mmol) in water (10 ml). The resultant solution was left to evaporate to a white powder and was then recrystallized from hot acetonitrile to give colourless crystals suitable for single-crystal X-ray diffraction.
The synthesis of compound 2 was achieved by addition of anhydrous oxalic acid (900 mg, 10 mmol) in distilled water (10 ml) to a non-miscible mixture of 4-t-butylpyridine (1.465ml, 10 mmol) and distilled water (10 ml) to give a homogenous solution. This was left to evaporate over five days and the white product recrystallized from hot methanol.
Compound 3 was synthesized by adding a solution of oxalic acid dihydrate (1271 mg, 10 mmol) in water (10 ml) to a solution of morpholine (862 µl, 871 mg, 10 mmol) in water (10 ml) and leaving the resultant solution to evaporate until crystals had formed.
6. Refinement
Crystal data, data collection and structure . In all cases, the proton of the hydrogen oxalate was placed according to C—O bond lengths (O—H = 0.84 Å). All other H atoms were positioned geometrically (N—H = 0.88, O—H = 0.97, C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = kUeq(parent atom) where k = 1.2 for all C—H and N—H groups and 1.5 for Cmethyl, Ohydroxy and Owater.
details are summarized in Table 5
|
The occupancy of the water molecule in compound 1 was allowed to refine freely to 0.443 (4). Attempts to split the O27/O28 carboxylate in 1 were unsuccessful, leading to a poor-quality Attempts to locate extra symmetry in compound 2 were unsuccessful, despite superficially appearing to have an inversion centre between the 4-tbpy moieties and between the hydrogen oxalate moieties.
Supporting information
https://doi.org/10.1107/S2056989018015827/qm2130sup1.cif
contains datablocks 1, 2, 3. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989018015827/qm21301sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989018015827/qm21302sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989018015827/qm21303sup4.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2017) for (1), (2); DENZO (Otwinowski & Minor, 1997) for (3). Cell
CrysAlis PRO (Rigaku OD, 2017) for (1), (2); DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (3). Data reduction: CrysAlis PRO (Rigaku OD, 2017) for (1), (2); DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (3). Program(s) used to solve structure: SHELXT (Sheldrick, 2015a) for (1); SHELXS97 (Sheldrick, 2008) for (2), (3). Program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b) for (1); SHELXL2018 (Sheldrick, 2015b) for (2); SHELXL2014 (Sheldrick, 2015b) for (3). For all structures, molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C7H11N2+·C2HO4−·0.22H2O | Z = 4 |
Mr = 216.21 | F(000) = 457 |
Triclinic, P1 | Dx = 1.386 Mg m−3 |
a = 7.5241 (3) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.2898 (3) Å | Cell parameters from 6456 reflections |
c = 18.7359 (6) Å | θ = 4.8–76.7° |
α = 89.738 (3)° | µ = 0.95 mm−1 |
β = 79.626 (3)° | T = 101 K |
γ = 64.741 (4)° | Block, colourless |
V = 1036.17 (7) Å3 | 0.22 × 0.12 × 0.12 mm |
Rigaku SuperNova, Dual, Cu at zero, Atlas diffractometer | 4321 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 3792 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.024 |
Detector resolution: 10.3196 pixels mm-1 | θmax = 76.8°, θmin = 4.8° |
ω scans | h = −9→9 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017) | k = −10→10 |
Tmin = 0.857, Tmax = 0.918 | l = −23→23 |
12774 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0459P)2 + 0.4606P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.64 e Å−3 |
4321 reflections | Δρmin = −0.60 e Å−3 |
290 parameters | Extinction correction: SHELXL2017 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0050 (6) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C21 | 0.63947 (19) | 0.24757 (17) | 0.81649 (7) | 0.0209 (3) | |
O23 | 0.81556 (15) | 0.12920 (14) | 0.79288 (5) | 0.0291 (2) | |
O24 | 0.53451 (15) | 0.26088 (13) | 0.87673 (5) | 0.0291 (2) | |
C22 | 0.5487 (2) | 0.38424 (19) | 0.76292 (7) | 0.0252 (3) | |
O28 | 0.4407 (3) | 0.3678 (3) | 0.72680 (10) | 0.0782 (6) | |
O27 | 0.6027 (2) | 0.51364 (15) | 0.76121 (7) | 0.0423 (3) | |
H27 | 0.543889 | 0.587961 | 0.732904 | 0.063* | |
C41 | 0.31016 (19) | 0.88186 (18) | 0.69597 (7) | 0.0221 (3) | |
C42 | 0.2033 (2) | 1.00318 (18) | 0.63889 (7) | 0.0229 (3) | |
O43 | 0.28018 (16) | 0.97891 (14) | 0.57487 (5) | 0.0304 (2) | |
O44 | 0.02609 (15) | 1.13493 (14) | 0.66442 (5) | 0.0287 (2) | |
H44 | −0.013467 | 1.120732 | 0.707824 | 0.043* | |
O45 | 0.46062 (17) | 0.73901 (14) | 0.66943 (6) | 0.0362 (3) | |
O46 | 0.24268 (16) | 0.93378 (15) | 0.76030 (5) | 0.0334 (3) | |
N31 | 0.64826 (18) | 0.59063 (16) | 0.53471 (7) | 0.0265 (3) | |
H31 | 0.559425 | 0.667206 | 0.570245 | 0.032* | |
C32 | 0.7864 (2) | 0.43279 (19) | 0.55026 (7) | 0.0255 (3) | |
H32 | 0.785917 | 0.406403 | 0.599668 | 0.031* | |
C33 | 0.9265 (2) | 0.31050 (18) | 0.49705 (7) | 0.0230 (3) | |
H33 | 1.022104 | 0.200326 | 0.509378 | 0.028* | |
C34 | 0.9289 (2) | 0.34848 (17) | 0.42281 (7) | 0.0218 (3) | |
C35 | 0.7797 (2) | 0.51610 (18) | 0.40884 (7) | 0.0247 (3) | |
H35 | 0.773915 | 0.547156 | 0.360160 | 0.030* | |
C36 | 0.6455 (2) | 0.63162 (19) | 0.46511 (8) | 0.0266 (3) | |
H36 | 0.547814 | 0.743611 | 0.455160 | 0.032* | |
N37 | 1.06573 (19) | 0.23242 (16) | 0.36900 (6) | 0.0265 (3) | |
C38 | 1.2241 (2) | 0.0656 (2) | 0.38514 (8) | 0.0308 (3) | |
H38A | 1.306530 | −0.004623 | 0.339489 | 0.046* | |
H38B | 1.163647 | −0.003441 | 0.414125 | 0.046* | |
H38C | 1.308285 | 0.093268 | 0.412603 | 0.046* | |
C39 | 1.0741 (3) | 0.2804 (2) | 0.29357 (8) | 0.0346 (3) | |
H39A | 1.177294 | 0.178370 | 0.261209 | 0.052* | |
H39B | 1.106919 | 0.382807 | 0.288657 | 0.052* | |
H39C | 0.943665 | 0.312091 | 0.280341 | 0.052* | |
N11 | 0.93551 (19) | −0.08918 (16) | 0.90258 (6) | 0.0271 (3) | |
H11 | 0.905583 | −0.023294 | 0.865684 | 0.033* | |
C12 | 1.1096 (2) | −0.23848 (19) | 0.89417 (8) | 0.0279 (3) | |
H12 | 1.198139 | −0.271263 | 0.848133 | 0.034* | |
C13 | 1.1617 (2) | −0.34363 (18) | 0.95003 (8) | 0.0253 (3) | |
H13 | 1.284904 | −0.448706 | 0.942505 | 0.030* | |
C14 | 1.0325 (2) | −0.29652 (18) | 1.01939 (7) | 0.0232 (3) | |
C15 | 0.8495 (2) | −0.13857 (18) | 1.02576 (8) | 0.0262 (3) | |
H15 | 0.756700 | −0.101448 | 1.070848 | 0.031* | |
C16 | 0.8072 (2) | −0.04046 (18) | 0.96725 (8) | 0.0269 (3) | |
H16 | 0.684523 | 0.064542 | 0.972233 | 0.032* | |
N17 | 1.07977 (18) | −0.39505 (16) | 1.07586 (7) | 0.0262 (3) | |
C18 | 1.2723 (2) | −0.5515 (2) | 1.06937 (9) | 0.0313 (3) | |
H18A | 1.380322 | −0.513174 | 1.062420 | 0.047* | |
H18B | 1.291850 | −0.631894 | 1.027518 | 0.047* | |
H18C | 1.273973 | −0.614446 | 1.113826 | 0.047* | |
C19 | 0.9438 (2) | −0.3446 (2) | 1.14685 (8) | 0.0323 (3) | |
H19A | 0.815307 | −0.342245 | 1.141889 | 0.048* | |
H19B | 0.922145 | −0.225643 | 1.165034 | 0.048* | |
H19C | 1.002919 | −0.431983 | 1.181181 | 0.048* | |
O51 | 0.5352 (3) | 0.9043 (3) | 0.84705 (12) | 0.0266 (7) | 0.443 (4) |
H51A | 0.525878 | 1.012002 | 0.852157 | 0.040* | 0.443 (4) |
H51B | 0.451198 | 0.913256 | 0.819034 | 0.040* | 0.443 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C21 | 0.0200 (6) | 0.0189 (6) | 0.0233 (6) | −0.0069 (5) | −0.0074 (5) | 0.0009 (5) |
O23 | 0.0220 (5) | 0.0278 (5) | 0.0269 (5) | −0.0012 (4) | −0.0041 (4) | 0.0030 (4) |
O24 | 0.0244 (5) | 0.0274 (5) | 0.0272 (5) | −0.0045 (4) | −0.0021 (4) | 0.0080 (4) |
C22 | 0.0193 (6) | 0.0309 (7) | 0.0211 (6) | −0.0061 (5) | −0.0053 (5) | 0.0044 (5) |
O28 | 0.1000 (13) | 0.1124 (14) | 0.0845 (12) | −0.0817 (12) | −0.0781 (11) | 0.0698 (11) |
O27 | 0.0641 (8) | 0.0266 (6) | 0.0474 (7) | −0.0205 (6) | −0.0360 (6) | 0.0180 (5) |
C41 | 0.0213 (6) | 0.0214 (6) | 0.0222 (6) | −0.0077 (5) | −0.0051 (5) | 0.0044 (5) |
C42 | 0.0231 (6) | 0.0210 (6) | 0.0233 (6) | −0.0077 (5) | −0.0060 (5) | 0.0038 (5) |
O43 | 0.0304 (5) | 0.0302 (5) | 0.0232 (5) | −0.0064 (4) | −0.0048 (4) | 0.0080 (4) |
O44 | 0.0251 (5) | 0.0274 (5) | 0.0246 (5) | −0.0025 (4) | −0.0059 (4) | 0.0047 (4) |
O45 | 0.0408 (6) | 0.0238 (5) | 0.0241 (5) | 0.0037 (5) | −0.0041 (4) | 0.0051 (4) |
O46 | 0.0276 (5) | 0.0364 (6) | 0.0217 (5) | −0.0001 (4) | −0.0055 (4) | 0.0014 (4) |
N31 | 0.0249 (6) | 0.0253 (6) | 0.0263 (6) | −0.0084 (5) | −0.0040 (5) | −0.0018 (5) |
C32 | 0.0293 (7) | 0.0274 (7) | 0.0220 (6) | −0.0131 (6) | −0.0081 (5) | 0.0037 (5) |
C33 | 0.0258 (6) | 0.0217 (6) | 0.0224 (6) | −0.0095 (5) | −0.0090 (5) | 0.0046 (5) |
C34 | 0.0254 (6) | 0.0220 (6) | 0.0213 (6) | −0.0121 (5) | −0.0078 (5) | 0.0027 (5) |
C35 | 0.0281 (7) | 0.0261 (7) | 0.0231 (6) | −0.0124 (6) | −0.0115 (5) | 0.0070 (5) |
C36 | 0.0248 (7) | 0.0237 (7) | 0.0319 (7) | −0.0090 (5) | −0.0112 (5) | 0.0054 (5) |
N37 | 0.0321 (6) | 0.0245 (6) | 0.0208 (6) | −0.0106 (5) | −0.0046 (5) | 0.0014 (4) |
C38 | 0.0301 (7) | 0.0240 (7) | 0.0334 (8) | −0.0077 (6) | −0.0047 (6) | −0.0020 (6) |
C39 | 0.0454 (9) | 0.0386 (8) | 0.0198 (7) | −0.0191 (7) | −0.0041 (6) | 0.0018 (6) |
N11 | 0.0347 (6) | 0.0228 (6) | 0.0261 (6) | −0.0115 (5) | −0.0141 (5) | 0.0063 (4) |
C12 | 0.0322 (7) | 0.0270 (7) | 0.0255 (7) | −0.0127 (6) | −0.0083 (6) | 0.0016 (5) |
C13 | 0.0253 (6) | 0.0211 (6) | 0.0285 (7) | −0.0076 (5) | −0.0092 (5) | 0.0008 (5) |
C14 | 0.0278 (7) | 0.0207 (6) | 0.0268 (7) | −0.0132 (5) | −0.0127 (5) | 0.0043 (5) |
C15 | 0.0293 (7) | 0.0230 (7) | 0.0264 (7) | −0.0100 (6) | −0.0085 (5) | 0.0011 (5) |
C16 | 0.0292 (7) | 0.0200 (6) | 0.0315 (7) | −0.0081 (5) | −0.0125 (6) | 0.0021 (5) |
N17 | 0.0286 (6) | 0.0251 (6) | 0.0278 (6) | −0.0122 (5) | −0.0116 (5) | 0.0075 (5) |
C18 | 0.0317 (7) | 0.0270 (7) | 0.0376 (8) | −0.0109 (6) | −0.0179 (6) | 0.0101 (6) |
C19 | 0.0384 (8) | 0.0353 (8) | 0.0256 (7) | −0.0167 (7) | −0.0100 (6) | 0.0065 (6) |
O51 | 0.0255 (12) | 0.0223 (12) | 0.0306 (13) | −0.0075 (9) | −0.0093 (9) | 0.0031 (9) |
C21—O23 | 1.2639 (16) | C38—H38B | 0.9800 |
C21—O24 | 1.2310 (17) | C38—H38C | 0.9800 |
C21—C22 | 1.5276 (18) | C39—H39A | 0.9800 |
C22—O28 | 1.196 (2) | C39—H39B | 0.9800 |
C22—O27 | 1.2976 (19) | C39—H39C | 0.9800 |
O27—H27 | 0.8400 | N11—H11 | 0.8800 |
C41—C42 | 1.5527 (18) | N11—C12 | 1.3476 (19) |
C41—O45 | 1.2608 (17) | N11—C16 | 1.3467 (19) |
C41—O46 | 1.2222 (17) | C12—H12 | 0.9500 |
C42—O43 | 1.2112 (17) | C12—C13 | 1.363 (2) |
C42—O44 | 1.3161 (16) | C13—H13 | 0.9500 |
O44—H44 | 0.8400 | C13—C14 | 1.418 (2) |
N31—H31 | 0.8800 | C14—C15 | 1.4243 (19) |
N31—C32 | 1.3500 (19) | C14—N17 | 1.3388 (18) |
N31—C36 | 1.3476 (19) | C15—H15 | 0.9500 |
C32—H32 | 0.9500 | C15—C16 | 1.364 (2) |
C32—C33 | 1.360 (2) | C16—H16 | 0.9500 |
C33—H33 | 0.9500 | N17—C18 | 1.4593 (18) |
C33—C34 | 1.4234 (18) | N17—C19 | 1.4630 (19) |
C34—C35 | 1.4251 (19) | C18—H18A | 0.9800 |
C34—N37 | 1.3386 (18) | C18—H18B | 0.9800 |
C35—H35 | 0.9500 | C18—H18C | 0.9800 |
C35—C36 | 1.360 (2) | C19—H19A | 0.9800 |
C36—H36 | 0.9500 | C19—H19B | 0.9800 |
N37—C38 | 1.4641 (19) | C19—H19C | 0.9800 |
N37—C39 | 1.4641 (18) | O51—H51A | 0.8694 |
C38—H38A | 0.9800 | O51—H51B | 0.8714 |
O23—C21—C22 | 115.43 (11) | N37—C39—H39A | 109.5 |
O24—C21—O23 | 126.89 (13) | N37—C39—H39B | 109.5 |
O24—C21—C22 | 117.66 (11) | N37—C39—H39C | 109.5 |
O28—C22—C21 | 121.46 (14) | H39A—C39—H39B | 109.5 |
O28—C22—O27 | 125.39 (14) | H39A—C39—H39C | 109.5 |
O27—C22—C21 | 113.14 (12) | H39B—C39—H39C | 109.5 |
C22—O27—H27 | 109.5 | C12—N11—H11 | 119.9 |
O45—C41—C42 | 114.75 (11) | C16—N11—H11 | 119.9 |
O46—C41—C42 | 117.86 (12) | C16—N11—C12 | 120.22 (12) |
O46—C41—O45 | 127.39 (13) | N11—C12—H12 | 119.2 |
O43—C42—C41 | 121.78 (12) | N11—C12—C13 | 121.67 (14) |
O43—C42—O44 | 122.19 (12) | C13—C12—H12 | 119.2 |
O44—C42—C41 | 116.02 (11) | C12—C13—H13 | 119.9 |
C42—O44—H44 | 109.5 | C12—C13—C14 | 120.14 (13) |
C32—N31—H31 | 119.8 | C14—C13—H13 | 119.9 |
C36—N31—H31 | 119.8 | C13—C14—C15 | 116.37 (12) |
C36—N31—C32 | 120.39 (12) | N17—C14—C13 | 121.90 (13) |
N31—C32—H32 | 119.1 | N17—C14—C15 | 121.73 (13) |
N31—C32—C33 | 121.76 (13) | C14—C15—H15 | 119.9 |
C33—C32—H32 | 119.1 | C16—C15—C14 | 120.14 (13) |
C32—C33—H33 | 120.2 | C16—C15—H15 | 119.9 |
C32—C33—C34 | 119.66 (13) | N11—C16—C15 | 121.46 (13) |
C34—C33—H33 | 120.2 | N11—C16—H16 | 119.3 |
C33—C34—C35 | 116.72 (12) | C15—C16—H16 | 119.3 |
N37—C34—C33 | 121.39 (12) | C14—N17—C18 | 121.00 (12) |
N37—C34—C35 | 121.88 (12) | C14—N17—C19 | 121.01 (12) |
C34—C35—H35 | 120.0 | C18—N17—C19 | 117.93 (12) |
C36—C35—C34 | 120.06 (13) | N17—C18—H18A | 109.5 |
C36—C35—H35 | 120.0 | N17—C18—H18B | 109.5 |
N31—C36—C35 | 121.40 (13) | N17—C18—H18C | 109.5 |
N31—C36—H36 | 119.3 | H18A—C18—H18B | 109.5 |
C35—C36—H36 | 119.3 | H18A—C18—H18C | 109.5 |
C34—N37—C38 | 120.70 (12) | H18B—C18—H18C | 109.5 |
C34—N37—C39 | 120.23 (12) | N17—C19—H19A | 109.5 |
C38—N37—C39 | 118.64 (12) | N17—C19—H19B | 109.5 |
N37—C38—H38A | 109.5 | N17—C19—H19C | 109.5 |
N37—C38—H38B | 109.5 | H19A—C19—H19B | 109.5 |
N37—C38—H38C | 109.5 | H19A—C19—H19C | 109.5 |
H38A—C38—H38B | 109.5 | H19B—C19—H19C | 109.5 |
H38A—C38—H38C | 109.5 | H51A—O51—H51B | 104.5 |
H38B—C38—H38C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O27—H27···O45 | 0.84 | 1.72 | 2.553 (2) | 171 |
O44—H44···O23i | 0.84 | 1.84 | 2.645 (2) | 160 |
N31—H31···O45 | 0.88 | 1.87 | 2.672 (2) | 151 |
C33—H33···O43ii | 0.95 | 2.54 | 3.447 (2) | 160 |
C35—H35···O28iii | 0.95 | 2.39 | 3.204 (2) | 143 |
C39—H39A···O51iv | 0.98 | 2.54 | 3.367 (2) | 143 |
N11—H11···O23 | 0.88 | 1.87 | 2.749 (2) | 174 |
C12—H12···O46ii | 0.95 | 2.44 | 3.101 (2) | 126 |
C13—H13···O24ii | 0.95 | 2.49 | 3.363 (2) | 154 |
C15—H15···O51v | 0.95 | 2.37 | 3.254 (2) | 155 |
C16—H16···O24 | 0.95 | 2.50 | 3.189 (2) | 129 |
C18—H18C···O51vi | 0.98 | 2.41 | 3.204 (2) | 138 |
C19—H19A···O24vii | 0.98 | 2.51 | 3.474 (2) | 167 |
C19—H19B···O23vi | 0.98 | 2.66 | 3.355 (2) | 128 |
C19—H19B···O46v | 0.98 | 2.49 | 3.419 (2) | 158 |
Symmetry codes: (i) x−1, y+1, z; (ii) x+1, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y+1, −z+2; (vi) −x+2, −y, −z+2; (vii) −x+1, −y, −z+2. |
C9H14N+·C2HO4− | F(000) = 960 |
Mr = 225.24 | Dx = 1.322 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 9.7043 (1) Å | Cell parameters from 12822 reflections |
b = 20.6128 (2) Å | θ = 4.3–76.7° |
c = 11.3649 (2) Å | µ = 0.84 mm−1 |
β = 95.301 (1)° | T = 101 K |
V = 2263.63 (5) Å3 | Block, colourless |
Z = 8 | 0.23 × 0.21 × 0.15 mm |
Rigaku SuperNova, Dual, Cu at zero, Atlas diffractometer | 4749 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 4309 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.026 |
Detector resolution: 10.3196 pixels mm-1 | θmax = 76.9°, θmin = 4.3° |
ω scans | h = −12→6 |
Absorption correction: gaussian (CrysAlis PRO; Rigaku OD, 2017) | k = −25→25 |
Tmin = 0.875, Tmax = 0.914 | l = −14→13 |
23245 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0436P)2 + 0.6305P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.086 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.30 e Å−3 |
4749 reflections | Δρmin = −0.19 e Å−3 |
298 parameters | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0014 (2) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.25550 (8) | 0.43622 (3) | 0.70494 (6) | 0.02235 (17) | |
O2 | 0.32304 (8) | 0.44362 (4) | 0.52213 (7) | 0.02470 (17) | |
O3 | 0.33459 (8) | 0.31095 (4) | 0.51650 (7) | 0.02367 (17) | |
O5 | 0.26234 (8) | 0.30529 (3) | 0.69505 (6) | 0.02384 (17) | |
H5 | 0.236580 | 0.331294 | 0.745548 | 0.036* | |
C11 | 0.29745 (10) | 0.33807 (5) | 0.60229 (9) | 0.0178 (2) | |
C15 | 0.29057 (10) | 0.41332 (5) | 0.61104 (9) | 0.0176 (2) | |
O4 | 0.18857 (9) | 0.46451 (4) | 0.92146 (7) | 0.02595 (18) | |
H4 | 0.195934 | 0.439668 | 0.863786 | 0.039* | |
O6 | 0.08701 (8) | 0.32454 (3) | 1.07151 (6) | 0.02113 (16) | |
O7 | 0.15176 (9) | 0.33744 (4) | 0.88866 (7) | 0.02549 (18) | |
N8 | 0.01187 (9) | 0.13839 (4) | 0.77806 (8) | 0.02008 (18) | |
H8 | 0.048459 | 0.141529 | 0.710267 | 0.024* | |
O9 | 0.13464 (11) | 0.45509 (4) | 1.10604 (8) | 0.0384 (2) | |
N10 | −0.58139 (9) | 0.10354 (4) | 0.82435 (8) | 0.01965 (18) | |
H10 | −0.618785 | 0.096784 | 0.890936 | 0.024* | |
C12 | −0.02998 (10) | 0.18412 (5) | 0.96208 (9) | 0.0197 (2) | |
H12 | −0.017786 | 0.219014 | 1.016658 | 0.024* | |
C13 | 0.12757 (10) | 0.35674 (5) | 0.98830 (9) | 0.0180 (2) | |
C14 | −0.11752 (10) | 0.07878 (5) | 0.90662 (9) | 0.0190 (2) | |
H14 | −0.167076 | 0.040537 | 0.922749 | 0.023* | |
C16 | −0.43731 (11) | 0.07692 (5) | 0.41698 (9) | 0.0235 (2) | |
H16A | −0.537903 | 0.075552 | 0.398349 | 0.035* | |
H16B | −0.406152 | 0.036516 | 0.456362 | 0.035* | |
H16C | −0.392251 | 0.081887 | 0.343806 | 0.035* | |
C17 | −0.33134 (11) | 0.11400 (6) | 1.07311 (10) | 0.0242 (2) | |
H17A | −0.348024 | 0.073140 | 1.030059 | 0.036* | |
H17B | −0.367429 | 0.150194 | 1.023517 | 0.036* | |
H17C | −0.378245 | 0.112917 | 1.145842 | 0.036* | |
C18 | −0.56068 (10) | 0.16819 (5) | 0.65500 (9) | 0.0195 (2) | |
H18 | −0.587545 | 0.205627 | 0.609813 | 0.023* | |
C19 | −0.43104 (10) | 0.06991 (5) | 0.68462 (9) | 0.0190 (2) | |
H19 | −0.365858 | 0.039443 | 0.660399 | 0.023* | |
C20 | 0.02689 (11) | 0.18748 (5) | 0.85519 (9) | 0.0206 (2) | |
H20 | 0.077167 | 0.225023 | 0.836279 | 0.025* | |
C21 | −0.44818 (12) | 0.19745 (5) | 0.43687 (10) | 0.0252 (2) | |
H21A | −0.406218 | 0.201309 | 0.361993 | 0.038* | |
H21B | −0.420537 | 0.234575 | 0.487513 | 0.038* | |
H21C | −0.549192 | 0.196699 | 0.421293 | 0.038* | |
C22 | −0.49071 (11) | 0.06006 (5) | 0.78815 (9) | 0.0201 (2) | |
H22 | −0.467953 | 0.022485 | 0.834317 | 0.024* | |
C23 | 0.14999 (11) | 0.43045 (5) | 1.01214 (9) | 0.0225 (2) | |
C24 | −0.17490 (11) | 0.12303 (5) | 1.10438 (9) | 0.0188 (2) | |
C25 | −0.11670 (11) | 0.06294 (5) | 1.17200 (9) | 0.0236 (2) | |
H25A | −0.158292 | 0.059412 | 1.247100 | 0.035* | |
H25B | −0.016064 | 0.067113 | 1.187537 | 0.035* | |
H25C | −0.138637 | 0.023997 | 1.124460 | 0.035* | |
C26 | −0.61575 (10) | 0.15684 (5) | 0.76097 (9) | 0.0206 (2) | |
H26 | −0.678645 | 0.187189 | 0.789160 | 0.025* | |
C27 | −0.46546 (10) | 0.12460 (5) | 0.61422 (9) | 0.0169 (2) | |
C28 | −0.39912 (10) | 0.13457 (5) | 0.49908 (9) | 0.0182 (2) | |
C29 | −0.10559 (10) | 0.12926 (5) | 0.98989 (9) | 0.0171 (2) | |
C30 | −0.24103 (11) | 0.13659 (5) | 0.52676 (10) | 0.0226 (2) | |
H30A | −0.208251 | 0.094310 | 0.557250 | 0.034* | |
H30B | −0.216597 | 0.170110 | 0.586209 | 0.034* | |
H30C | −0.197493 | 0.146638 | 0.454478 | 0.034* | |
C31 | −0.14953 (13) | 0.18296 (5) | 1.18272 (10) | 0.0266 (2) | |
H31A | −0.186910 | 0.221388 | 1.140180 | 0.040* | |
H31B | −0.049865 | 0.188524 | 1.202940 | 0.040* | |
H31C | −0.195574 | 0.177365 | 1.255250 | 0.040* | |
C32 | −0.05806 (11) | 0.08431 (5) | 0.80202 (9) | 0.0204 (2) | |
H32 | −0.066310 | 0.049822 | 0.746359 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0307 (4) | 0.0184 (3) | 0.0189 (4) | 0.0006 (3) | 0.0073 (3) | −0.0010 (3) |
O2 | 0.0365 (4) | 0.0178 (4) | 0.0214 (4) | 0.0019 (3) | 0.0111 (3) | 0.0021 (3) |
O3 | 0.0313 (4) | 0.0191 (4) | 0.0218 (4) | 0.0018 (3) | 0.0088 (3) | −0.0017 (3) |
O5 | 0.0372 (4) | 0.0159 (3) | 0.0196 (4) | 0.0009 (3) | 0.0094 (3) | 0.0001 (3) |
C11 | 0.0185 (4) | 0.0175 (5) | 0.0174 (5) | 0.0004 (3) | 0.0024 (4) | 0.0005 (4) |
C15 | 0.0177 (4) | 0.0173 (5) | 0.0181 (5) | 0.0008 (3) | 0.0026 (4) | 0.0002 (4) |
O4 | 0.0394 (4) | 0.0177 (4) | 0.0226 (4) | −0.0059 (3) | 0.0126 (3) | −0.0031 (3) |
O6 | 0.0262 (4) | 0.0187 (3) | 0.0192 (4) | −0.0015 (3) | 0.0063 (3) | 0.0004 (3) |
O7 | 0.0383 (4) | 0.0204 (4) | 0.0189 (4) | −0.0040 (3) | 0.0090 (3) | −0.0024 (3) |
N8 | 0.0217 (4) | 0.0220 (4) | 0.0169 (4) | 0.0020 (3) | 0.0041 (3) | 0.0022 (3) |
O9 | 0.0653 (6) | 0.0252 (4) | 0.0281 (4) | −0.0146 (4) | 0.0230 (4) | −0.0097 (3) |
N10 | 0.0224 (4) | 0.0207 (4) | 0.0162 (4) | −0.0006 (3) | 0.0040 (3) | −0.0003 (3) |
C12 | 0.0223 (5) | 0.0162 (4) | 0.0203 (5) | −0.0002 (4) | 0.0007 (4) | −0.0006 (4) |
C13 | 0.0181 (4) | 0.0180 (5) | 0.0179 (5) | −0.0008 (3) | 0.0023 (4) | −0.0011 (4) |
C14 | 0.0220 (5) | 0.0161 (4) | 0.0189 (5) | −0.0004 (4) | 0.0024 (4) | 0.0008 (4) |
C16 | 0.0273 (5) | 0.0262 (5) | 0.0171 (5) | −0.0030 (4) | 0.0036 (4) | −0.0035 (4) |
C17 | 0.0213 (5) | 0.0301 (5) | 0.0214 (5) | 0.0026 (4) | 0.0038 (4) | 0.0023 (4) |
C18 | 0.0218 (5) | 0.0182 (5) | 0.0187 (5) | 0.0019 (4) | 0.0022 (4) | 0.0011 (4) |
C19 | 0.0221 (5) | 0.0165 (4) | 0.0184 (5) | 0.0013 (4) | 0.0021 (4) | −0.0013 (4) |
C20 | 0.0209 (5) | 0.0179 (5) | 0.0230 (5) | −0.0009 (4) | 0.0020 (4) | 0.0036 (4) |
C21 | 0.0299 (6) | 0.0247 (5) | 0.0219 (5) | 0.0049 (4) | 0.0072 (4) | 0.0067 (4) |
C22 | 0.0251 (5) | 0.0168 (5) | 0.0183 (5) | −0.0003 (4) | 0.0017 (4) | 0.0004 (4) |
C23 | 0.0279 (5) | 0.0196 (5) | 0.0213 (5) | −0.0048 (4) | 0.0086 (4) | −0.0028 (4) |
C24 | 0.0217 (5) | 0.0183 (5) | 0.0165 (5) | 0.0009 (4) | 0.0029 (4) | 0.0006 (4) |
C25 | 0.0266 (5) | 0.0244 (5) | 0.0199 (5) | 0.0030 (4) | 0.0026 (4) | 0.0060 (4) |
C26 | 0.0217 (5) | 0.0205 (5) | 0.0200 (5) | 0.0026 (4) | 0.0033 (4) | −0.0006 (4) |
C27 | 0.0177 (4) | 0.0167 (4) | 0.0162 (4) | −0.0018 (3) | 0.0008 (4) | −0.0016 (3) |
C28 | 0.0207 (5) | 0.0184 (5) | 0.0158 (4) | 0.0008 (4) | 0.0031 (4) | 0.0005 (4) |
C29 | 0.0175 (4) | 0.0169 (4) | 0.0166 (5) | 0.0024 (3) | 0.0003 (4) | 0.0015 (4) |
C30 | 0.0211 (5) | 0.0243 (5) | 0.0227 (5) | −0.0023 (4) | 0.0036 (4) | 0.0013 (4) |
C31 | 0.0361 (6) | 0.0250 (5) | 0.0193 (5) | 0.0003 (4) | 0.0057 (4) | −0.0043 (4) |
C32 | 0.0240 (5) | 0.0183 (5) | 0.0189 (5) | 0.0016 (4) | 0.0016 (4) | −0.0011 (4) |
O1—C15 | 1.2429 (12) | C13—C23 | 1.5551 (14) |
O2—C15 | 1.2526 (12) | C14—C29 | 1.4041 (14) |
O3—C11 | 1.2075 (12) | C14—C32 | 1.3732 (14) |
O5—C11 | 1.3230 (12) | C16—C28 | 1.5350 (14) |
C11—C15 | 1.5560 (13) | C17—C24 | 1.5382 (14) |
O4—C23 | 1.3291 (13) | C18—C26 | 1.3820 (14) |
O6—C13 | 1.2485 (12) | C18—C27 | 1.3982 (14) |
O7—C13 | 1.2429 (12) | C19—C22 | 1.3735 (14) |
N8—C20 | 1.3379 (14) | C19—C27 | 1.4046 (14) |
N8—C32 | 1.3460 (14) | C21—C28 | 1.5310 (14) |
O9—C23 | 1.2035 (13) | C24—C25 | 1.5374 (14) |
N10—C22 | 1.3469 (13) | C24—C29 | 1.5243 (13) |
N10—C26 | 1.3390 (14) | C24—C31 | 1.5293 (14) |
C12—C20 | 1.3816 (15) | C27—C28 | 1.5248 (13) |
C12—C29 | 1.3999 (14) | C28—C30 | 1.5379 (14) |
O3—C11—O5 | 121.67 (9) | C25—C24—C17 | 109.09 (8) |
O3—C11—C15 | 122.06 (9) | C29—C24—C17 | 108.48 (8) |
O5—C11—C15 | 116.26 (8) | C29—C24—C25 | 108.90 (8) |
O1—C15—O2 | 127.77 (9) | C29—C24—C31 | 111.65 (8) |
O1—C15—C11 | 116.76 (9) | C31—C24—C17 | 109.55 (9) |
O2—C15—C11 | 115.47 (8) | C31—C24—C25 | 109.13 (9) |
C20—N8—C32 | 121.35 (9) | N10—C26—C18 | 120.70 (9) |
C26—N10—C22 | 121.26 (9) | C18—C27—C19 | 117.17 (9) |
C20—C12—C29 | 119.95 (9) | C18—C27—C28 | 122.83 (9) |
O6—C13—C23 | 115.87 (9) | C19—C27—C28 | 120.00 (9) |
O7—C13—O6 | 128.26 (9) | C16—C28—C30 | 109.00 (8) |
O7—C13—C23 | 115.88 (9) | C21—C28—C16 | 109.11 (8) |
C32—C14—C29 | 120.45 (9) | C21—C28—C30 | 109.47 (8) |
C26—C18—C27 | 120.05 (9) | C27—C28—C16 | 108.66 (8) |
C22—C19—C27 | 120.64 (9) | C27—C28—C21 | 111.87 (8) |
N8—C20—C12 | 120.67 (9) | C27—C28—C30 | 108.68 (8) |
N10—C22—C19 | 120.16 (9) | C12—C29—C14 | 117.31 (9) |
O4—C23—C13 | 115.21 (9) | C12—C29—C24 | 122.86 (9) |
O9—C23—O4 | 122.11 (10) | C14—C29—C24 | 119.83 (9) |
O9—C23—C13 | 122.68 (10) | N8—C32—C14 | 120.26 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O1 | 0.84 | 2.22 | 2.702 (2) | 116 |
O5—H5···O7 | 0.84 | 1.89 | 2.621 (2) | 144 |
O4—H4···O1 | 0.84 | 1.95 | 2.667 (2) | 143 |
O4—H4···O7 | 0.84 | 2.17 | 2.665 (2) | 117 |
N8—H8···O6i | 0.88 | 1.80 | 2.635 (2) | 159 |
N10—H10···O2ii | 0.88 | 1.84 | 2.691 (2) | 162 |
C12—H12···O6 | 0.95 | 2.46 | 3.310 (2) | 149 |
C14—H14···O2iii | 0.95 | 2.62 | 3.563 (2) | 174 |
C18—H18···O3iv | 0.95 | 2.50 | 3.446 (2) | 172 |
C19—H19···O4iii | 0.95 | 2.55 | 3.498 (2) | 175 |
C20—H20···O7 | 0.95 | 2.48 | 3.329 (2) | 148 |
C22—H22···O2iii | 0.95 | 2.62 | 3.523 (2) | 159 |
C26—H26···O3ii | 0.95 | 2.58 | 3.060 (2) | 112 |
C32—H32···O9i | 0.95 | 2.63 | 3.144 (2) | 114 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x−1, −y+1/2, z+1/2; (iii) −x, y−1/2, −z+3/2; (iv) x−1, y, z. |
C4H10NO+·C2HO4− | F(000) = 376 |
Mr = 177.16 | Dx = 1.521 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6867 (3) Å | Cell parameters from 1705 reflections |
b = 12.2465 (8) Å | θ = 2.9–27.5° |
c = 12.0831 (6) Å | µ = 0.13 mm−1 |
β = 113.150 (4)° | T = 100 K |
V = 773.73 (8) Å3 | Block, colourless |
Z = 4 | 0.12 × 0.08 × 0.06 mm |
Nonius Kappa CCD diffractometer | 1769 independent reflections |
Radiation source: Nonius FR591 rotating anode, Rotating Anode | 1390 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.075 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.3° |
φ and ω scans to fill Ewald Sphere | h = −5→7 |
Absorption correction: multi-scan (SORTAV; Blessing, 1997) | k = −15→15 |
Tmin = 0.887, Tmax = 1.175 | l = −15→15 |
6288 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2356P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.110 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.29 e Å−3 |
1769 reflections | Δρmin = −0.26 e Å−3 |
111 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015bb), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.128 (10) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O26 | 0.15522 (19) | 0.29264 (8) | 0.49858 (9) | 0.0209 (3) | |
O23 | 0.6961 (2) | 0.22022 (8) | 0.44496 (10) | 0.0241 (3) | |
H23 | 0.8454 | 0.2452 | 0.4678 | 0.036* | |
O14 | 0.5274 (2) | 0.36802 (9) | 0.17836 (10) | 0.0269 (3) | |
O24 | 0.6384 (2) | 0.36286 (9) | 0.54702 (11) | 0.0303 (3) | |
O25 | 0.1977 (2) | 0.17448 (9) | 0.36656 (10) | 0.0269 (3) | |
N11 | 0.6060 (2) | 0.57855 (10) | 0.28681 (11) | 0.0201 (3) | |
H11A | 0.6178 | 0.6219 | 0.3499 | 0.024* | |
H11B | 0.6287 | 0.6212 | 0.2301 | 0.024* | |
C22 | 0.2790 (3) | 0.24484 (12) | 0.44633 (13) | 0.0181 (3) | |
C21 | 0.5606 (3) | 0.28215 (12) | 0.48638 (13) | 0.0187 (3) | |
C13 | 0.7757 (3) | 0.41615 (13) | 0.22554 (14) | 0.0242 (4) | |
H13A | 0.8032 | 0.4566 | 0.1607 | 0.029* | |
H13B | 0.9063 | 0.3578 | 0.2541 | 0.029* | |
C12 | 0.8090 (3) | 0.49324 (12) | 0.32829 (14) | 0.0216 (4) | |
H12A | 0.7971 | 0.4522 | 0.3965 | 0.026* | |
H12B | 0.9797 | 0.5281 | 0.3563 | 0.026* | |
C16 | 0.3484 (3) | 0.52708 (13) | 0.23515 (14) | 0.0229 (4) | |
H16A | 0.2153 | 0.5841 | 0.2035 | 0.027* | |
H16B | 0.3167 | 0.4859 | 0.2984 | 0.027* | |
C15 | 0.3368 (3) | 0.45091 (13) | 0.13495 (15) | 0.0257 (4) | |
H15A | 0.1655 | 0.4166 | 0.0997 | 0.031* | |
H15B | 0.3629 | 0.4931 | 0.0708 | 0.031* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O26 | 0.0142 (6) | 0.0220 (5) | 0.0276 (6) | 0.0011 (4) | 0.0095 (4) | −0.0038 (4) |
O23 | 0.0133 (6) | 0.0254 (6) | 0.0359 (6) | −0.0027 (4) | 0.0121 (5) | −0.0082 (5) |
O14 | 0.0195 (6) | 0.0230 (6) | 0.0355 (7) | −0.0009 (5) | 0.0078 (5) | −0.0072 (5) |
O24 | 0.0223 (6) | 0.0305 (6) | 0.0433 (7) | −0.0095 (5) | 0.0185 (5) | −0.0158 (5) |
O25 | 0.0181 (6) | 0.0322 (6) | 0.0313 (6) | −0.0061 (5) | 0.0107 (5) | −0.0122 (5) |
N11 | 0.0204 (7) | 0.0183 (6) | 0.0230 (7) | −0.0013 (5) | 0.0101 (5) | −0.0016 (5) |
C22 | 0.0144 (8) | 0.0174 (7) | 0.0224 (8) | 0.0008 (6) | 0.0073 (6) | 0.0010 (5) |
C21 | 0.0157 (8) | 0.0191 (7) | 0.0226 (7) | −0.0010 (6) | 0.0090 (6) | 0.0015 (6) |
C13 | 0.0152 (8) | 0.0261 (8) | 0.0302 (9) | 0.0022 (6) | 0.0075 (6) | −0.0026 (7) |
C12 | 0.0156 (8) | 0.0251 (8) | 0.0240 (8) | 0.0001 (6) | 0.0077 (6) | 0.0002 (6) |
C16 | 0.0162 (8) | 0.0256 (8) | 0.0280 (8) | 0.0008 (6) | 0.0099 (7) | −0.0007 (6) |
C15 | 0.0164 (8) | 0.0299 (9) | 0.0284 (9) | 0.0011 (6) | 0.0062 (7) | −0.0050 (6) |
O26—C22 | 1.2596 (18) | C22—C21 | 1.548 (2) |
O23—H23 | 0.8400 | C13—H13A | 0.9900 |
O23—C21 | 1.3127 (18) | C13—H13B | 0.9900 |
O14—C13 | 1.4263 (19) | C13—C12 | 1.511 (2) |
O14—C15 | 1.4260 (19) | C12—H12A | 0.9900 |
O24—C21 | 1.2062 (18) | C12—H12B | 0.9900 |
O25—C22 | 1.2389 (18) | C16—H16A | 0.9900 |
N11—H11A | 0.9100 | C16—H16B | 0.9900 |
N11—H11B | 0.9100 | C16—C15 | 1.509 (2) |
N11—C12 | 1.4902 (19) | C15—H15A | 0.9900 |
N11—C16 | 1.4876 (19) | C15—H15B | 0.9900 |
C21—O23—H23 | 109.5 | C12—C13—H13B | 109.3 |
C15—O14—C13 | 110.06 (11) | N11—C12—C13 | 109.36 (12) |
H11A—N11—H11B | 108.1 | N11—C12—H12A | 109.8 |
C12—N11—H11A | 109.6 | N11—C12—H12B | 109.8 |
C12—N11—H11B | 109.6 | C13—C12—H12A | 109.8 |
C16—N11—H11A | 109.6 | C13—C12—H12B | 109.8 |
C16—N11—H11B | 109.6 | H12A—C12—H12B | 108.3 |
C16—N11—C12 | 110.42 (12) | N11—C16—H16A | 109.9 |
O26—C22—C21 | 114.79 (13) | N11—C16—H16B | 109.9 |
O25—C22—O26 | 127.01 (14) | N11—C16—C15 | 108.91 (12) |
O25—C22—C21 | 118.19 (13) | H16A—C16—H16B | 108.3 |
O23—C21—C22 | 113.60 (12) | C15—C16—H16A | 109.9 |
O24—C21—O23 | 125.08 (14) | C15—C16—H16B | 109.9 |
O24—C21—C22 | 121.29 (13) | O14—C15—C16 | 110.95 (12) |
O14—C13—H13A | 109.3 | O14—C15—H15A | 109.4 |
O14—C13—H13B | 109.3 | O14—C15—H15B | 109.4 |
O14—C13—C12 | 111.78 (12) | C16—C15—H15A | 109.4 |
H13A—C13—H13B | 107.9 | C16—C15—H15B | 109.4 |
C12—C13—H13A | 109.3 | H15A—C15—H15B | 108.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
O23—H23···O26i | 0.84 | 1.75 | 2.587 (2) | 173 |
N11—H11A···O26ii | 0.91 | 2.06 | 2.879 (2) | 149 |
N11—H11A···O24ii | 0.91 | 2.27 | 2.945 (2) | 131 |
N11—H11B···O23iii | 0.91 | 2.51 | 3.166 (2) | 130 |
N11—H11B···O25iii | 0.91 | 1.92 | 2.773 (2) | 156 |
C12—H12A···O24 | 0.99 | 2.57 | 3.534 (2) | 164 |
C12—H12B···O24iv | 0.99 | 2.42 | 3.395 (2) | 167 |
C16—H16A···O23iii | 0.99 | 2.64 | 3.156 (2) | 113 |
C16—H16A···O25v | 0.99 | 2.43 | 3.378 (2) | 161 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+2, −y+1, −z+1; (v) −x, y+1/2, −z+1/2. |
References
Androš, L., Planinić, P. & Jurić, M. (2011). Acta Cryst. C67, o337–o340. Web of Science CrossRef IUCr Journals Google Scholar
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426. CrossRef CAS Web of Science IUCr Journals Google Scholar
Chen, X., Han, S. & Wang, R. (2012). CrystEngComm, 14, 6400–6403. Web of Science CrossRef CAS Google Scholar
Decurtins, S. (1999). Philos. Trans. Roy. Soc. Lond. A, 357, 3025–3040. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Edwards, P. M. & Schafer, L. L. (2017). Org. Lett. 19, 5720–5723. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Herbert, J. M. & Ortiz, J. V. (2000). J. Phys. Chem. A, 104, 11786–11795. CrossRef Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Hu, Y., Gniado, K., Erxleben, A. & McArdle, P. (2014). Cryst. Growth Des. 14, 803–813. CrossRef Google Scholar
Keene, T. D., Hursthouse, M. B. & Price, D. J. (2003). Acta Cryst. E59, m1131–m1133. Web of Science CrossRef IUCr Journals Google Scholar
Keene, T. D., Hursthouse, M. B. & Price, D. J. (2012). CrystEngComm, 14, 116–123. CrossRef Google Scholar
Keene, T. D., Ogilvie, H. R., Hursthouse, M. B. & Price, D. J. (2004). Eur. J. Inorg. Chem. pp. 1007–1013. Web of Science CrossRef Google Scholar
Keene, T. D., Zimmermann, I., Neels, A., Sereda, O., Hauser, J., Bonin, M., Hursthouse, M. B., Price, D. J. & Decurtins, S. (2010). Dalton Trans. 39, 4937–4950. Web of Science CrossRef CAS PubMed Google Scholar
Martin, F. A., Pop, M. M., Borodi, G., Filip, X. & Kacso, I. (2013). Cryst. Growth Des. 13, 4295–4304. CrossRef Google Scholar
Mora, A. J., Belandria, L. M., Delgado, G. E., Seijas, L. E., Lunar, A. & Almeida, R. (2017). Acta Cryst. B73, 968–980. CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326. CrossRef CAS PubMed Web of Science Google Scholar
Pilkington, M. & Decurtins, S. (2003). Oxalate–Based 2D and 3D Magnets. In Magnetism: Molecules to Materials II edited by J. S. Miller & M. Drillon. Weinheim: Wiley-VCH. Google Scholar
Rigaku OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Said, F. F., Ong, T.-G., Bazinet, P., Yap, G. P. A. & Richeson, D. S. (2006). Cryst. Growth Des. 6, 1848–1857. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Suresh, K., Minkov, V. S., Namila, K. K., Derevyannikova, E., Losev, E., Nangia, A. & Boldyreva, E. V. (2015). Cryst. Growth Des. 15, 3498–3510. CrossRef Google Scholar
Thomas, S. P., Veccham, S. P. K. P., Farrugia, L. J. & Guru Row, T. N. (2015). Cryst. Growth Des. 15, 2110–2118. CrossRef CAS Google Scholar
Traut-Johnstone, T., Kriel, F. H., Hewer, R. & Williams, D. B. G. (2014). Acta Cryst. C70, 1121–1124. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.