research communications
10) with pyrazinoic acid
of a 1:1 salt of 4-aminobenzoic acid (vitamin BaG. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1, Academicheskaya, Ivanovo 153045, Russian Federation, bNovosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation, cInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str. 18, Novosibirsk 630128, Russian Federation, and dG. K. Boreskov Institute of Catalysis SB RAS, Laverentiev Ave. 5, Novosibirsk 630090, Russian Federation
*Correspondence e-mail: ksdrozd@yandex.ru
The title 1:1 salt, C7H8NO2+·C5H3N2O2− (systematic name: 4-carboxyanilinium pyrazine-2-carboxylate), was synthesized successfully by slow evaporation of a from water–ethanol (1:1 v/v) mixture and characterized by X-ray diffraction (SCXRD, PXRD) and (DSC). The of the salt was solved and refined at 150 and 293 K. The salt crystallizes with one molecule of 4-aminobenzoic acid (PABA) and one molecule of pyrazinoic acid (POA) in the In the crystal, the PABA and POA molecules are associated via COOH⋯Narom heterosynthons, which are connected by N—H⋯O hydrogen bonds, creating zigzag chains. The chains are further linked by N—H⋯O hydrogen bonds and π–π stacking interactions along the b axis [centroid-to-centroid distances = 3.7377 (13) and 3.8034 (13) Å at 150 and 293 K, respectively] to form a layered three-dimensional structure.
1. Chemical context
4-Aminobenzoic acid (PABA) is known as vitamin B10 and is involved in the production of folic acid in bacteria (Chang & Hu, 1996; Akberova, 2002). It is used as an antibacterial (Richards et al., 1995), anti-inflammatory (Flindt-Hansen & Ebbesen, 1991), antioxidant (Sirota et al., 2017; Galbinur et al., 2009), anticoagulant (Stroeva et al., 1999; Drozd et al., 2000), or dermatologic agent (Rothman & Henningsen, 1947; Xavier et al., 2006; Hanson et al., 2006). Moreover, it is a building block used in the design of drug candidates and is frequently found as a structural moiety in drugs (Kluczyk et al., 2002). PABA has been the subject of many scientific investigations, due not only to its pharmaceutical and biological properties, but also its ability to form various multi-component solid forms. PABA is a simple organic molecule with two functional groups: amine and carboxyl. This makes it unique in its ability to form various hydrogen-bonded network structures (Athimoolam & Natarajan, 2007). Among all the multi-component crystals of PABA known to date, co-crystals and salts of PABA are especially numerous.
Today, the formation of either salts or co-crystals of APIs is one of the promising strategies to modify the solid-state properties of pharmaceutical compounds, such as solubility, bioavailability, stability, etc. (Shevchenko et al., 2012; Perumalla & Sun, 2013; Manin et al., 2018). The main difference between a salt and a is in the position of a proton. A salt is formed if a proton is transferred from an acid to a base (Aakeröy et al., 2007). Childs et al. (2007) and Cruz-Cabeza (2012) have noticed a linear correlation between ΔpKa [pKa(base) – pKa(acid)] of the starting compounds and the probability of the formation of either a salt or a It is assumed that a salt is expected to be formed if ΔpKa > 3 (Childs et al., 2007) or ΔpKa > 4 (Cruz-Cabeza, 2012), whereas a forms when ΔpKa < 0 (Childs et al., 2007) or ΔpKa < −1 (Cruz-Cabeza, 2012). In the intermediate ΔpKa range, the nature of multi-component crystal is difficult to predict – a so called `salt–co-crystal continuum' (Childs et al., 2007; Hathwar et al., 2010). Several examples have been documented where both a salt and a could be formed by the same components from the same solutions under different crystallization conditions (Fu et al., 2016; Losev & Boldyreva, 2018a,b). A can also be converted into a salt in the solid state upon temperature variations (Grobelny et al., 2011).
The present study reports the synthesis and crystallization of a novel salt of 4-aminobenzoic acid with pyrazinoic acid (pyrazine-2-carboxylic acid, POA), [PABA-POA], which was characterized using single crystal and powder X-ray diffraction (SCXRD, PXRD) and different scanning
(DSC).2. Elucidation of the multi-component crystal nature
4-Aminobenzoic acid is an ampholyte molecule with basic (–NH2) and acidic (–COOH) functional groups, and its pKa values are 2.46 and 4.62 (Avdeef, 2017) respectively. Pyrazinoic acid is a weak acid with a pKa of 2.9 (Zhang et al., 1999). According to the ΔpKa of PABA and POA, the two-component crystal is within the range of the `salt–co-crystal continuum'. Both a salt and a can be expected to crystallize.
The Ia) and 293 K (Ib). The nature of the crystal form (salt/co-crystal) was identified from the structural characteristics, namely the C—N bond length of PABA and the C—O bond lengths of the carboxylic/carboxylate groups of PABA and POA at both temperatures to eliminate the possibility of salt–co-crystal transition. In a neutral pure PABA molecule, the length of the C—N bond between the N atom of the amine group and the C atom of the benzene ring is ca 1.37–1.4 Å. In the title compound, the protonation of the PABA amine group results in a significantly longer C—N bond [1.455 (5) Å at 150 K and 1.467 (3) Å at 293 K]. To define the deprotonation site, the C—O bond lengths of both PABA and POA were compared. In a neutral carboxylic group, C—O is longer than C=O by 0.08 Å, or more. Deprotonation of a –COOH group leads to a decrease in this difference to 0.03 Å or less (Childs et al., 2007; Chen et al., 2012). In the title compound, the difference d(C—O) is 0.104 (6) or 0.102 (8) Å for PABA and 0.007 (6) or 0.012 (6) Å for POA at 150 K and 293 K, respectively, indicating deprotonation of the POA –COOH group and the formation of a salt.
of the title compound was solved and refined at 150 K (3. Structural commentary
The title compound crystallizes in the monoclinic non-centrosymmetric Pc with one molecule of each component per (Fig. 1). The carboxyl planes of PABA and POA are slightly twisted from the aromatic ring planes [2.76 (16) and 8.4 (2)° for Ia; 2.89 (19) and 9.2 (3)° for Ib], which is a characteristic feature found in almost all known multi-component complexes of both compounds. No phase transitions occur in the temperature range between 293 and 150 K.
4. Supramolecular features
In the crystal, the O1—H1⋯N3 hydrogen bond involving the carboxyl group of PABA and the pyridine one of POA forms an acid⋯pyridine heterosynthon (COOH⋯Narom, Tables 1 and 2). The neighboring two-component units are linked by N1—H1B⋯N2ii hydrogen bonds, forming a zigzag C22(13) chain motif. Adjacent chains are linked to each other via N1—H1C⋯O4iii hydrogen bonds [C22(7)' chain motif] to form a 2D structure [Fig. 2(a)]. The crystal packing is stabilized by stacking of the parallel 2D structures along the b-axis direction through π–π interactions between neighboring benzene and pyrazine rings [Cg1⋯Cg2 = Cg3⋯Cg4 = 3.7377 (13) and 3.8034 (13) for Ia and Ib, respectively; Cg1 and Cg2 are centroids of the POA N2–C9 pyrazine ring, Cg3 and Cg4 are centroids of the PABA C2–C7 benzene ring], forming a 3D structure supported via N1—H1A⋯O3i hydrogen bonds [C22(7)'' chain motif] [Fig. 2(b)].
5. Thermal analysis
The thermal behavior of the title compound was investigated by DSC techniques. The DSC curve [PABA+POA] is shown in Fig. 3. For a comparison, the DSC curves of the starting compounds are also plotted. PABA and POA show single endothermic peaks at 188.5 and 224.8°C, respectively. [PABA+POA] exhibits a sharp endothermic peak at 166.1°C. The melting temperature of the salt is ca 20 and 60°C lower than that of the starting compounds, suggesting the formation of a new crystalline phase. A single endothermic peak for the salt indicates that the solid state is homogeneous, and also suggests that there is no solvent in the crystal.
6. Database survey
A search of the Cambridge Structural Database (CSD version 5.39, May 2018 update; Groom et al., 2016) for organic multi-component crystals (salts/co-crystals, their polymorphs and solvates) gave 88 structures for PABA and only five structures for POA. Analysis of the PABA crystal structures showed that the two most typical hydrogen-bonded motifs for them are: the acid⋯pyridine (COOH⋯Narom) heterosynthon as in the title compound and the acid⋯acid (COOH⋯COOH) homosynthon between PABA molecules or PABA and conformer molecules with carboxylic functional group.
7. Synthesis and crystallization
A commercial sample of PABA (Merck, 99%) was co-crystallized with POA (Acros organics, 99%) by either liquid-assisted grinding, or by slow evaporation from solution under ambient conditions. Single crystals of [PABA+POA] were grown at room temperature by slow evaporation of a water–ethanol (1:1 v/v) solution in a 1:1 stoichiometric ratio. The powder sample of the title compound for DSC analysis was obtained by liquid-assisted grinding of the physical mixture in the presence of ethanol using a planetary micro mill. The ground material was characterized using PXRD to verify the formation of a new phase by comparing the diffraction pattern with the powder pattern calculated based on the single crystal X-ray diffraction data obtained in this work (Fig. 4).
8. Refinement
Crystal data, data collection and structure . The positions of all H atoms at 293 K were optimized geometrically and refined using a riding model, with the following assumptions and restraints: N—H = 0.89 Å, C—H = 0.93 Å and O—H = 0.82 Å with Uiso(H) = 1.5Ueq(O) for the hydroxyl groups, and 1.2Ueq(C, N) otherwise. The positions of the H atoms at 150 K were refined freely in an isotropic approximation.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018016663/rz5246sup1.cif
contains datablocks Ia, Ib. DOI:Structure factors: contains datablock Ia. DOI: https://doi.org/10.1107/S2056989018016663/rz5246Iasup4.hkl
Structure factors: contains datablock Ib. DOI: https://doi.org/10.1107/S2056989018016663/rz5246Ibsup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018016663/rz5246Iasup4.cml
For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C7H8NO2+·C5H3N2O2− | F(000) = 272 |
Mr = 261.24 | Dx = 1.529 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
a = 5.95842 (16) Å | Cell parameters from 5674 reflections |
b = 3.73769 (10) Å | θ = 3.2–30.9° |
c = 25.5943 (6) Å | µ = 0.12 mm−1 |
β = 95.362 (2)° | T = 150 K |
V = 567.51 (3) Å3 | Block, light colourless |
Z = 2 | 0.24 × 0.19 × 0.18 mm |
Rigaku Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer | 3426 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3244 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.3457 pixels mm-1 | θmax = 31.1°, θmin = 3.2° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −5→5 |
Tmin = 0.933, Tmax = 1.000 | l = −36→36 |
9340 measured reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | All H-atom parameters refined |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0925P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
3426 reflections | Δρmax = 0.39 e Å−3 |
216 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.3138 (3) | 0.3939 (5) | 0.25476 (7) | 0.0243 (4) | |
O4 | 0.6224 (3) | 0.5432 (6) | 0.30735 (7) | 0.0277 (4) | |
O1 | 0.4407 (3) | 0.5831 (6) | 0.53444 (8) | 0.0294 (4) | |
O2 | 0.7570 (4) | 0.7455 (6) | 0.50022 (7) | 0.0315 (5) | |
N2 | 0.1012 (3) | 0.1876 (5) | 0.33842 (7) | 0.0188 (4) | |
N1 | 0.9340 (3) | 1.2049 (5) | 0.74469 (7) | 0.0168 (3) | |
N3 | 0.2855 (3) | 0.3515 (6) | 0.43916 (8) | 0.0216 (4) | |
C8 | 0.4243 (4) | 0.4341 (6) | 0.29860 (8) | 0.0182 (4) | |
C5 | 0.8626 (3) | 1.0835 (6) | 0.69173 (8) | 0.0158 (4) | |
C9 | 0.3040 (4) | 0.3411 (6) | 0.34657 (8) | 0.0166 (4) | |
C6 | 0.6482 (4) | 0.9450 (6) | 0.68152 (8) | 0.0183 (4) | |
C1 | 0.6445 (4) | 0.7247 (6) | 0.53737 (9) | 0.0215 (4) | |
C7 | 0.5784 (3) | 0.8259 (6) | 0.63124 (8) | 0.0186 (4) | |
C2 | 0.7220 (4) | 0.8505 (6) | 0.59139 (8) | 0.0176 (4) | |
C3 | 0.9376 (4) | 0.9931 (7) | 0.60225 (9) | 0.0200 (4) | |
C12 | 0.3970 (4) | 0.4200 (6) | 0.39723 (8) | 0.0188 (4) | |
C4 | 1.0095 (4) | 1.1100 (6) | 0.65252 (9) | 0.0187 (4) | |
C10 | −0.0077 (4) | 0.1148 (6) | 0.38037 (9) | 0.0208 (4) | |
C11 | 0.0822 (4) | 0.1982 (6) | 0.43081 (9) | 0.0210 (4) | |
H7 | 0.437 (6) | 0.717 (10) | 0.6221 (13) | 0.021 (8)* | |
H10 | −0.150 (8) | −0.003 (11) | 0.3727 (18) | 0.037 (10)* | |
H4 | 1.156 (6) | 1.214 (9) | 0.6619 (14) | 0.020 (8)* | |
H3 | 1.033 (6) | 1.003 (9) | 0.5770 (15) | 0.021 (8)* | |
H12 | 0.550 (6) | 0.517 (9) | 0.4054 (14) | 0.020 (8)* | |
H1A | 1.046 (7) | 1.362 (10) | 0.7450 (15) | 0.028 (9)* | |
H11 | 0.005 (6) | 0.147 (10) | 0.4628 (15) | 0.027 (9)* | |
H1B | 0.978 (7) | 1.037 (11) | 0.7611 (17) | 0.034 (10)* | |
H6 | 0.553 (6) | 0.919 (9) | 0.7079 (14) | 0.020 (7)* | |
H1C | 0.823 (7) | 1.291 (9) | 0.7600 (15) | 0.026 (8)* | |
H1 | 0.399 (8) | 0.505 (14) | 0.506 (2) | 0.046 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0226 (8) | 0.0359 (9) | 0.0146 (7) | 0.0076 (7) | 0.0026 (6) | −0.0009 (7) |
O4 | 0.0201 (8) | 0.0422 (10) | 0.0210 (8) | −0.0057 (7) | 0.0034 (6) | 0.0067 (7) |
O1 | 0.0264 (9) | 0.0470 (11) | 0.0151 (8) | −0.0116 (8) | 0.0028 (6) | −0.0063 (8) |
O2 | 0.0337 (10) | 0.0464 (11) | 0.0157 (8) | −0.0122 (9) | 0.0085 (7) | −0.0059 (7) |
N2 | 0.0165 (8) | 0.0229 (9) | 0.0171 (8) | 0.0001 (7) | 0.0014 (6) | −0.0016 (7) |
N1 | 0.0163 (8) | 0.0204 (8) | 0.0138 (8) | 0.0004 (7) | 0.0013 (6) | −0.0006 (6) |
N3 | 0.0238 (10) | 0.0272 (9) | 0.0138 (8) | −0.0024 (7) | 0.0021 (7) | −0.0009 (7) |
C8 | 0.0174 (9) | 0.0237 (10) | 0.0140 (9) | 0.0042 (8) | 0.0042 (7) | 0.0021 (7) |
C5 | 0.0174 (9) | 0.0183 (9) | 0.0118 (8) | 0.0014 (7) | 0.0017 (7) | −0.0003 (7) |
C9 | 0.0166 (9) | 0.0196 (9) | 0.0138 (9) | 0.0021 (7) | 0.0018 (7) | −0.0008 (7) |
C6 | 0.0166 (9) | 0.0243 (10) | 0.0144 (9) | −0.0017 (7) | 0.0036 (7) | 0.0005 (7) |
C1 | 0.0253 (11) | 0.0242 (10) | 0.0147 (9) | −0.0018 (8) | 0.0005 (8) | −0.0011 (8) |
C7 | 0.0172 (9) | 0.0243 (10) | 0.0142 (8) | −0.0033 (8) | 0.0017 (7) | −0.0005 (7) |
C2 | 0.0191 (9) | 0.0216 (10) | 0.0122 (8) | 0.0001 (7) | 0.0018 (7) | −0.0002 (7) |
C3 | 0.0208 (10) | 0.0271 (10) | 0.0128 (9) | −0.0017 (8) | 0.0057 (7) | −0.0019 (8) |
C12 | 0.0161 (9) | 0.0242 (10) | 0.0161 (9) | −0.0029 (8) | 0.0015 (7) | −0.0004 (8) |
C4 | 0.0160 (9) | 0.0243 (10) | 0.0161 (9) | −0.0033 (7) | 0.0034 (7) | −0.0015 (7) |
C10 | 0.0183 (9) | 0.0248 (10) | 0.0193 (10) | −0.0035 (8) | 0.0027 (7) | −0.0017 (8) |
C11 | 0.0214 (10) | 0.0255 (10) | 0.0168 (10) | −0.0019 (8) | 0.0050 (8) | 0.0015 (8) |
O3—C8 | 1.256 (3) | C5—C4 | 1.395 (3) |
O4—C8 | 1.249 (3) | C9—C12 | 1.393 (3) |
O1—C1 | 1.320 (3) | C6—C7 | 1.388 (3) |
O1—H1 | 0.80 (5) | C6—H6 | 0.93 (4) |
O2—C1 | 1.216 (3) | C1—C2 | 1.492 (3) |
N2—C9 | 1.336 (3) | C7—C2 | 1.394 (3) |
N2—C10 | 1.334 (3) | C7—H7 | 0.95 (4) |
N1—C5 | 1.455 (3) | C2—C3 | 1.394 (3) |
N1—H1A | 0.89 (4) | C3—C4 | 1.388 (3) |
N1—H1B | 0.79 (4) | C3—H3 | 0.90 (4) |
N1—H1C | 0.87 (4) | C12—H12 | 0.99 (4) |
N3—C12 | 1.338 (3) | C4—H4 | 0.97 (4) |
N3—C11 | 1.340 (3) | C10—C11 | 1.386 (3) |
C8—C9 | 1.519 (3) | C10—H10 | 0.96 (5) |
C5—C6 | 1.380 (3) | C11—H11 | 0.99 (4) |
C1—O1—H1 | 114 (4) | O2—C1—C2 | 124.0 (2) |
C10—N2—C9 | 117.57 (18) | C6—C7—C2 | 120.38 (19) |
C5—N1—H1A | 112 (2) | C6—C7—H7 | 123 (2) |
C5—N1—H1B | 108 (3) | C2—C7—H7 | 116 (2) |
C5—N1—H1C | 112 (2) | C7—C2—C1 | 119.9 (2) |
H1A—N1—H1B | 108 (4) | C7—C2—C3 | 119.75 (19) |
H1A—N1—H1C | 111 (3) | C3—C2—C1 | 120.30 (19) |
H1B—N1—H1C | 107 (4) | C2—C3—H3 | 120 (2) |
C12—N3—C11 | 117.6 (2) | C4—C3—C2 | 120.2 (2) |
O3—C8—C9 | 116.57 (19) | C4—C3—H3 | 120 (2) |
O4—C8—O3 | 127.4 (2) | N3—C12—C9 | 121.5 (2) |
O4—C8—C9 | 116.05 (19) | N3—C12—H12 | 115 (2) |
C6—C5—N1 | 118.57 (18) | C9—C12—H12 | 124 (2) |
C6—C5—C4 | 121.47 (19) | C5—C4—H4 | 118 (2) |
C4—C5—N1 | 119.95 (19) | C3—C4—C5 | 119.0 (2) |
N2—C9—C8 | 117.39 (18) | C3—C4—H4 | 123 (2) |
N2—C9—C12 | 120.8 (2) | N2—C10—C11 | 122.0 (2) |
C12—C9—C8 | 121.83 (19) | N2—C10—H10 | 115 (3) |
C5—C6—C7 | 119.17 (19) | C11—C10—H10 | 123 (3) |
C5—C6—H6 | 121 (2) | N3—C11—C10 | 120.7 (2) |
C7—C6—H6 | 119 (2) | N3—C11—H11 | 116 (2) |
O1—C1—C2 | 112.5 (2) | C10—C11—H11 | 124 (2) |
O2—C1—O1 | 123.6 (2) | ||
O3—C8—C9—N2 | 7.2 (3) | C5—C6—C7—C2 | −0.9 (3) |
O3—C8—C9—C12 | −171.1 (2) | C9—N2—C10—C11 | 0.9 (3) |
O4—C8—C9—N2 | −172.9 (2) | C6—C5—C4—C3 | −0.2 (3) |
O4—C8—C9—C12 | 8.7 (3) | C6—C7—C2—C1 | −179.4 (2) |
O1—C1—C2—C7 | −2.9 (3) | C6—C7—C2—C3 | 0.5 (4) |
O1—C1—C2—C3 | 177.2 (2) | C1—C2—C3—C4 | −180.0 (2) |
O2—C1—C2—C7 | 178.0 (2) | C7—C2—C3—C4 | 0.1 (3) |
O2—C1—C2—C3 | −1.9 (4) | C2—C3—C4—C5 | −0.2 (3) |
N2—C9—C12—N3 | −1.3 (3) | C12—N3—C11—C10 | 0.0 (3) |
N2—C10—C11—N3 | −1.1 (4) | C4—C5—C6—C7 | 0.7 (3) |
N1—C5—C6—C7 | −179.6 (2) | C10—N2—C9—C8 | −178.14 (19) |
N1—C5—C4—C3 | −179.9 (2) | C10—N2—C9—C12 | 0.2 (3) |
C8—C9—C12—N3 | 177.0 (2) | C11—N3—C12—C9 | 1.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.89 (4) | 1.83 (4) | 2.707 (3) | 167 (3) |
N1—H1B···N2ii | 0.79 (4) | 2.21 (4) | 2.907 (3) | 148 (4) |
N1—H1C···O4iii | 0.87 (4) | 1.88 (4) | 2.732 (3) | 167 (4) |
O1—H1···N3 | 0.80 (5) | 1.87 (6) | 2.670 (3) | 175 (5) |
Symmetry codes: (i) x+1, −y+2, z+1/2; (ii) x+1, −y+1, z+1/2; (iii) x, −y+2, z+1/2. |
C7H8NO2+·C5H3N2O2− | F(000) = 272 |
Mr = 261.24 | Dx = 1.498 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
a = 5.95233 (16) Å | Cell parameters from 4235 reflections |
b = 3.80345 (11) Å | θ = 3.2–29.2° |
c = 25.6879 (7) Å | µ = 0.12 mm−1 |
β = 95.037 (2)° | T = 293 K |
V = 579.31 (3) Å3 | Block, light colourless |
Z = 2 | 0.24 × 0.19 × 0.18 mm |
Rigaku Oxford Diffraction Xcalibur Ruby Gemini ultra diffractometer | 2981 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2746 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 10.3457 pixels mm-1 | θmax = 29.6°, θmin = 1.6° |
ω scans | h = −7→8 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2018) | k = −5→5 |
Tmin = 0.822, Tmax = 1.000 | l = −35→33 |
8036 measured reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.145 | w = 1/[σ2(Fo2) + (0.0973P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.001 |
2981 reflections | Δρmax = 0.29 e Å−3 |
174 parameters | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O3 | 0.3114 (4) | 0.4159 (6) | 0.25493 (8) | 0.0428 (6) | |
O4 | 0.6195 (4) | 0.5580 (8) | 0.30677 (9) | 0.0505 (6) | |
O1 | 0.4431 (4) | 0.5870 (8) | 0.53404 (9) | 0.0547 (7) | |
H1 | 0.415003 | 0.501947 | 0.504859 | 0.082* | |
O2 | 0.7585 (5) | 0.7517 (8) | 0.50073 (10) | 0.0588 (7) | |
N2 | 0.1020 (4) | 0.2017 (6) | 0.33869 (9) | 0.0328 (5) | |
N1 | 0.9323 (4) | 1.1834 (6) | 0.74503 (8) | 0.0282 (5) | |
H1A | 1.042185 | 1.341470 | 0.744245 | 0.034* | |
H1B | 0.982136 | 0.999337 | 0.764065 | 0.034* | |
H1C | 0.815616 | 1.279554 | 0.759180 | 0.034* | |
N3 | 0.2877 (4) | 0.3635 (7) | 0.43878 (10) | 0.0383 (6) | |
C8 | 0.4229 (4) | 0.4514 (8) | 0.29826 (10) | 0.0314 (6) | |
C5 | 0.8611 (4) | 1.0681 (7) | 0.69163 (9) | 0.0262 (5) | |
C9 | 0.3039 (4) | 0.3555 (7) | 0.34649 (10) | 0.0273 (5) | |
C6 | 0.6491 (4) | 0.9282 (8) | 0.68141 (10) | 0.0312 (6) | |
H6 | 0.552972 | 0.909327 | 0.707932 | 0.037* | |
C1 | 0.6453 (5) | 0.7272 (9) | 0.53745 (10) | 0.0365 (6) | |
C7 | 0.5796 (4) | 0.8159 (8) | 0.63147 (11) | 0.0319 (6) | |
H7 | 0.436812 | 0.718844 | 0.624423 | 0.038* | |
C2 | 0.7226 (4) | 0.8473 (8) | 0.59157 (10) | 0.0301 (5) | |
C3 | 0.9362 (5) | 0.9920 (8) | 0.60255 (11) | 0.0356 (6) | |
H3 | 1.032069 | 1.014408 | 0.576030 | 0.043* | |
C12 | 0.3970 (5) | 0.4333 (8) | 0.39670 (11) | 0.0335 (6) | |
H12 | 0.538987 | 0.536543 | 0.401120 | 0.040* | |
C4 | 1.0070 (4) | 1.1027 (8) | 0.65257 (11) | 0.0330 (6) | |
H4 | 1.149948 | 1.198795 | 0.659963 | 0.040* | |
C10 | −0.0051 (5) | 0.1270 (8) | 0.38076 (13) | 0.0376 (6) | |
H10 | −0.144761 | 0.016045 | 0.376452 | 0.045* | |
C11 | 0.0861 (5) | 0.2102 (9) | 0.43080 (12) | 0.0390 (7) | |
H11 | 0.005353 | 0.158345 | 0.459237 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O3 | 0.0390 (12) | 0.0655 (15) | 0.0241 (10) | 0.0140 (10) | 0.0039 (8) | −0.0003 (9) |
O4 | 0.0356 (12) | 0.0830 (18) | 0.0336 (12) | −0.0103 (11) | 0.0068 (9) | 0.0122 (11) |
O1 | 0.0491 (13) | 0.0908 (18) | 0.0241 (10) | −0.0236 (13) | 0.0034 (9) | −0.0131 (11) |
O2 | 0.0618 (16) | 0.0920 (19) | 0.0244 (10) | −0.0238 (15) | 0.0149 (10) | −0.0122 (12) |
N2 | 0.0273 (10) | 0.0424 (12) | 0.0285 (11) | −0.0009 (9) | 0.0011 (8) | −0.0052 (9) |
N1 | 0.0288 (10) | 0.0343 (11) | 0.0211 (10) | 0.0011 (8) | 0.0007 (7) | −0.0007 (8) |
N3 | 0.0429 (14) | 0.0498 (14) | 0.0221 (11) | −0.0049 (10) | 0.0027 (9) | −0.0028 (10) |
C8 | 0.0295 (12) | 0.0427 (14) | 0.0226 (12) | 0.0078 (10) | 0.0059 (9) | 0.0036 (10) |
C5 | 0.0292 (12) | 0.0305 (13) | 0.0190 (11) | 0.0026 (9) | 0.0022 (9) | 0.0009 (9) |
C9 | 0.0269 (12) | 0.0331 (12) | 0.0218 (11) | 0.0028 (9) | 0.0022 (9) | −0.0011 (9) |
C6 | 0.0288 (12) | 0.0441 (15) | 0.0215 (12) | −0.0042 (10) | 0.0067 (9) | 0.0011 (10) |
C1 | 0.0420 (15) | 0.0458 (15) | 0.0217 (12) | −0.0049 (12) | 0.0033 (11) | −0.0035 (11) |
C7 | 0.0278 (12) | 0.0429 (14) | 0.0253 (12) | −0.0056 (11) | 0.0045 (10) | −0.0015 (10) |
C2 | 0.0339 (13) | 0.0363 (14) | 0.0202 (11) | 0.0010 (10) | 0.0028 (9) | −0.0004 (9) |
C3 | 0.0349 (14) | 0.0514 (16) | 0.0218 (12) | −0.0053 (11) | 0.0092 (10) | −0.0024 (11) |
C12 | 0.0287 (12) | 0.0443 (16) | 0.0274 (13) | −0.0059 (11) | 0.0017 (10) | −0.0027 (11) |
C4 | 0.0265 (12) | 0.0441 (15) | 0.0286 (13) | −0.0065 (10) | 0.0042 (9) | −0.0035 (11) |
C10 | 0.0303 (13) | 0.0466 (16) | 0.0364 (15) | −0.0082 (12) | 0.0061 (10) | −0.0033 (12) |
C11 | 0.0413 (16) | 0.0484 (16) | 0.0285 (14) | −0.0042 (12) | 0.0109 (11) | −0.0001 (11) |
O3—C8 | 1.252 (3) | C5—C4 | 1.390 (4) |
O4—C8 | 1.240 (4) | C9—C12 | 1.390 (4) |
O1—H1 | 0.8200 | C6—H6 | 0.9300 |
O1—C1 | 1.313 (4) | C6—C7 | 1.380 (4) |
O2—C1 | 1.210 (4) | C1—C2 | 1.497 (4) |
N2—C9 | 1.336 (4) | C7—H7 | 0.9300 |
N2—C10 | 1.332 (4) | C7—C2 | 1.394 (4) |
N1—H1A | 0.8900 | C2—C3 | 1.391 (4) |
N1—H1B | 0.8900 | C3—H3 | 0.9300 |
N1—H1C | 0.8900 | C3—C4 | 1.382 (4) |
N1—C5 | 1.467 (3) | C12—H12 | 0.9300 |
N3—C12 | 1.336 (4) | C4—H4 | 0.9300 |
N3—C11 | 1.334 (4) | C10—H10 | 0.9300 |
C8—C9 | 1.524 (4) | C10—C11 | 1.388 (4) |
C5—C6 | 1.374 (3) | C11—H11 | 0.9300 |
C1—O1—H1 | 109.5 | O2—C1—C2 | 123.6 (3) |
C10—N2—C9 | 117.4 (2) | C6—C7—H7 | 119.8 |
H1A—N1—H1B | 109.5 | C6—C7—C2 | 120.3 (2) |
H1A—N1—H1C | 109.5 | C2—C7—H7 | 119.8 |
H1B—N1—H1C | 109.5 | C7—C2—C1 | 119.9 (2) |
C5—N1—H1A | 109.5 | C3—C2—C1 | 120.6 (2) |
C5—N1—H1B | 109.5 | C3—C2—C7 | 119.4 (2) |
C5—N1—H1C | 109.5 | C2—C3—H3 | 119.8 |
C11—N3—C12 | 117.3 (3) | C4—C3—C2 | 120.5 (2) |
O3—C8—C9 | 116.7 (2) | C4—C3—H3 | 119.8 |
O4—C8—O3 | 127.6 (3) | N3—C12—C9 | 121.7 (3) |
O4—C8—C9 | 115.7 (2) | N3—C12—H12 | 119.1 |
C6—C5—N1 | 118.7 (2) | C9—C12—H12 | 119.1 |
C6—C5—C4 | 121.4 (2) | C5—C4—H4 | 120.5 |
C4—C5—N1 | 120.0 (2) | C3—C4—C5 | 118.9 (2) |
N2—C9—C8 | 117.3 (2) | C3—C4—H4 | 120.5 |
N2—C9—C12 | 120.8 (2) | N2—C10—H10 | 119.1 |
C12—C9—C8 | 121.8 (2) | N2—C10—C11 | 121.8 (3) |
C5—C6—H6 | 120.2 | C11—C10—H10 | 119.1 |
C5—C6—C7 | 119.5 (2) | N3—C11—C10 | 121.0 (3) |
C7—C6—H6 | 120.2 | N3—C11—H11 | 119.5 |
O1—C1—C2 | 113.0 (2) | C10—C11—H11 | 119.5 |
O2—C1—O1 | 123.3 (3) | ||
O3—C8—C9—N2 | 8.0 (4) | C5—C6—C7—C2 | −0.7 (4) |
O3—C8—C9—C12 | −170.1 (3) | C9—N2—C10—C11 | 1.1 (5) |
O4—C8—C9—N2 | −172.4 (3) | C6—C5—C4—C3 | −0.3 (4) |
O4—C8—C9—C12 | 9.5 (4) | C6—C7—C2—C1 | −179.6 (3) |
O1—C1—C2—C7 | −2.3 (4) | C6—C7—C2—C3 | 0.2 (4) |
O1—C1—C2—C3 | 177.9 (3) | C1—C2—C3—C4 | 180.0 (3) |
O2—C1—C2—C7 | 178.7 (3) | C7—C2—C3—C4 | 0.2 (4) |
O2—C1—C2—C3 | −1.0 (5) | C2—C3—C4—C5 | −0.2 (4) |
N2—C9—C12—N3 | −1.1 (5) | C12—N3—C11—C10 | 0.1 (5) |
N2—C10—C11—N3 | −1.2 (5) | C4—C5—C6—C7 | 0.7 (4) |
N1—C5—C6—C7 | −179.6 (3) | C10—N2—C9—C8 | −178.1 (2) |
N1—C5—C4—C3 | 180.0 (3) | C10—N2—C9—C12 | 0.0 (4) |
C8—C9—C12—N3 | 176.9 (3) | C11—N3—C12—C9 | 1.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N3 | 0.82 | 1.87 | 2.677 (3) | 167 |
N1—H1A···O3i | 0.89 | 1.85 | 2.716 (3) | 164 |
N1—H1B···N2ii | 0.89 | 2.13 | 2.920 (3) | 148 |
N1—H1C···O4iii | 0.89 | 1.87 | 2.732 (3) | 163 |
Symmetry codes: (i) x+1, −y+2, z+1/2; (ii) x+1, −y+1, z+1/2; (iii) x, −y+2, z+1/2. |
Acknowledgements
KD thanks Dr Alex Manin and Dr Denis Rychkov for their interest in this work and helpful discussions.
Funding information
Funding for this research was provided by: RFBR (grant No. 17-33-50073 mol_nr).
References
Aakeröy, C. B., Fasulo, M. E. & Desper, J. (2007). Mol. Pharm. 4, 317–322. Web of Science PubMed Google Scholar
Akberova, S. I. (2002). Biol. Bull. Russ. Acad. Sci. 29, 390–393. CrossRef Google Scholar
Athimoolam, S. & Natarajan, S. (2007). Acta Cryst. C63, o283–o286. Web of Science CrossRef IUCr Journals Google Scholar
Avdeef, A. (2017). Eur. J. Pharm. Sci. 110, 2–18. CrossRef Google Scholar
Chang, T.-Y. & Hu, M.-L. (1996). J. Nutr. Biochem. 7, 408–413. CrossRef Google Scholar
Chen, J.-M., Wang, Z.-Z., Wu, C.-B., Li, S. & Lu, T.-B. (2012). CrystEngComm, 14, 6221–6229. CrossRef Google Scholar
Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. Web of Science CrossRef PubMed CAS Google Scholar
Cruz-Cabeza, A. J. (2012). CrystEngComm, 14, 6362–6365. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Drozd, N. A., Makarov, V. T., Miftakhova, N. A., Kalugin, S. G., Stroeva, O. & Akberova, S. I. (2000). Eksp. Klin. Farmakol. 63, 40–44. Google Scholar
Flindt-Hansen, H. & Ebbesen, P. (1991). Br. J. Dermatol. 125, 222–226. Google Scholar
Fu, X., Li, J., Wang, L., Wu, B., Xu, X., Deng, Z. & Zhang, H. (2016). RSC Adv. 6, 26474–26478. CrossRef Google Scholar
Galbinur, T., Obolensky, A., Berenshtein, E., Vinokur, V., Chowers, I., Chevion, M. & Banin, E. (2009). J. Ocul. Pharmacol. Ther. 25, 475–482. CrossRef Google Scholar
Grobelny, P., Mukherjee, A. & Desiraju, G. R. (2011). CrystEngComm, 13, 4358–4364. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hanson, K. M., Gratton, E. & Bardeen, C. J. (2006). Free Radic. Biol. Med. 41, 1205–1212. CrossRef Google Scholar
Hathwar, V. R., Pal, R. & Guru Row, T. N. (2010). Cryst. Growth Des. 10, 3306–3310. Web of Science CrossRef CAS Google Scholar
Kluczyk, A., Popek, T., Kiyota, T., de Macedo, P., Stefanowicz, P., Lazar, C. & Konishi, Y. (2002). Curr. Med. Chem. 9, 1871–1892. CrossRef Google Scholar
Losev, E. & Boldyreva, E. (2018a). CrystEngComm, 20, 2299–2305. CrossRef Google Scholar
Losev, E. & Boldyreva, E. (2018b). Acta Cryst. C74, 177–185. CrossRef IUCr Journals Google Scholar
Manin, A. N., Voronin, A. P., Drozd, K. V., Churakov, A. V. & Perlovich, G. L. (2018). Acta Cryst. C74, 797–806. CrossRef IUCr Journals Google Scholar
Perumalla, S. R. & Sun, C. C. (2013). CrystEngComm, 15, 5756–5759. CrossRef CAS Google Scholar
Richards, R. M. E., Xing, D. K. L. & King, T. P. (1995). J. Appl. Bacteriol. 78, 209–215. CrossRef Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rothman, S. & Henningsen, A. B. (1947). J. Invest. Dermatol. 9, 307–313. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shevchenko, A., Bimbo, L. M., Miroshnyk, I., Haarala, J., Jelínková, K., Syrjänen, K., van Veen, B., Kiesvaara, J., Santos, H. A. & Yliruusi, J. (2012). Int. J. Pharm. 436, 403–409. CrossRef Google Scholar
Sirota, T. V., Lyamina, N. E. & Weisfeld, L. I. (2017). Biophysics 62, 691–695. CrossRef Google Scholar
Stroeva, O. G., Akberova, S. I., Drozd, N. N., Makarov, V. A., Miftakhova, N. T. & Kalugin, S. S. (1999). Izv. Akad. Nauk Ser. Biol. 26, 329–336. Google Scholar
Xavier, S., Macdonald, S., Roth, J., Caunt, M., Akalu, A., Morais, D., Buckley, M. T., Liebes, L., Formenti, S. C. & Brooks, P. C. (2006). Int. J. Radiat. Oncol. Biol. Phys. 65, 517–527. CrossRef Google Scholar
Zhang, Y., Scorpio, A., Nikaido, H. & Sun, Z. (1999). J. Bacteriol. 181, 2044–2049. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.