research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(μ2-meth­anolato-κO:κO)hexa­methyl­bis­­(μ2-tri­phenyl­acetato-κO:κO′)bis­­(μ2-tri­phenyl­acetato-κ2O,O′:κO)dialuminiumdi­lanthanum toluene tetra­solvate

CROSSMARK_Color_square_no_text.svg

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, 119991, Moscow, Russian Federation, bN.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation, cA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., 119991, Moscow, Russian Federation, and dChemistry Department, M.V. Lomonosov Moscow State, University, 1 Leninskie Gory Str., Building 3, Moscow 119991, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 29 October 2018; accepted 8 November 2018; online 13 November 2018)

The title compound, [Al2La2(C20H15O2)4(CH3)6(CH3O)2]·4CH3C6H5 or [{La(Ph3CCOO)2(Me3AlOMe)}2]·4CH3C6H5, was formed in a reaction between lanthanum tris­(tetra­methyl­aluminate) and tri­phenyl­acetic acid (1:1) with unintended partial oxidation. The tri­phenyl­acetate ligand exhibits μ2-κ1O:κ1O′ bridging and μ2-κ2O,O′:κ1O semi-bridging coordination modes, forming a dimeric La2(μ-OCO)4 core. The semi-bridging tri­phenyl­acetate group provides additional bonding with an La3+ cation via the π-system of one of its phenyl rings. The tri­methyl­meth­oxy­aluminate anion, which is coordinated to the La3+ cation by its O atom, displays a rather long La—CMe bond. Two toluene mol­ecules are each disordered over two orientations about centres of symmetry with site occupancy factors of 0.5. The title compound represents the first example of an LnIII complex containing both alkyl alkoxide aluminate and π-bounded arene fragments.

1. Chemical context

Heteroleptic tetra­alkyl­aluminate complexes of rare-earth metals attract significant attention because of their intriguing role in the stereospecific polymerization of conjugated dienes (Anwander, 2002[Anwander, R. (2002). In Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974-1013. Weinheim: Wiley-VCH.]). Stereoregular elastomers obtained in the polymerization process of isoprene and butadiene are fundamentally important for the production of modern wear-resistant rubbers (Friebe et al., 2006[Friebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1-154.]). It is assumed that this type of complex plays the key role in the formation of catalytically active species. Meanwhile, little is known about the structure of such complexes (Fischbach et al., 2006a[Fischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006a). Organometallics, 25, 1626-1642.], and reference therein). The exceptionally high oxidative instability of aluminate complexes is one of the reasons for the lack of information on the structures of catalytically active heteroleptic bimetallic Ln–Al complexes.

This report describes the product of unintentional oxidation of a carboxyl­ate–aluminate La complex while reacting lanthanum tris­(tetra­methyl­aluminiumate) with the corres­ponding acid (Fig. 1[link]). This reaction should have led initially to the heteroleptic tri­phenyl­acetate–tetra­methyl­aluminate complex that is supposed to be a model of the active species in the catalyst system. The accidental partial oxidation resulted in the formation of the tri­phenyl­acetate-tri­methyl­meth­oxy­aluminate lanthanum complex [{La(Ph3CCOO)2Me3AlOMe}2].

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of [{La(Ph3CCOO)2Me3AlOMe}2]·4(CH3C6H5).

2. Structural commentary

The asymmetric unit of the title compound consists of half of the dimeric complex [{La(Ph3CCOO)2(Me3AlOMe)}2] (Fig. 2[link]) located on an inversion centre, and three non-coordinating toluene mol­ecules (not shown). Two of the toluene mol­ecules are disordered over inversion centres, having 50% atomic site occupancies. The coordination polyhedron for the La3+ cation and its coordination number are rather difficult to determine. Two tri­phenyl­acetate ligands exhibit the μ2-κ1O:κ1O′ bridging coordination mode, but two other ligands display the μ2-κ2O,O′:κ1O′ semi-bridging type (Figs. 2[link] and 3[link]; Table 1[link]). The complex has an La2(μ-OCO)4 core with an La1⋯La1i distance of 4.0432 (4) Å [symmetry code: (i) −x, −y + 1, −z + 1). Unlike the bridging ligands, the semi-bridging tri­phenyl­acetates demonstrate additional La⋯C contacts with the carb­oxy­lic system (La1⋯C5, La1i⋯C5i; Fig. 3[link]; Table 1[link]). The La3+ cation is also coordinated by the π-system of a phenyl ring of the semi-bridging carboxyl­ate ligand (Fig. 3[link], atoms C7i–C12i; Table 1[link]). The inter­action with the phenyl (Ph) group is close to symmetrical: the La⋯Phcentroid distance is 2.938 (2) Å, the normal to the Ph-ring plane is 2.9353 (16) Å, and the La⋯CPh bond lengths lie in the range 3.201 (4) to 3.318 (4) Å. Ten crystal structures exhibiting the inter­action of La3+ with the π-system of an uncharged C6 aromatic ring have been found in the Cambridge Structural Database (CSD, Version 5.39, February 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The corresponding distances in these compounds vary from 2.93 to 3.27 Å for La⋯CAr­yl and from 2.61 to 2.87 Å for La⋯Ar­ylcentroid. The La⋯Phcentroid and La⋯CPh distances in the title compound are therefore the longest, which is likely caused by steric hindrance induced by the presence of many phenyl groups within the inner coordination sphere.

Table 1
Selected bond lengths (Å)

La1—O1 2.336 (3) La1—C8i 3.287 (4)
La1—O2 2.501 (3) La1—C9i 3.246 (4)
La1—O3 2.494 (3) La1—C10i 3.212 (4)
La1—O3i 2.403 (2) La1—C11i 3.201 (4)
La1—O4 2.396 (3) La1—C12i 3.239 (4)
La1—O5i 2.367 (3) Al1—O1 1.819 (3)
La1—C2 3.042 (4) Al1—C2 2.014 (4)
La1—C5 2.892 (4) Al1—C3 1.990 (5)
La1—C7i 3.318 (4) Al1—C4 1.961 (4)
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The mol­ecular structure of the {La(Ph3CCOO)2(Me3AlOMe)}2 unit in the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms and toluene solvent mol­ecules are omitted for clarity. The La—O bonds are shown with thinner solid lines. The La—C inter­actions are not shown. Symmetry code: (i) −x, −y + 1, −z + 1.
[Figure 3]
Figure 3
Metal–ligand inter­actions within the {La(Ph3CCOO)2(Me3AlOMe)}2 unit. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted, only Cipso atoms (labeled as Ph) are shown for non-coordinating phenyl groups for clarity. The Ln—C contacts are shown with thin dashed lines. Symmetry code: (i) −x, −y + 1, −z + 1.

The tri­methyl­metoxyaluminate anions are coordinated to the La3+ cations via oxygen atoms (La1—O1, La1i—O1i), and exhibit a slightly distorted tetra­hedral environment about the Al atoms, with an O1—Al1—C2 angle of 100.03 (17)° and with other O—Al—C and C—Al—C bond angles ranging from 108.32 (18) to 113.2 (2)°. The small value for the O1—Al1—C2 angle is due to the additional coordination of the [Al(CH3)3(OCH3)] anion with La3+ by the C2 atom (Fig. 3[link]). However, the La1—C2 bond length [3.042 (4) Å] is rather long compared to those of previously characterized compounds possessing the La–[(μ-Me)2AlMe2] fragment, which have La—CMe distances lying in the range 2.66 to 2.98 Å with the average value of 2.76 Å (32 compounds with 128 crystallographically independent La—CMe-Al distances retrieved from the CSD). The La1⋯Al1 distance [3.4481 (12) Å] is near to the upper boundary of the La—Al distance range in the aforementioned compounds (from 2.99 to 3.45 Å, with an average of 3.25 Å).

There is only one related compound having the La-[(Alk­yl/Ar­yl)3Al(OAlk­yl/OAr­yl)] motif (CSD refcode MIMPED; Giesbrecht et al., 2002[Giesbrecht, G. R., Gordon, J. C., Brady, J. T., Clark, D. L., Keogh, D. W., Michalczyk, R., Scott, B. L. & Watkin, J. G. (2002). Eur. J. Inorg. Chem. pp. 723-731.]) – {La(O-2,6-iPr2C6H3)[AlMe2(μ-Me)(μ-O-2,6-iPr2C6H3)]2}. The Al—O [1.864 (3), 1.848 (3) Å], La—O [2.387 (3), 2.367 (3) Å] and Al—C [2.040 (5), 2.053 (6) Å] bond lengths within the LaAl2(μ-Me)2(μ-OAr­yl)2 fragment are similar to those found in the LaAl(μ-Me)(μ-OMe) fragment of the complex reported herein. However, the La1—C2 distance in the title compound (Table 1[link]) is considerably longer (by 0.24-0.28 Å) than the corresponding La—C distances in MIMPED [2.800 (5), 2.759 (5) Å], presumably due to steric reasons.

In the studied compound, the La—OMe (La1—O1) bond is the shortest, compared to the other La—O bonds, which may be due to delocalization of negative charge on the carb­oxy oxygen atoms and/or steric repulsion of the bulky carboxyl­ate anion.

3. Supra­molecular features

Weak intra- and inter­molecular inter­actions among complex mol­ecules and non-coordinating toluene mol­ecules are mainly represented by the CPh—H··π type (Table 2[link]). An inter­esting feature of the crystal packing is that the centres of all non-coordinating toluene mol­ecules are located nearly in one plane parallel to the ab plane, separating 2D mol­ecular layers of the complex (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33–C38, C39–C44, C52–C57 and C19–C24 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯⋯Cg1i 0.98 2.69 3.425 (6) 132
C17—H17⋯⋯Cg2 0.95 2.71 3.485 (4) 139
C21—H21⋯⋯Cg3ii 0.95 2.93 3.677 (8) 136
C29—H29⋯⋯Cg4 0.95 2.62 3.415 (4) 142
C32—H32⋯⋯Cg2 0.95 2.95 3.654 (5) 132
C44—H44⋯⋯Cg1 0.95 2.88 3.592 (5) 132
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are omitted.

4. Database survey

The number of crystal structures for rare-earth compounds containing the Ln–C–Al fragment (CSD, Version 5.39, February 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) is nearly 250 (upon exclusion of duplicated structures). They are mainly represented by 147 tetra­methyl­aluminates with Ln-[(μ2-Me)2AlMe2] (127 structures), Ln-[(μ2-Me)AlMe2(μ2-Me)]-Ln (11 structures) and Ln-[(μ2-Me)AlMe3] (9 structures) fragments and by 16 tetra­ethyl­aluminate complexes. This number also includes 18 structures of Ln-[(Alk­yl/Ar­yl)3Al(OAlk­yl/OAr­yl) compounds possessing the following structural motifs: [(μ2-Me)(μ2-OCH2tBu)AlMe2] (AVOYOA, AVOYUG, Occhipinti et al., 2011[Occhipinti, G., Meermann, C., Dietrich, H. M., Litlabø, R., Auras, F., Törnroos, K. W., Maichle-Mössmer, C., Jensen, V. R. & Anwander, R. (2011). J. Am. Chem. Soc. 133, 6323-6337.]; GEQMOF, GEQMUL, Fischbach et al., 2006b[Fischbach, A., Herdtweck, E. & Anwander, R. (2006b). Inorg. Chim. Acta, 359, 4855-4864.]), [(μ2-Me)(μ2-OtBu)AlMe2] (POJNAD, Biagini et al., 1994[Biagini, P., Lugli, G., Abis, L. & Millini, R. (1994). J. Organomet. Chem. 474, C16-C18.]; WAPYIV, WAPYOB, Evans et al., 1993a[Evans, W. J., Boyle, T. J. & Ziller, J. W. (1993a). J. Am. Chem. Soc. 115, 5084-5092.]; WEHHAS, Evans et al., 1993b[Evans, W. J., Boyle, T. J. & Ziller, J. W. (1993b). J. Organomet. Chem. 462, 141-148.]), [(μ2-Me)(μ2-OiPr)AlMe2] (VOLMUF, Liu et al., 2005[Liu, S., Wei, P., Wang, Y., Santillan-Jimenez, E., Bakus, R. C. II & Atwood, D. A. (2005). Main Group Chem. 4, 3-10.]), [(μ2-Me)(μ2-O-2,6-Ph2C6H3)AlMe2] (TULCAF, Korobkov & Gambarotta, 2009[Korobkov, I. & Gambarotta, S. (2009). Organometallics, 28, 4009-4019.]), [(μ2-Me)(μ2-O-2,6-iPr2C6H3)AlMe2] (LUQZOM, Fischbach et al., 2003[Fischbach, A., Herdtweck, E., Anwander, R., Eickerling, G. & Scherer, W. (2003). Organometallics, 22, 499-509.]; MIMPED, Giesbrecht et al., 2002[Giesbrecht, G. R., Gordon, J. C., Brady, J. T., Clark, D. L., Keogh, D. W., Michalczyk, R., Scott, B. L. & Watkin, J. G. (2002). Eur. J. Inorg. Chem. pp. 723-731.]; MOQYOG, Gordon et al., 2002[Gordon, J. C., Giesbrecht, G. R., Brady, J. T., Clark, D. L., Keogh, D. W., Scott, B. L. & Watkin, J. G. (2002). Organometallics, 21, 127-131.]; PETMUX, Fischbach et al., 2006c[Fischbach, A., Meermann, C., Eickerling, G., Scherer, W. & Anwander, R. (2006c). Macromolecules, 39, 6811-6816.]), [(μ2-Et)(μ2-O-2,6-iPr2C6H3)AlEt2] (MIMPIH, Giesbrecht et al., 2002[Giesbrecht, G. R., Gordon, J. C., Brady, J. T., Clark, D. L., Keogh, D. W., Michalczyk, R., Scott, B. L. & Watkin, J. G. (2002). Eur. J. Inorg. Chem. pp. 723-731.]; ROCHOH, Sommerfeldt et al., 2008[Sommerfeldt, H.-M., Meermann, C., Törnroos, K. W. & Anwander, R. (2008). Inorg. Chem. 47, 4696-4705.]), [(μ2-Me)(μ2-O-2,6-tBu2-4-MeC6H2)AlMe2] (ROCGOG, Sommerfeldt et al., 2008[Sommerfeldt, H.-M., Meermann, C., Törnroos, K. W. & Anwander, R. (2008). Inorg. Chem. 47, 4696-4705.]), [(κ2O,O′-MeOCH2CH2O)AlMe3] (GIZWAN, Evans et al., 1998[Evans, W. J., Greci, M. A. & Ziller, J. W. (1998). Inorg. Chem. 37, 5221-5226.]). MIMPED is the only La structure among them. A related structure with the {(μ2-Me)[μ2-κO:κ2O,O′-(OtBu)3SiO]AlMe2} motif (BEQXUR, Fischbach et al., 2004[Fischbach, A., Klimpel, M. G., Widenmeyer, M., Herdtweck, E., Scherer, W. & Anwander, R. (2004). Angew. Chem. Int. Ed. 43, 2234-2239.]) might be also mentioned.

Crystal structures of lanthanide(III) compounds having an η6-coordinated uncharged arene system have become numerous over the last two decades, resulting in the description of over 150 crystal structures (see the CSD). Ten structures of such La(III) π-complexes are known: EZIPIM (Giesbrecht et al., 2004[Giesbrecht, G. R., Gordon, J. C., Clark, D. L., Hay, P. J., Scott, B. L. & Tait, C. D. (2004). J. Am. Chem. Soc. 126, 6387-6401.]), MALXOM (Deacon et al., 2000[Deacon, G. B., Feng, T., Forsyth, C. M., Gitlits, A., Hockless, D. C. R., Shen, Q., Skelton, B. W. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 961-966.]), POKCAU (Gerber et al., 2008[Gerber, L. C. H., Le Roux, E., Törnroos, K. W. & Anwander, R. (2008). Chem. Eur. J. 14, 9555-9564.]), RILBIZ, RILBUL (Hamidi et al., 2013[Hamidi, S., Jende, L. N., Dietrich, H. M., Maichle-Mössmer, C., Törnroos, K. W., Deacon, G. B., Junk, P. C. & Anwander, R. (2013). Organometallics, 32, 1209-1223.]), ROMQUG (Filatov et al., 2009[Filatov, A. S., Gifford, S. N., Kumar, D. K. & Petrukhina, M. A. (2009). Acta Cryst. E65, m286-m287.]), SOJHAB, SOJHEF, SOJHIJ (Filatov et al., 2008[Filatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct. 890, 116-122.]), ZIDSOV (Butcher et al., 1995[Butcher, R. J., Clark, D. L., Grumbine, S. K., Vincent-Hollis, R. L., Scott, B. L. & Watkin, J. G. (1995). Inorg. Chem. 34, 5468-5476.]). Crystallographic data for these complexes were used to compare structural parameters of the title compound in the Structural Commentary section. Known crystal structures of rare-earth tri­phenyl­acetate complexes are also not numerous, and their number is limited to 16 recent crystal structures: peroxide bis­(tri­phenyl­acetate) complexes QEHBOX, QEHBUD, QEHCEO (Roitershtein et al., 2017[Roitershtein, D. M., Vinogradov, A. A., Lyssenko, K. A. & Nifant'ev, I. E. (2017). Inorg. Chem. Commun. 84, 225-228.]), mono- and binuclear tris­(tri­phenyl­acetate) complexes EPUNIO (Minyaev et al., 2016[Minyaev, M. E., Vinogradov, A. A., Roitershtein, D. M., Lyssenko, K. A., Ananyev, I. V. & Nifant'ev, I. E. (2016). Acta Cryst. C72, 578-584.]), RIKRIO, RIKRUA, RIKSAH, RIKSEL (Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272--1286.]), tetra­kis­(tri­phenyl­acetate) complexes and their adducts RIKQUZ, RIKRAG, RIKREK, RIKRIO (Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272--1286.]), tri­phenyl­acetate-tetra­ethyl­aluminate compounds RIJVIR, RIJVOX (Roitershtein et al., 2013[Roitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272--1286.]) and hepta­nuclear polyligand complexes UVETAR, UVETEV (Sharples et al., 2011[Sharples, J. W., Zheng, Y.-Z., Tuna, F., McInnes, E. J. L. & Collison, D. (2011). Chem. Commun. 47, 7650-7652.]). The tri­phenyl­acetate ligand exhibits terminal κO and κ2O,O′, bridging μ-κO,κO′, and semi-bridging μ-κO,κ2O,O′ (the latter is only for the four ate complexes) coordination modes.

Up to date, no complex has been reported that has both an η6-coordinated arene ligand and the mixed-ligand alkyl-alkoxide aluminate anion.

5. Synthesis and crystallization

Synthetic operations were carried out under a purified argon atmosphere. Toluene was distilled from sodium/benzo­phenone ketyl, hexane was distilled from Na/K alloy. Tri­phenyl­acetic acid was purified by azeotrope removal of water from its toluene solution with a Dean–Stark trap, followed by crystallization from a cold saturated solution and then by vacuum drying. The complex La(AlMe4)3 was prepared according to the literature procedure (Zimmermann et al., 2007[Zimmermann, M., Frøystein, N. Å., Fischbach, A., Sirsch, P., Dietrich, H. M., Törnroos, K. W., Herdtweck, E. & Anwander, R. (2007). Chem. Eur. J. 13, 8784-8800.]).

A solution of Ph3CCOOH (0.144 g, 0.50 mmol) in toluene (20 ml) was added to a stirred solution of La(AlMe4)3 (0.196 g, 0.49 mmol) in toluene (10 ml), producing a suspension, which was stirred overnight at room temperature. The precipitate was removed by deca­ntation and the solution was concentrated to a volume of 10 ml. Slow and careful layering of hexane (40 ml) on the top of the residual solution resulted in the formation of an inseparable compound mixture and a few colourless crystals suitable for X-ray single crystal diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atom were positioned geometrically (C—H = 0.95 Å for aromatic, 0.98 Å for methyl H atoms) and refined as riding atoms with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C) for aromatic H atoms. A rotating group model was applied for methyl groups. Three reflections (100, 010, 001) were affected by the beam stop, and were therefore omitted from the refinement. Two non-coordinating toluene mol­ecules disordered over inversion centres with occupancy factors of 0.5 were modelled by fitting the phenyl rings to regular hexa­gons, by constraining the Cipso—CMe bond distances to 1.52 (1) Å, and by using equal anisotropic displacement parameters for atoms C52, C53, C54, C55, C60, C62 and C65.

Table 3
Experimental details

Crystal data
Chemical formula [Al2La2(CH3)6(C20H15O2)4(CH3O)2]·4C7H8
Mr 2001.86
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 13.8404 (6), 14.2089 (6), 14.6084 (7)
α, β, γ (°) 73.198 (1), 81.968 (1), 63.523 (1)
V3) 2461.54 (19)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.43 × 0.17 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.])
Tmin, Tmax 0.713, 0.848
No. of measured, independent and observed [I > 2σ(I)] reflections 30779, 13082, 10174
Rint 0.065
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.111, 1.01
No. of reflections 13082
No. of parameters 596
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −1.36
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2015) and publCIF (Westrip, 2010).

Bis(µ2-methanolato-κO:κO)hexamethylbis(µ2-triphenylacetato-κO:κO')bis(µ2-triphenylacetato-κ2O,O':κO)dialuminiumdilanthanum toluene tetrasolvate top
Crystal data top
[Al2La2(CH3)6(C20H15O2)4(CH3O)2]·4C7H8Z = 1
Mr = 2001.86F(000) = 1032
Triclinic, P1Dx = 1.350 Mg m3
a = 13.8404 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.2089 (6) ÅCell parameters from 4587 reflections
c = 14.6084 (7) Åθ = 2.5–27.3°
α = 73.198 (1)°µ = 0.93 mm1
β = 81.968 (1)°T = 100 K
γ = 63.523 (1)°Block, colorless
V = 2461.54 (19) Å30.43 × 0.17 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
13082 independent reflections
Radiation source: fine-focus sealed tube10174 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.713, Tmax = 0.848k = 1919
30779 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0491P)2]
where P = (Fo2 + 2Fc2)/3
13082 reflections(Δ/σ)max = 0.001
596 parametersΔρmax = 1.25 e Å3
2 restraintsΔρmin = 1.36 e Å3
Special details top

Experimental. moisture and air sensitive

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.03227 (2)0.49487 (2)0.37122 (2)0.01306 (6)
Al10.12529 (11)0.40803 (10)0.21948 (9)0.0286 (3)
O10.0005 (2)0.3834 (3)0.2697 (2)0.0386 (7)
C10.0953 (4)0.3005 (4)0.2479 (4)0.0524 (14)
H1A0.0886110.2905050.1857910.079*
H1B0.1091100.2326570.2974030.079*
H1C0.1552520.3201920.2451070.079*
C20.2300 (4)0.5359 (3)0.2694 (3)0.0336 (10)
H2A0.3004730.5658830.2398550.050*
H2B0.2030330.5919600.2536320.050*
H2C0.2373680.5122200.3389470.050*
C30.1116 (4)0.4476 (4)0.0776 (3)0.0460 (12)
H3A0.0973110.3849530.0535000.069*
H3B0.0518640.4688400.0590150.069*
H3C0.1788800.5085540.0503710.069*
C40.1619 (4)0.2840 (4)0.2695 (3)0.0406 (11)
H4A0.1109100.2230990.2435570.061*
H4B0.2353220.3048560.2506110.061*
H4C0.1576130.2619360.3394630.061*
O20.1140 (2)0.3706 (2)0.46652 (19)0.0320 (7)
O30.0402 (2)0.4255 (2)0.54830 (18)0.0232 (6)
C50.0957 (3)0.3754 (3)0.5459 (3)0.0214 (8)
C60.1398 (3)0.3264 (3)0.6418 (3)0.0220 (8)
C70.0810 (3)0.3348 (3)0.7189 (3)0.0234 (8)
C80.0289 (3)0.2683 (3)0.7329 (3)0.0271 (8)
H80.0640820.2133300.6993080.033*
C90.0885 (4)0.2798 (3)0.7944 (3)0.0307 (9)
H90.1633860.2333260.8025890.037*
C100.0381 (4)0.3596 (4)0.8438 (3)0.0340 (10)
H100.0779590.3673170.8868310.041*
C110.0703 (4)0.4277 (4)0.8303 (3)0.0325 (10)
H110.1047160.4825670.8640640.039*
C120.1300 (3)0.4167 (3)0.7672 (3)0.0279 (9)
H120.2041740.4652680.7573610.033*
C130.2633 (3)0.3918 (3)0.6482 (3)0.0233 (8)
C140.3158 (3)0.3660 (4)0.7337 (3)0.0342 (10)
H140.2756190.3093380.7858600.041*
C150.4279 (4)0.4235 (4)0.7427 (3)0.0391 (11)
H150.4630270.4068320.8016460.047*
C160.4875 (4)0.5041 (4)0.6668 (4)0.0387 (11)
H160.5635240.5421010.6732350.046*
C170.4364 (3)0.5292 (3)0.5818 (3)0.0340 (10)
H170.4773810.5848190.5294420.041*
C180.3253 (3)0.4737 (3)0.5721 (3)0.0284 (9)
H180.2910350.4916080.5130020.034*
C190.1186 (3)0.2076 (3)0.6507 (3)0.0249 (8)
C200.0899 (4)0.1297 (3)0.7379 (3)0.0328 (10)
H200.0789290.1486470.7916000.039*
C210.0772 (4)0.0247 (4)0.7475 (4)0.0424 (11)
H210.0593110.0268070.8079480.051*
C220.0904 (4)0.0056 (4)0.6695 (4)0.0415 (12)
H220.0787270.0782890.6755500.050*
C230.1208 (3)0.0713 (3)0.5833 (3)0.0340 (10)
H230.1318510.0517840.5300190.041*
C240.1355 (3)0.1779 (3)0.5732 (3)0.0276 (9)
H240.1570550.2301590.5135130.033*
O40.1812 (2)0.6313 (2)0.43281 (18)0.0240 (6)
O50.1427 (2)0.6352 (2)0.57488 (19)0.0263 (6)
C250.2039 (3)0.6717 (3)0.5035 (3)0.0227 (8)
C260.3096 (3)0.7777 (3)0.5032 (3)0.0227 (8)
C270.2810 (3)0.8697 (3)0.4371 (3)0.0231 (8)
C280.1853 (3)0.8743 (3)0.4508 (3)0.0301 (9)
H280.1372990.8204580.4997930.036*
C290.1600 (3)0.9568 (3)0.3933 (3)0.0337 (10)
H290.0939850.9578020.4026960.040*
C300.2283 (4)1.0370 (4)0.3232 (3)0.0368 (10)
H300.2103541.0933290.2841120.044*
C310.3234 (4)1.0339 (4)0.3106 (3)0.0382 (11)
H310.3718891.0893220.2626290.046*
C320.3499 (3)0.9516 (3)0.3667 (3)0.0304 (9)
H320.4161500.9513420.3566740.037*
C330.3352 (3)0.7907 (3)0.6049 (3)0.0257 (8)
C340.3485 (3)0.8825 (3)0.6307 (3)0.0314 (9)
H340.3398160.9406810.5840500.038*
C350.3746 (4)0.8894 (4)0.7256 (4)0.0437 (12)
H350.3833740.9523580.7427520.052*
C360.3876 (4)0.8057 (4)0.7943 (3)0.0447 (12)
H360.4043210.8105320.8585700.054*
C370.3762 (3)0.7144 (4)0.7688 (3)0.0382 (11)
H370.3861890.6569650.8154300.046*
C380.3502 (3)0.7074 (4)0.6750 (3)0.0311 (9)
H380.3424350.6445660.6581090.037*
C390.4077 (3)0.7783 (3)0.4627 (3)0.0229 (8)
C400.4009 (3)0.7506 (3)0.3772 (3)0.0257 (8)
H400.3340140.7290440.3432300.031*
C410.4902 (3)0.7541 (3)0.3408 (3)0.0300 (9)
H410.4828830.7320930.2836890.036*
C420.5896 (3)0.7893 (3)0.3865 (3)0.0316 (9)
H420.6506960.7921660.3610790.038*
C430.5981 (3)0.8199 (4)0.4696 (3)0.0334 (10)
H430.6660670.8449440.5014640.040*
C440.5089 (3)0.8148 (3)0.5072 (3)0.0287 (9)
H440.5168580.8365900.5644890.034*
C450.3342 (4)0.0048 (5)1.0374 (4)0.0480 (13)
C460.3902 (4)0.0087 (5)0.9511 (4)0.0585 (15)
H460.4272740.0761250.9343710.070*
C470.3928 (5)0.0844 (6)0.8891 (5)0.074 (2)
H470.4309370.0806550.8299260.088*
C480.3409 (6)0.1817 (6)0.9125 (5)0.075 (2)
H480.3445720.2452350.8708650.090*
C490.2825 (5)0.1870 (5)0.9978 (5)0.0677 (19)
H490.2444380.2548041.0136250.081*
C500.2794 (4)0.0939 (5)1.0599 (4)0.0563 (15)
H500.2395030.0981501.1181640.068*
C510.3334 (5)0.1067 (5)1.1063 (4)0.0719 (19)
H51A0.3989510.1699351.0965880.108*
H51B0.2698270.1150181.0948820.108*
H51C0.3309580.1014361.1720300.108*
C521.0278 (10)0.0489 (11)0.0048 (11)0.153 (5)0.5
C531.0634 (11)0.0326 (16)0.0286 (11)0.153 (5)0.5
H531.1319320.0201490.0586220.184*0.5
C540.9986 (15)0.1324 (13)0.0086 (9)0.153 (5)0.5
H541.0229590.1880840.0248510.184*0.5
C550.8983 (14)0.1506 (8)0.0354 (9)0.153 (5)0.5
H550.8541080.2188100.0490640.184*0.5
C560.8628 (8)0.0691 (11)0.0592 (7)0.088 (5)0.5
H560.7942290.0816010.0892090.106*0.5
C570.9275 (10)0.0306 (9)0.0391 (8)0.066 (4)0.5
H570.9032000.0863350.0554390.079*0.5
C581.1043 (16)0.1507 (13)0.0328 (18)0.167 (13)0.5
H58A1.1473240.1328800.0884840.251*0.5
H58B1.0633300.1848320.0489280.251*0.5
H58C1.1522840.2010640.0205910.251*0.5
C590.4395 (9)0.4875 (10)0.0082 (9)0.088 (6)0.5
C600.3781 (7)0.5983 (10)0.0446 (7)0.153 (5)0.5
H600.3083460.6236260.0692000.184*0.5
C610.4186 (10)0.6720 (8)0.0449 (8)0.079 (4)0.5
H610.3766050.7476990.0697400.095*0.5
C620.5206 (11)0.6349 (10)0.0089 (8)0.153 (5)0.5
H620.5483270.6852950.0090720.184*0.5
C630.5821 (8)0.5242 (11)0.0275 (8)0.134 (11)0.5
H630.6517900.4988180.0521360.161*0.5
C640.5415 (9)0.4504 (8)0.0278 (8)0.104 (7)0.5
H640.5835320.3747430.0526760.125*0.5
C650.421 (2)0.4005 (15)0.0297 (12)0.153 (5)0.5
H65A0.4097880.4180140.0984560.230*0.5
H65B0.3576170.3952830.0057880.230*0.5
H65C0.4846440.3308110.0106750.230*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01304 (9)0.01478 (10)0.01329 (9)0.00636 (7)0.00039 (6)0.00557 (7)
Al10.0374 (7)0.0314 (7)0.0258 (6)0.0203 (6)0.0014 (5)0.0117 (5)
O10.0376 (18)0.049 (2)0.0400 (18)0.0229 (16)0.0015 (14)0.0198 (15)
C10.052 (3)0.047 (3)0.067 (4)0.018 (3)0.012 (3)0.025 (3)
C20.047 (3)0.027 (2)0.029 (2)0.018 (2)0.0001 (19)0.0075 (18)
C30.060 (3)0.065 (3)0.030 (2)0.038 (3)0.004 (2)0.016 (2)
C40.047 (3)0.041 (3)0.047 (3)0.028 (2)0.005 (2)0.014 (2)
O20.0475 (18)0.0466 (18)0.0183 (14)0.0334 (16)0.0007 (13)0.0097 (13)
O30.0256 (14)0.0203 (13)0.0257 (14)0.0117 (11)0.0054 (11)0.0034 (11)
C50.0194 (18)0.0199 (18)0.025 (2)0.0081 (15)0.0007 (15)0.0069 (15)
C60.0241 (19)0.0241 (19)0.0222 (19)0.0139 (16)0.0003 (15)0.0067 (15)
C70.029 (2)0.027 (2)0.0189 (18)0.0185 (17)0.0003 (15)0.0031 (15)
C80.032 (2)0.030 (2)0.024 (2)0.0181 (18)0.0006 (16)0.0053 (16)
C90.037 (2)0.034 (2)0.027 (2)0.023 (2)0.0081 (18)0.0000 (17)
C100.050 (3)0.042 (3)0.022 (2)0.032 (2)0.0093 (19)0.0013 (18)
C110.049 (3)0.040 (3)0.019 (2)0.027 (2)0.0043 (18)0.0113 (18)
C120.036 (2)0.031 (2)0.023 (2)0.0203 (19)0.0058 (17)0.0101 (17)
C130.026 (2)0.027 (2)0.025 (2)0.0165 (17)0.0047 (16)0.0115 (16)
C140.031 (2)0.033 (2)0.035 (2)0.0144 (19)0.0036 (19)0.0057 (19)
C150.036 (2)0.043 (3)0.041 (3)0.022 (2)0.014 (2)0.012 (2)
C160.027 (2)0.036 (3)0.056 (3)0.014 (2)0.003 (2)0.016 (2)
C170.031 (2)0.029 (2)0.044 (3)0.0140 (19)0.004 (2)0.0091 (19)
C180.029 (2)0.032 (2)0.027 (2)0.0155 (18)0.0020 (17)0.0097 (17)
C190.0196 (19)0.027 (2)0.031 (2)0.0126 (16)0.0006 (16)0.0089 (16)
C200.039 (2)0.030 (2)0.034 (2)0.021 (2)0.0053 (19)0.0018 (18)
C210.048 (3)0.032 (3)0.050 (3)0.024 (2)0.008 (2)0.001 (2)
C220.035 (3)0.024 (2)0.067 (3)0.014 (2)0.005 (2)0.008 (2)
C230.025 (2)0.030 (2)0.055 (3)0.0130 (18)0.000 (2)0.021 (2)
C240.022 (2)0.026 (2)0.038 (2)0.0117 (17)0.0013 (17)0.0103 (17)
O40.0219 (13)0.0260 (14)0.0255 (14)0.0085 (11)0.0015 (11)0.0110 (11)
O50.0196 (13)0.0295 (15)0.0269 (15)0.0044 (11)0.0029 (11)0.0120 (12)
C250.0205 (19)0.0220 (19)0.028 (2)0.0091 (15)0.0005 (15)0.0101 (16)
C260.0171 (18)0.0212 (19)0.031 (2)0.0064 (15)0.0023 (15)0.0105 (16)
C270.0201 (18)0.0227 (19)0.030 (2)0.0083 (15)0.0005 (15)0.0125 (16)
C280.022 (2)0.028 (2)0.043 (3)0.0088 (17)0.0016 (18)0.0158 (19)
C290.024 (2)0.034 (2)0.053 (3)0.0145 (19)0.0061 (19)0.024 (2)
C300.040 (3)0.031 (2)0.047 (3)0.022 (2)0.010 (2)0.015 (2)
C310.040 (3)0.030 (2)0.046 (3)0.017 (2)0.007 (2)0.004 (2)
C320.028 (2)0.027 (2)0.039 (2)0.0135 (18)0.0037 (18)0.0078 (18)
C330.0177 (18)0.033 (2)0.026 (2)0.0042 (16)0.0031 (15)0.0161 (17)
C340.022 (2)0.033 (2)0.038 (2)0.0033 (17)0.0048 (17)0.0196 (19)
C350.035 (3)0.046 (3)0.046 (3)0.003 (2)0.007 (2)0.028 (2)
C360.035 (3)0.065 (3)0.031 (3)0.010 (2)0.002 (2)0.027 (2)
C370.032 (2)0.050 (3)0.026 (2)0.011 (2)0.0008 (18)0.011 (2)
C380.027 (2)0.038 (2)0.027 (2)0.0113 (19)0.0001 (17)0.0112 (18)
C390.0200 (18)0.0205 (19)0.027 (2)0.0074 (15)0.0043 (15)0.0049 (15)
C400.0205 (19)0.029 (2)0.027 (2)0.0090 (16)0.0006 (16)0.0084 (17)
C410.028 (2)0.033 (2)0.030 (2)0.0114 (18)0.0058 (17)0.0111 (18)
C420.024 (2)0.038 (2)0.038 (2)0.0156 (19)0.0055 (18)0.0116 (19)
C430.019 (2)0.038 (2)0.044 (3)0.0092 (18)0.0008 (18)0.017 (2)
C440.023 (2)0.030 (2)0.032 (2)0.0074 (17)0.0003 (17)0.0139 (18)
C450.035 (3)0.063 (4)0.046 (3)0.023 (3)0.008 (2)0.006 (3)
C460.043 (3)0.071 (4)0.052 (3)0.019 (3)0.004 (3)0.012 (3)
C470.058 (4)0.099 (6)0.054 (4)0.043 (4)0.009 (3)0.014 (4)
C480.081 (5)0.069 (5)0.081 (5)0.047 (4)0.048 (4)0.019 (4)
C490.069 (4)0.054 (4)0.081 (5)0.015 (3)0.043 (4)0.018 (3)
C500.048 (3)0.074 (4)0.050 (3)0.021 (3)0.014 (3)0.022 (3)
C510.071 (4)0.081 (5)0.064 (4)0.046 (4)0.012 (3)0.010 (3)
C520.237 (14)0.187 (12)0.044 (5)0.111 (12)0.030 (6)0.006 (6)
C530.237 (14)0.187 (12)0.044 (5)0.111 (12)0.030 (6)0.006 (6)
C540.237 (14)0.187 (12)0.044 (5)0.111 (12)0.030 (6)0.006 (6)
C550.237 (14)0.187 (12)0.044 (5)0.111 (12)0.030 (6)0.006 (6)
C560.077 (10)0.133 (15)0.049 (8)0.037 (11)0.010 (7)0.023 (10)
C570.085 (9)0.077 (9)0.061 (8)0.075 (8)0.048 (7)0.034 (6)
C580.19 (2)0.063 (12)0.20 (2)0.052 (12)0.125 (19)0.094 (15)
C590.090 (12)0.167 (18)0.083 (12)0.115 (14)0.040 (9)0.058 (12)
C600.237 (14)0.187 (12)0.044 (5)0.111 (12)0.030 (6)0.006 (6)
C610.072 (9)0.066 (9)0.099 (11)0.038 (8)0.035 (8)0.023 (8)
C620.237 (14)0.187 (12)0.044 (5)0.111 (12)0.030 (6)0.006 (6)
C630.112 (15)0.29 (3)0.127 (16)0.16 (2)0.072 (12)0.15 (2)
C640.095 (13)0.22 (3)0.046 (9)0.107 (16)0.015 (7)0.042 (12)
C650.237 (14)0.187 (12)0.044 (5)0.111 (12)0.030 (6)0.006 (6)
Geometric parameters (Å, º) top
La1—O12.336 (3)C27—C321.383 (5)
La1—O22.501 (3)C27—C281.400 (5)
La1—O32.494 (3)C28—C291.383 (6)
La1—O3i2.403 (2)C28—H280.9500
La1—O42.396 (3)C29—C301.370 (6)
La1—O5i2.367 (3)C29—H290.9500
La1—C23.042 (4)C30—C311.376 (6)
La1—C52.892 (4)C30—H300.9500
La1—C7i3.318 (4)C31—C321.385 (6)
La1—C8i3.287 (4)C31—H310.9500
La1—C9i3.246 (4)C32—H320.9500
La1—C10i3.212 (4)C33—C341.388 (5)
La1—C11i3.201 (4)C33—C381.398 (6)
La1—C12i3.239 (4)C34—C351.403 (6)
Al1—O11.819 (3)C34—H340.9500
Al1—C22.014 (4)C35—C361.380 (7)
Al1—C31.990 (5)C35—H350.9500
Al1—C41.961 (4)C36—C371.387 (7)
La1—Al13.4481 (12)C36—H360.9500
La1—La1i4.0432 (4)C37—C381.388 (6)
O1—C11.398 (6)C37—H370.9500
C1—H1A0.9800C38—H380.9500
C1—H1B0.9800C39—C401.394 (5)
C1—H1C0.9800C39—C441.396 (5)
C2—H2A0.9800C40—C411.388 (5)
C2—H2B0.9800C40—H400.9500
C2—H2C0.9800C41—C421.382 (6)
C3—H3A0.9800C41—H410.9500
C3—H3B0.9800C42—C431.378 (6)
C3—H3C0.9800C42—H420.9500
C4—H4A0.9800C43—C441.385 (6)
C4—H4B0.9800C43—H430.9500
C4—H4C0.9800C44—H440.9500
O2—C51.247 (4)C45—C501.378 (8)
O3—C51.269 (4)C45—C461.387 (7)
C5—C61.548 (5)C45—C511.509 (7)
C6—C71.538 (5)C46—C471.383 (8)
C6—C131.544 (5)C46—H460.9500
C6—C191.548 (5)C47—C481.365 (9)
C7—C81.394 (5)C47—H470.9500
C7—C121.397 (5)C48—C491.389 (9)
C8—C91.389 (5)C48—H480.9500
C8—H80.9500C49—C501.385 (9)
C9—C101.385 (6)C49—H490.9500
C9—H90.9500C50—H500.9500
C10—C111.379 (6)C51—H51A0.9800
C10—H100.9500C51—H51B0.9800
C11—C121.403 (5)C51—H51C0.9800
C11—H110.9500C52—C531.3900
C12—H120.9500C52—C571.3900
C13—C141.394 (5)C52—C581.496 (8)
C13—C181.397 (5)C53—C541.3900
C14—C151.402 (6)C53—H530.9500
C14—H140.9500C54—C551.3900
C15—C161.378 (6)C54—H540.9500
C15—H150.9500C55—C561.3900
C16—C171.376 (6)C55—H550.9500
C16—H160.9500C56—C571.3900
C17—C181.389 (6)C56—H560.9500
C17—H170.9500C57—H570.9500
C18—H180.9500C58—H58A0.9800
C19—C201.393 (6)C58—H58B0.9800
C19—C241.397 (5)C58—H58C0.9800
C20—C211.388 (6)C59—C601.3900
C20—H200.9500C59—C641.3900
C21—C221.389 (7)C59—C651.489 (9)
C21—H210.9500C60—C611.3900
C22—C231.379 (6)C60—H600.9500
C22—H220.9500C61—C621.3900
C23—C241.400 (5)C61—H610.9500
C23—H230.9500C62—C631.3900
C24—H240.9500C62—H620.9500
O4—C251.260 (4)C63—C641.3900
O5—C251.271 (4)C63—H630.9500
C25—C261.563 (5)C64—H640.9500
C26—C331.522 (5)C65—H65A0.9800
C26—C391.550 (5)C65—H65B0.9800
C26—C271.557 (5)C65—H65C0.9800
O1—La1—O5i82.41 (10)C10—C9—H9120.2
O1—La1—O4139.15 (10)C8—C9—H9120.2
O5i—La1—O4135.39 (9)C11—C10—C9119.8 (4)
O1—La1—O3i147.59 (10)C11—C10—H10120.1
O5i—La1—O3i71.61 (9)C9—C10—H10120.1
O4—La1—O3i72.32 (9)C10—C11—C12120.6 (4)
O1—La1—O3121.24 (10)C10—C11—H11119.7
O5i—La1—O371.46 (9)C12—C11—H11119.7
O4—La1—O371.58 (9)C7—C12—C11120.3 (4)
O3i—La1—O368.70 (10)C7—C12—H12119.8
O1—La1—O278.88 (10)C11—C12—H12119.8
O5i—La1—O291.47 (10)C14—C13—C18118.4 (4)
O4—La1—O284.39 (9)C14—C13—C6118.1 (4)
O3i—La1—O2119.83 (8)C18—C13—C6123.5 (3)
O3—La1—O251.29 (8)C13—C14—C15120.0 (4)
O1—La1—C5101.05 (11)C13—C14—H14120.0
O5i—La1—C582.20 (10)C15—C14—H14120.0
O4—La1—C575.29 (10)C16—C15—C14120.6 (4)
O3i—La1—C594.40 (9)C16—C15—H15119.7
O3—La1—C525.94 (9)C14—C15—H15119.7
O2—La1—C525.44 (9)C17—C16—C15119.7 (4)
O1—La1—C264.73 (11)C17—C16—H16120.1
O5i—La1—C2144.59 (10)C15—C16—H16120.1
O4—La1—C274.60 (10)C16—C17—C18120.3 (4)
O3i—La1—C2143.78 (10)C16—C17—H17119.9
O3—La1—C2113.77 (10)C18—C17—H17119.9
O2—La1—C270.40 (10)C17—C18—C13120.9 (4)
C5—La1—C291.12 (11)C17—C18—H18119.5
O1—La1—C11i67.47 (11)C13—C18—H18119.5
O5i—La1—C11i89.35 (11)C20—C19—C24118.4 (4)
O4—La1—C11i117.69 (10)C20—C19—C6120.8 (3)
O3i—La1—C11i92.66 (9)C24—C19—C6120.7 (4)
O3—La1—C11i156.40 (10)C21—C20—C19120.9 (4)
O2—La1—C11i145.92 (9)C21—C20—H20119.5
C5—La1—C11i166.69 (10)C19—C20—H20119.5
C2—La1—C11i89.83 (11)C20—C21—C22120.6 (4)
O1—La1—C10i73.06 (11)C20—C21—H21119.7
O5i—La1—C10i114.19 (11)C22—C21—H21119.7
O4—La1—C10i97.09 (11)C23—C22—C21119.0 (4)
O3i—La1—C10i99.91 (9)C23—C22—H22120.5
O3—La1—C10i165.67 (10)C21—C22—H22120.5
O2—La1—C10i138.28 (9)C22—C23—C24120.9 (4)
C5—La1—C10i160.95 (11)C22—C23—H23119.6
C2—La1—C10i69.92 (11)C24—C23—H23119.6
C11i—La1—C10i24.84 (11)C19—C24—C23120.2 (4)
O1—La1—C12i86.54 (10)C19—C24—H24119.9
O5i—La1—C12i75.20 (10)C23—C24—H24119.9
O4—La1—C12i114.12 (10)C25—O4—La1139.1 (2)
O3i—La1—C12i68.61 (9)C25—O5—La1i141.2 (2)
O3—La1—C12i132.01 (9)O4—C25—O5124.1 (3)
O2—La1—C12i161.48 (10)O4—C25—C26119.6 (3)
C5—La1—C12i155.02 (11)O5—C25—C26116.2 (3)
C2—La1—C12i113.49 (11)C33—C26—C39109.6 (3)
C11i—La1—C12i25.16 (10)C33—C26—C27111.5 (3)
C10i—La1—C12i44.00 (11)C39—C26—C27109.9 (3)
O1—La1—C9i96.80 (11)C33—C26—C25109.0 (3)
O5i—La1—C9i125.80 (10)C39—C26—C25113.0 (3)
O4—La1—C9i74.39 (10)C27—C26—C25103.8 (3)
O3i—La1—C9i83.65 (9)C32—C27—C28117.8 (4)
O3—La1—C9i141.16 (9)C32—C27—C26122.1 (3)
O2—La1—C9i141.89 (10)C28—C27—C26120.0 (3)
C5—La1—C9i148.71 (11)C29—C28—C27120.4 (4)
C2—La1—C9i73.57 (10)C29—C28—H28119.8
C11i—La1—C9i43.54 (11)C27—C28—H28119.8
C10i—La1—C9i24.77 (11)C30—C29—C28121.3 (4)
C12i—La1—C9i50.79 (11)C30—C29—H29119.3
O1—La1—C8i115.26 (11)C28—C29—H29119.3
O5i—La1—C8i109.86 (10)C29—C30—C31118.4 (4)
O4—La1—C8i71.71 (10)C29—C30—H30120.8
O3i—La1—C8i59.29 (9)C31—C30—H30120.8
O3—La1—C8i122.88 (9)C30—C31—C32121.2 (4)
O2—La1—C8i155.27 (10)C30—C31—H31119.4
C5—La1—C8i142.66 (10)C32—C31—H31119.4
C2—La1—C8i96.47 (10)C27—C32—C31120.8 (4)
C11i—La1—C8i50.24 (11)C27—C32—H32119.6
C10i—La1—C8i43.27 (10)C31—C32—H32119.6
C12i—La1—C8i42.94 (10)C34—C33—C38118.4 (4)
C9i—La1—C8i24.55 (9)C34—C33—C26123.6 (4)
O1—La1—C7i110.09 (10)C38—C33—C26118.0 (3)
O5i—La1—C7i85.71 (10)C33—C34—C35120.1 (4)
O4—La1—C7i90.93 (9)C33—C34—H34119.9
O3i—La1—C7i50.27 (9)C35—C34—H34119.9
O3—La1—C7i118.89 (8)C36—C35—C34120.7 (4)
O2—La1—C7i170.08 (9)C36—C35—H35119.6
C5—La1—C7i144.67 (10)C34—C35—H35119.6
C2—La1—C7i116.78 (10)C35—C36—C37119.5 (4)
C11i—La1—C7i43.70 (10)C35—C36—H36120.2
C10i—La1—C7i50.94 (10)C37—C36—H36120.2
C12i—La1—C7i24.56 (9)C36—C37—C38119.8 (5)
C9i—La1—C7i43.50 (10)C36—C37—H37120.1
C8i—La1—C7i24.35 (9)C38—C37—H37120.1
O1—La1—Al129.38 (8)C37—C38—C33121.3 (4)
O5i—La1—Al1110.37 (7)C37—C38—H38119.3
O4—La1—Al1109.78 (6)C33—C38—H38119.3
O3i—La1—Al1169.94 (6)C40—C39—C44117.2 (3)
O3—La1—Al1121.36 (6)C40—C39—C26121.8 (3)
O2—La1—Al170.20 (6)C44—C39—C26120.8 (3)
C5—La1—Al195.64 (8)C41—C40—C39121.1 (4)
C2—La1—Al135.46 (8)C41—C40—H40119.5
C11i—La1—Al177.62 (7)C39—C40—H40119.5
C10i—La1—Al170.17 (7)C42—C41—C40120.9 (4)
C12i—La1—Al1102.03 (7)C42—C41—H41119.6
C9i—La1—Al187.46 (7)C40—C41—H41119.6
C8i—La1—Al1111.50 (7)C43—C42—C41118.6 (4)
C7i—La1—Al1119.68 (7)C43—C42—H42120.7
O1—La1—La1i145.25 (8)C41—C42—H42120.7
O5i—La1—La1i67.44 (6)C42—C43—C44120.8 (4)
O4—La1—La1i67.95 (6)C42—C43—H43119.6
O3i—La1—La1i35.07 (6)C44—C43—H43119.6
O3—La1—La1i33.63 (6)C43—C44—C39121.4 (4)
O2—La1—La1i84.84 (6)C43—C44—H44119.3
C5—La1—La1i59.40 (7)C39—C44—H44119.3
C2—La1—La1i136.72 (8)C50—C45—C46118.9 (6)
C11i—La1—La1i126.35 (7)C50—C45—C51120.2 (6)
C10i—La1—La1i134.41 (7)C46—C45—C51120.9 (6)
C12i—La1—La1i101.30 (7)C47—C46—C45120.8 (6)
C9i—La1—La1i114.49 (7)C47—C46—H46119.6
C8i—La1—La1i91.79 (7)C45—C46—H46119.6
C7i—La1—La1i85.30 (6)C48—C47—C46120.3 (7)
Al1—La1—La1i154.99 (2)C48—C47—H47119.8
O1—Al1—C4111.77 (18)C46—C47—H47119.8
O1—Al1—C3108.32 (18)C47—C48—C49119.4 (6)
C4—Al1—C3113.2 (2)C47—C48—H48120.3
O1—Al1—C2100.03 (17)C49—C48—H48120.3
C4—Al1—C2110.7 (2)C50—C49—C48120.4 (6)
C3—Al1—C2112.0 (2)C50—C49—H49119.8
O1—Al1—La139.05 (10)C48—C49—H49119.8
C4—Al1—La1120.09 (15)C45—C50—C49120.2 (6)
C3—Al1—La1124.87 (14)C45—C50—H50119.9
C2—Al1—La161.19 (13)C49—C50—H50119.9
C1—O1—Al1118.0 (3)C45—C51—H51A109.5
C1—O1—La1130.3 (3)C45—C51—H51B109.5
Al1—O1—La1111.57 (15)H51A—C51—H51B109.5
O1—C1—H1A109.5C45—C51—H51C109.5
O1—C1—H1B109.5H51A—C51—H51C109.5
H1A—C1—H1B109.5H51B—C51—H51C109.5
O1—C1—H1C109.5C53—C52—C57120.0
H1A—C1—H1C109.5C53—C52—C58114.2 (15)
H1B—C1—H1C109.5C57—C52—C58125.7 (15)
Al1—C2—La183.34 (15)C54—C53—C52120.0
Al1—C2—H2A109.5C54—C53—H53120.0
La1—C2—H2A166.5C52—C53—H53120.0
Al1—C2—H2B109.5C55—C54—C53120.0
La1—C2—H2B60.7C55—C54—H54120.0
H2A—C2—H2B109.5C53—C54—H54120.0
Al1—C2—H2C109.5C54—C55—C56120.0
La1—C2—H2C68.5C54—C55—H55120.0
H2A—C2—H2C109.5C56—C55—H55120.0
H2B—C2—H2C109.5C55—C56—C57120.0
Al1—C3—H3A109.5C55—C56—H56120.0
Al1—C3—H3B109.5C57—C56—H56120.0
H3A—C3—H3B109.5C56—C57—C52120.0
Al1—C3—H3C109.5C56—C57—H57120.0
H3A—C3—H3C109.5C52—C57—H57120.0
H3B—C3—H3C109.5C52—C58—H58A109.5
Al1—C4—H4A109.5C52—C58—H58B109.5
Al1—C4—H4B109.5H58A—C58—H58B109.5
H4A—C4—H4B109.5C52—C58—H58C109.5
Al1—C4—H4C109.5H58A—C58—H58C109.5
H4A—C4—H4C109.5H58B—C58—H58C109.5
H4B—C4—H4C109.5C60—C59—C64120.0
C5—O2—La195.0 (2)C60—C59—C65124.4 (10)
C5—O3—La1i152.7 (2)C64—C59—C65113.0 (12)
C5—O3—La194.8 (2)C61—C60—C59120.0
La1i—O3—La1111.30 (9)C61—C60—H60120.0
O2—C5—O3118.4 (3)C59—C60—H60120.0
O2—C5—C6123.7 (3)C60—C61—C62120.0
O3—C5—C6117.8 (3)C60—C61—H61120.0
O2—C5—La159.51 (19)C62—C61—H61120.0
O3—C5—La159.24 (19)C63—C62—C61120.0
C6—C5—La1172.3 (2)C63—C62—H62120.0
C7—C6—C13111.8 (3)C61—C62—H62120.0
C7—C6—C5104.6 (3)C62—C63—C64120.0
C13—C6—C5110.0 (3)C62—C63—H63120.0
C7—C6—C19112.2 (3)C64—C63—H63120.0
C13—C6—C19106.7 (3)C63—C64—C59120.0
C5—C6—C19111.6 (3)C63—C64—H64120.0
C8—C7—C12117.8 (4)C59—C64—H64120.0
C8—C7—C6119.4 (3)C59—C65—H65A109.5
C12—C7—C6122.2 (4)C59—C65—H65B109.5
C9—C8—C7122.0 (4)H65A—C65—H65B109.5
C9—C8—H8119.0C59—C65—H65C109.5
C7—C8—H8119.0H65A—C65—H65C109.5
C10—C9—C8119.5 (4)H65B—C65—H65C109.5
C4—Al1—O1—C165.1 (4)O5—C25—C26—C39142.5 (3)
C3—Al1—O1—C160.3 (4)O4—C25—C26—C2777.6 (4)
C2—Al1—O1—C1177.7 (4)O5—C25—C26—C2798.5 (4)
La1—Al1—O1—C1176.5 (4)C33—C26—C27—C32108.6 (4)
C4—Al1—O1—La1111.4 (2)C39—C26—C27—C3213.0 (5)
C3—Al1—O1—La1123.2 (2)C25—C26—C27—C32134.2 (4)
C2—Al1—O1—La15.8 (2)C33—C26—C27—C2868.4 (4)
La1—O2—C5—O36.3 (4)C39—C26—C27—C28170.0 (3)
La1—O2—C5—C6171.8 (3)C25—C26—C27—C2848.8 (4)
La1i—O3—C5—O2169.6 (3)C32—C27—C28—C291.8 (6)
La1—O3—C5—O26.4 (4)C26—C27—C28—C29179.0 (4)
La1i—O3—C5—C68.6 (7)C27—C28—C29—C301.3 (6)
La1—O3—C5—C6171.9 (3)C28—C29—C30—C310.1 (7)
La1i—O3—C5—La1163.3 (5)C29—C30—C31—C320.5 (7)
O2—C5—C6—C7170.6 (4)C28—C27—C32—C311.2 (6)
O3—C5—C6—C711.2 (4)C26—C27—C32—C31178.3 (4)
O2—C5—C6—C1369.2 (5)C30—C31—C32—C270.1 (7)
O3—C5—C6—C13109.0 (4)C39—C26—C33—C34112.0 (4)
O2—C5—C6—C1949.1 (5)C27—C26—C33—C349.8 (5)
O3—C5—C6—C19132.8 (3)C25—C26—C33—C34123.8 (4)
C13—C6—C7—C8170.5 (3)C39—C26—C33—C3865.4 (4)
C5—C6—C7—C870.4 (4)C27—C26—C33—C38172.8 (3)
C19—C6—C7—C850.7 (5)C25—C26—C33—C3858.7 (4)
C13—C6—C7—C1218.2 (5)C38—C33—C34—C351.0 (6)
C5—C6—C7—C12100.9 (4)C26—C33—C34—C35178.4 (4)
C19—C6—C7—C12138.0 (4)C33—C34—C35—C360.1 (7)
C12—C7—C8—C91.7 (6)C34—C35—C36—C370.9 (7)
C6—C7—C8—C9173.3 (3)C35—C36—C37—C381.0 (7)
C7—C8—C9—C100.0 (6)C36—C37—C38—C330.1 (6)
C8—C9—C10—C111.0 (6)C34—C33—C38—C370.9 (6)
C9—C10—C11—C120.2 (6)C26—C33—C38—C37178.5 (4)
C8—C7—C12—C112.4 (6)C33—C26—C39—C40169.7 (4)
C6—C7—C12—C11173.8 (3)C27—C26—C39—C4067.6 (4)
C10—C11—C12—C71.5 (6)C25—C26—C39—C4047.9 (5)
C7—C6—C13—C1458.2 (4)C33—C26—C39—C4415.3 (5)
C5—C6—C13—C14173.9 (3)C27—C26—C39—C44107.4 (4)
C19—C6—C13—C1464.8 (4)C25—C26—C39—C44137.1 (4)
C7—C6—C13—C18123.4 (4)C44—C39—C40—C413.2 (6)
C5—C6—C13—C187.6 (5)C26—C39—C40—C41178.4 (4)
C19—C6—C13—C18113.7 (4)C39—C40—C41—C422.6 (6)
C18—C13—C14—C151.6 (6)C40—C41—C42—C430.6 (6)
C6—C13—C14—C15179.8 (4)C41—C42—C43—C440.6 (7)
C13—C14—C15—C161.6 (7)C42—C43—C44—C390.2 (7)
C14—C15—C16—C170.8 (7)C40—C39—C44—C432.1 (6)
C15—C16—C17—C180.1 (7)C26—C39—C44—C43177.3 (4)
C16—C17—C18—C130.2 (6)C50—C45—C46—C471.0 (8)
C14—C13—C18—C171.0 (6)C51—C45—C46—C47178.5 (5)
C6—C13—C18—C17179.4 (3)C45—C46—C47—C480.6 (9)
C7—C6—C19—C2024.5 (5)C46—C47—C48—C492.0 (9)
C13—C6—C19—C2098.2 (4)C47—C48—C49—C501.8 (9)
C5—C6—C19—C20141.6 (4)C46—C45—C50—C491.2 (8)
C7—C6—C19—C24160.1 (3)C51—C45—C50—C49178.3 (5)
C13—C6—C19—C2477.2 (4)C48—C49—C50—C450.2 (8)
C5—C6—C19—C2443.1 (5)C57—C52—C53—C540.0
C24—C19—C20—C210.7 (6)C58—C52—C53—C54178.4 (16)
C6—C19—C20—C21176.1 (4)C52—C53—C54—C550.0
C19—C20—C21—C221.5 (7)C53—C54—C55—C560.0
C20—C21—C22—C232.7 (7)C54—C55—C56—C570.0
C21—C22—C23—C241.6 (7)C55—C56—C57—C520.0
C20—C19—C24—C231.7 (6)C53—C52—C57—C560.0
C6—C19—C24—C23177.2 (3)C58—C52—C57—C56178.3 (18)
C22—C23—C24—C190.5 (6)C64—C59—C60—C610.0
La1—O4—C25—O57.1 (6)C65—C59—C60—C61160.7 (16)
La1—O4—C25—C26168.7 (2)C59—C60—C61—C620.0
La1i—O5—C25—O46.7 (7)C60—C61—C62—C630.0
La1i—O5—C25—C26169.3 (3)C61—C62—C63—C640.0
O4—C25—C26—C33163.5 (3)C62—C63—C64—C590.0
O5—C25—C26—C3320.4 (5)C60—C59—C64—C630.0
O4—C25—C26—C3941.4 (5)C65—C59—C64—C63162.8 (13)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C33–C38, C39–C44, C52–C57 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1C······Cg1i0.982.693.425 (6)132
C17—H17······Cg20.952.713.485 (4)139
C21—H21······Cg3ii0.952.933.677 (8)136
C29—H29······Cg40.952.623.415 (4)142
C32—H32······Cg20.952.953.654 (5)132
C44—H44······Cg10.952.883.592 (5)132
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1.
 

Funding information

Funding for this research was provided by: the Russian Science Foundation (grant No. 17-13-01357) and the TIPS RAS State Plan.

References

First citationAnwander, R. (2002). In Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, pp. 974–1013. Weinheim: Wiley-VCH.  Google Scholar
First citationBiagini, P., Lugli, G., Abis, L. & Millini, R. (1994). J. Organomet. Chem. 474, C16–C18.  CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Clark, D. L., Grumbine, S. K., Vincent-Hollis, R. L., Scott, B. L. & Watkin, J. G. (1995). Inorg. Chem. 34, 5468–5476.  CrossRef Google Scholar
First citationDeacon, G. B., Feng, T., Forsyth, C. M., Gitlits, A., Hockless, D. C. R., Shen, Q., Skelton, B. W. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 961–966.  CrossRef Google Scholar
First citationEvans, W. J., Boyle, T. J. & Ziller, J. W. (1993a). J. Am. Chem. Soc. 115, 5084–5092.  CrossRef Google Scholar
First citationEvans, W. J., Boyle, T. J. & Ziller, J. W. (1993b). J. Organomet. Chem. 462, 141–148.  CrossRef Google Scholar
First citationEvans, W. J., Greci, M. A. & Ziller, J. W. (1998). Inorg. Chem. 37, 5221–5226.  Web of Science CrossRef CAS Google Scholar
First citationFilatov, A. S., Gifford, S. N., Kumar, D. K. & Petrukhina, M. A. (2009). Acta Cryst. E65, m286–m287.  CrossRef IUCr Journals Google Scholar
First citationFilatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct. 890, 116–122.  Web of Science CrossRef CAS Google Scholar
First citationFischbach, A., Herdtweck, E. & Anwander, R. (2006b). Inorg. Chim. Acta, 359, 4855–4864.  CrossRef Google Scholar
First citationFischbach, A., Herdtweck, E., Anwander, R., Eickerling, G. & Scherer, W. (2003). Organometallics, 22, 499–509.  CrossRef Google Scholar
First citationFischbach, A., Klimpel, M. G., Widenmeyer, M., Herdtweck, E., Scherer, W. & Anwander, R. (2004). Angew. Chem. Int. Ed. 43, 2234–2239.  CrossRef Google Scholar
First citationFischbach, A., Meermann, C., Eickerling, G., Scherer, W. & Anwander, R. (2006c). Macromolecules, 39, 6811–6816.  CrossRef Google Scholar
First citationFischbach, A., Perdih, F., Herdtweck, E. & Anwander, R. (2006a). Organometallics, 25, 1626–1642.  CrossRef Google Scholar
First citationFriebe, L., Nuyken, O. & Obrecht, W. (2006). Adv. Polym. Sci. 204, 1–154.  Web of Science CrossRef CAS Google Scholar
First citationGerber, L. C. H., Le Roux, E., Törnroos, K. W. & Anwander, R. (2008). Chem. Eur. J. 14, 9555–9564.  CrossRef PubMed Google Scholar
First citationGiesbrecht, G. R., Gordon, J. C., Brady, J. T., Clark, D. L., Keogh, D. W., Michalczyk, R., Scott, B. L. & Watkin, J. G. (2002). Eur. J. Inorg. Chem. pp. 723–731.  CrossRef Google Scholar
First citationGiesbrecht, G. R., Gordon, J. C., Clark, D. L., Hay, P. J., Scott, B. L. & Tait, C. D. (2004). J. Am. Chem. Soc. 126, 6387–6401.  CrossRef PubMed Google Scholar
First citationGordon, J. C., Giesbrecht, G. R., Brady, J. T., Clark, D. L., Keogh, D. W., Scott, B. L. & Watkin, J. G. (2002). Organometallics, 21, 127–131.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHamidi, S., Jende, L. N., Dietrich, H. M., Maichle-Mössmer, C., Törnroos, K. W., Deacon, G. B., Junk, P. C. & Anwander, R. (2013). Organometallics, 32, 1209–1223.  CrossRef Google Scholar
First citationKorobkov, I. & Gambarotta, S. (2009). Organometallics, 28, 4009–4019.  CrossRef Google Scholar
First citationLiu, S., Wei, P., Wang, Y., Santillan-Jimenez, E., Bakus, R. C. II & Atwood, D. A. (2005). Main Group Chem. 4, 3–10.  CrossRef Google Scholar
First citationMinyaev, M. E., Vinogradov, A. A., Roitershtein, D. M., Lyssenko, K. A., Ananyev, I. V. & Nifant'ev, I. E. (2016). Acta Cryst. C72, 578–584.  CrossRef IUCr Journals Google Scholar
First citationOcchipinti, G., Meermann, C., Dietrich, H. M., Litlabø, R., Auras, F., Törnroos, K. W., Maichle-Mössmer, C., Jensen, V. R. & Anwander, R. (2011). J. Am. Chem. Soc. 133, 6323–6337.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRoitershtein, D. M., Vinogradov, A. A., Lyssenko, K. A. & Nifant'ev, I. E. (2017). Inorg. Chem. Commun. 84, 225–228.  CrossRef Google Scholar
First citationRoitershtein, D. M., Vinogradov, A. A., Vinogradov, A. A., Lyssenko, K. A., Nelyubina, Y. V., Anan'ev, I. V., Nifant'ev, I. E., Yakovlev, V. A. & Kostitsyna, N. N. (2013). Organometallics, 32, 1272–-1286.  CrossRef Google Scholar
First citationSharples, J. W., Zheng, Y.-Z., Tuna, F., McInnes, E. J. L. & Collison, D. (2011). Chem. Commun. 47, 7650–7652.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSommerfeldt, H.-M., Meermann, C., Törnroos, K. W. & Anwander, R. (2008). Inorg. Chem. 47, 4696–4705.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZimmermann, M., Frøystein, N. Å., Fischbach, A., Sirsch, P., Dietrich, H. M., Törnroos, K. W., Herdtweck, E. & Anwander, R. (2007). Chem. Eur. J. 13, 8784–8800.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds