research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structures of the hydrate and dihydrate forms of the DNA-binding radioprotector methyl­pro­amine

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and BIO-21 Institute, University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
*Correspondence e-mail: whitejm@unimelb.edu.au

Edited by J. Simpson, University of Otago, New Zealand (Received 12 November 2018; accepted 26 November 2018; online 30 November 2018)

Methyl pro­amine {N,N,3-trimethyl-4-[6-(4-methyl­piperazin-1-yl)-1H,3′H-[2,5′-bibenzo[d]imidazol]-2′-yl]aniline}, C28H35N7O2, crystallized as both a dihydrate, C28H31N7·2H2O, and monohydrate, C28H31N7·H2O, form from water in the presence of β-cyclo­dextrin, in the P21/c and P21/n space groups, respectively. The two structures adopt different conformations and tautomeric forms as a result of the differing crystal packing as dictated by hydrogen-bonding inter­actions. The dihydrate crystallizes as a three-dimensional hydrogen-bonded network, while the monohydrate crystallizes as a two-dimensional hydrogen-bonded network.

1. Chemical context

Methyl­pro­amine (1) is a bibenzimidazole derivative which binds in the minor groove of DNA in adenine-thymine-rich regions of four or more consecutive AT pairs (Martin et al., 2004[Martin, R. F., Broadhurst, S., Reum, M. E., Squire, C. J., Clark, G. R., Lobachevsky, P. N., White, J. M., Clark, C., Sy, D., Spotheim-Maurizot, M. & Kelly, D. P. (2004). Cancer Res. 64, 1067-1070.]) and is related to the Hoechst family of DNA-binding bibenzimidazoles (Pjura et al., 1987[Pjura, P. E., Grzeskowiak, G. & Dickerson, R. E. (1987). J. Mol. Biol. 197, 257-271.]). Although the structure of methyl­pro­amine with the DNA dodeca­mer d(CGCGAATTCGCG)2 has been determined and reported by us, the structure of the free ligand has not yet been published as it is very difficult to obtain good quality crystals for these types of compounds. In order to examine the conformational and tautomeric differences between the uncomplexed ligand and that which is bound to DNA, the structures of both the dihydrate (1)·2H2O and the monohydrate (1)·H2O, which were grown from water in the presence of β-cyclo­dextrin, are reported.

[Scheme 1]

2. Structural commentary

Displacement ellipsoid plots for (1)·2H2O and (1)·H2O are presented in Figs. 1[link] and 2[link], respectively. The two structures represent two different conformations of (1); (1)·2H2O exists in an extended conformation as determined by the C9—C10—C14—N4 torsion angle which is 173.54 (14)° with an N1⋯N6 distance of 17.251 (2) Å while (1)·H2O adopts a crescent shape with a C9—C10—C14—N4 torsion angle of −19.8 (2)° and an N1⋯N6 distance of 16.859 (2) Å. In addition, they represent different tautomeric forms of (1); (1)·2H2O can be described as the N2, N4 tautomer whereas (1)·H2O exists in the crystal as the N2, N5 tautomer as defined by the numbering scheme used in Figs. 1[link] and 2[link]. The tautomeric form adopted in each case is implied not only by the N—H hydrogen atoms, which were located in difference maps and refined satisfactorily without restraint, but also by the C—N bond distances of the two benzimidazole moieties within the structures (Tables 1[link] and 2[link]). The tautomeric form assigned in each case is also supported by the inter­molecular hydrogen bonds that these N—H groups participate in. It is the inter­molecular hydrogen-bonded inter­actions involving these N—H groups which no doubt play a major role in which tautomer is adopted in each case in the solid state.

Table 1
Selected geometric parameters (Å, °) for (1)·2H2O[link]

C1—C7 1.4698 (18) C10—C14 1.4701 (19)
C4—N1 1.3923 (18) C14—N4 1.3708 (18)
C7—N2 1.3695 (17) C14—N5 1.3215 (18)
C7—N3 1.3325 (18) C17—N6 1.4321 (19)
       
C4—N1—C27 118.18 (13) C17—N6—C24 114.80 (13)
C4—N1—C26 118.60 (13) C17—N6—C21 113.32 (12)
C27—N1—C26 112.78 (13) C24—N6—C21 109.48 (12)
       
C2—C1—C7—N3 −30.0 (2) C9—C10—C14—N4 173.54 (14)
C6—C1—C7—N3 147.26 (15) C3—C4—N1—C27 1.2 (2)
C2—C1—C7—N2 155.44 (14) C5—C4—N1—C26 40.9 (2)
C6—C1—C7—N2 −27.3 (2) C16—C17—N6—C24 −170.61 (14)
C9—C10—C14—N5 −5.7 (2) C16—C17—N6—C21 62.58 (19)

Table 2
Selected geometric parameters (Å, °) for (1)·H2O[link]

C1—C7 1.468 (2) C10—C14 1.464 (2)
C4—N1 1.374 (2) C14—N4 1.3286 (19)
C7—N2 1.3344 (19) C14—N5 1.3691 (19)
C7—N3 1.3687 (19) C17—N6 1.4190 (19)
       
C4—N1—C27 120.55 (15) C17—N6—C21 117.43 (13)
C4—N1—C26 119.35 (15) C17—N6—C24 115.25 (13)
C27—N1—C26 119.08 (14) C21—N6—C24 109.98 (13)
       
C2—C1—C7—N2 −23.6 (2) C9—C10—C14—N5 161.50 (14)
C2—C1—C7—N3 154.23 (14) C16—C17—N6—C21 3.4 (2)
C9—C10—C14—N4 −19.8 (2) C18—C17—N6—C24 −48.47 (19)
[Figure 1]
Figure 1
Displacement ellipsoid plot of the asymmetric unit for dihydrate (1)·2H2O.
[Figure 2]
Figure 2
Displacement ellipsoid plot of the asymmetric unit for hydrate (1)·H2O.

In both structures the ortho-methyl substituent in ring A lies on the opposite side of the structure to the N—H hydrogen atom of benzimidazole ring B, this is very likely for steric reasons; the dihedral angles between the two rings as defined by C2—C1—C7—N3 in (1)·2H2O and by C2—C1—C7—N2 in (1)·H2O, which are −30.0 (2) and −23.6 (2)°, respectively, reflect a balance between electronic effects which prefer coplanarity between the two aromatic rings and steric effects whereby the ortho-methyl group would be unreasonably close to the benzimidazole nitro­gen of ring B. The dihedral angles between the two benzimidazole rings (rings B and C) are −5.7 (2) and −19.8 (2)°, respectively.

The geometry of the para-di­methyl­amino substituent on ring A differs between the two structures; the mean C—N1—C angles are 116.4 and 119.7°, respectively, for (1)·2H2O and (1)·H2O, suggesting that the former is more pyramidalized, consistent with this are the significant differences in the C4—N1 bond distances which are 1.3923 (18) and 1.374 (2) Å for (1)·2H2O and (1)·H2O, respectively.

It is inter­esting to compare the conformation of (1) in these two structures with that adopted by (1) when bound in the minor groove of the palindromic DNA dodeca­mer [d(CGCGAATTCGCG)2; Martin et al., 2004[Martin, R. F., Broadhurst, S., Reum, M. E., Squire, C. J., Clark, G. R., Lobachevsky, P. N., White, J. M., Clark, C., Sy, D., Spotheim-Maurizot, M. & Kelly, D. P. (2004). Cancer Res. 64, 1067-1070.]]. The ligand must adopt the 2-H, 4-H tautomeric form with a crescent shape similar to that adopted by (1)·H2O so that it can direct the necessary N—H hydrogen-bond donors into the minor groove, in addition the ortho-methyl substituent on ring A must be facing away from the crescent. A superposition of the two structures with that of (1) bound to DNA is shown in Fig. 3[link].

[Figure 3]
Figure 3
Overlay for the structures of A; (1)·2H2O and B; (1)·H2O with DNA-bound (1). In the LH-structure the DNA-bond ligand is indicated by capped sticks, while in the RH structure it is ball and stick.

3. Supra­molecular features

The structure of the dihydrate (1)·2H2O is characterized by the presence of a centrosymmetric water tetra­mer which provides a template around which the structure is built. This tetra­mer appears to be a common motif formed in crystalline hydrates with over 3689 examples of structures containing this motif in the Cambridge Structural Database [Version 1.23 update 5.39 (August 2018); Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]]. The water tetra­mer is bridged across opposite diagonals by two mol­ecules of (1) by a combination of N—H⋯O and O—H⋯N hydrogen bonds involving the two benzimidazole groups (Fig. 4[link] and Table 3[link]), the remaining O—H hydrogens form O—H⋯N hydrogen bonds to two further centrosymmetrically related mol­ecules of (1) via the tertiary piperazine nitro­gen N7 (Fig. 5[link] and Table 3[link]). This cluster of four mol­ecules of (1) and the water tetra­mer is then extensively cross-linked by N—H⋯N hydrogen bonds between the remaining benzimidazole groups (Figs. 6[link] and 7[link] and Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (1)·2H2O[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23B⋯N2i 0.99 2.65 3.542 (2) 149
O1—H1A⋯O2ii 0.91 (3) 1.98 (3) 2.8665 (17) 164 (2)
O1—H1B⋯N7iii 0.94 (3) 1.91 (3) 2.8482 (18) 170 (3)
N2—H2⋯O2ii 0.856 (18) 1.944 (18) 2.7797 (15) 165.0 (17)
O2—H2A⋯N5 0.86 (2) 1.91 (2) 2.7685 (16) 175 (2)
O2—H2B⋯O1 0.90 (3) 1.86 (3) 2.7537 (18) 168 (3)
N4—H4A⋯N3iv 0.870 (19) 2.072 (19) 2.9411 (16) 176.7 (17)
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
The water tetra­mer with diagonally hydrogen-bonded mol­ecules of (1).
[Figure 5]
Figure 5
The water tetra­mer with additional hydrogen-bonded inter­actions with (1).
[Figure 6]
Figure 6
The cross-linking N—H⋯N hydrogen bonds between benzimidazole moieties mol­ecules of (1).
[Figure 7]
Figure 7
Three-dimensional hydrogen-bonded network in (1)·2H2O.

The structure of the hydrate (1)·H2O is also characterized by extensive hydrogen-bonding inter­actions, both directly between the benzimidazole moieties of (1), and via the water mol­ecule. The water mol­ecule participates in two O—H⋯N hydrogen bonds as donor and one N—H⋯O hydrogen bond as acceptor to form a cluster of three mol­ecules of (1) (Fig. 8[link] and Table 4[link]). This cluster is then further hydrogen bonded via N—H⋯N inter­actions between the remaining benzimidazole-based hydrogen-bond donors and acceptors (Fig. 9[link] and Table 4[link]), to form two-dimensional hydrogen-bonded sheets lying in the (101) plane (Fig. 10[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (1)·H2O[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N7i 0.93 (4) 1.93 (4) 2.858 (2) 177 (3)
O1—H1B⋯N4ii 0.95 (3) 1.94 (3) 2.8905 (18) 177 (2)
N3—H3A⋯O1 0.93 (2) 1.82 (2) 2.7338 (17) 170 (2)
N5—H5A⋯N2iii 0.89 (2) 2.15 (2) 3.0199 (18) 167.2 (18)
O1—H1A⋯N7i 0.93 (4) 1.93 (4) 2.858 (2) 177 (3)
O1—H1B⋯N4ii 0.95 (3) 1.94 (3) 2.8905 (18) 177 (2)
N3—H3A⋯O1 0.93 (2) 1.82 (2) 2.7338 (17) 170 (2)
N5—H5A⋯N2iii 0.89 (2) 2.15 (2) 3.0199 (18) 167.2 (18)
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 8]
Figure 8
Hydrogen bonding between (1) and the water mol­ecule in (1)·H2O.
[Figure 9]
Figure 9
Direct N—H⋯N hydrogen bonds between benzimidazole moieties of (1)·H2O.
[Figure 10]
Figure 10
Two-dimensional hydrogen-bonded network in (1)·H2O.

4. Database survey

A search of the CSD (version 1.23; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures related to (1) uncovered no hits.

5. Synthesis and crystallization

The synthesis of methyl­pro­amine (1) has been previously reported (Martin et al., 2004[Martin, R. F., Broadhurst, S., Reum, M. E., Squire, C. J., Clark, G. R., Lobachevsky, P. N., White, J. M., Clark, C., Sy, D., Spotheim-Maurizot, M. & Kelly, D. P. (2004). Cancer Res. 64, 1067-1070.]) but previous attempts to obtain crystals of the free ligand of suitable quality for X-ray analysis were not successful. In this study, crystals were serendipidously obtained during an attempt to obtain crystals of (1) complexed to β-cyclo­dextrin. Thus a solution of (1) (6.8mg) in 1 ml of water saturated with β-cyclo­dextrin was left in a vapour diffusion tank with acetone allowed to diffuse into the solution. It is worth noting that (1) has very low solubility in water in the absence of β-cyclo­dextrin. After 12 h, brown plates of (1) as its dihydrate developed, which were then harvested for X-ray analysis. The resulting solution when left to evaporate over a period of several months gave further needle-like crystals in a viscous matrix of β-cyclo­dextrin that were shown to be the monohydrate (1)·H2O.

6. Refinement

Crystal data, data collection and structure refinement details for (1)·2H2O and (1)·H2O are summarized in Table 5[link]. In both structures, carbon-bound H atoms were placed in calculated positions and refined using a riding model, with methyl C—H = 0.96 Å and aromatic C—H = 0.93 Å and Uiso(H) =1.5Ueq(C) for methyl and 1.2Ueq(C) for aromatic C—H. Hydrogen atoms attached to N and O were located in difference maps and allowed to refine with isotropic displacement parameters. In the structure of (1)·H2O there are solvent-accessible voids of 154 Å3 per unit cell; however, there was no significant difference electron density associated with these voids. The largest difference electron density of 0.5 e Å3 was associated with the piperazine group. Application of the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) found eight electrons associated with the voids.

Table 5
Experimental details

  (1)·2H2O (1)·H2O
Crystal data
Chemical formula C28H31N7·2H2O C28H31N7·H2O
Mr 501.63 483.61
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n
Temperature (K) 130 100
a, b, c (Å) 8.7190 (3), 12.0891 (3), 24.6794 (7) 9.8750 (1), 22.6561 (3), 11.7917 (1)
β (°) 90.806 (3) 101.188 (1)
V3) 2601.07 (13) 2588.01 (5)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.67 0.63
Crystal size (mm) 0.41 × 0.19 × 0.04 0.29 × 0.16 × 0.07
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.911, 1.000 0.724, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15892, 5318, 4425 33621, 5468, 4622
Rint 0.033 0.072
(sin θ/λ)max−1) 0.629 0.635
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.03 0.050, 0.144, 1.08
No. of reflections 5318 5468
No. of parameters 362 345
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.24 0.51, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), CrystalMaker (Palmer 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.]), Mercury, (Macrae et al. 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for 1_dihydrate; CrysAlis PRO (Rigaku OD, 2018) for 1_hydrate. Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for 1_dihydrate; CrysAlis PRO (Rigaku OD, 2018) for 1_hydrate. Data reduction: CrysAlis PRO (Rigaku OD, 2015) for 1_dihydrate; CrysAlis PRO (Rigaku OD, 2018) for 1_hydrate. For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b). Molecular graphics: CrystalMaker (Palmer 2014) for 1_dihydrate; Mercury, (Macrae et al. 2008) for 1_hydrate. For both structures, software used to prepare material for publication: publCIF (Westrip, 2010).

N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline dihydrate (1_dihydrate) top
Crystal data top
C28H31N7·2H2OF(000) = 1072
Mr = 501.63Dx = 1.281 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 8.7190 (3) ÅCell parameters from 4889 reflections
b = 12.0891 (3) Åθ = 3.6–75.0°
c = 24.6794 (7) ŵ = 0.67 mm1
β = 90.806 (3)°T = 130 K
V = 2601.07 (13) Å3PLATE, brown
Z = 40.41 × 0.19 × 0.04 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
5318 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source4425 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.2273 pixels mm-1θmax = 75.8°, θmin = 3.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1514
Tmin = 0.911, Tmax = 1.000l = 1630
15892 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.7255P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5318 reflectionsΔρmax = 0.21 e Å3
362 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.69302 (17)0.17764 (11)0.65874 (5)0.0243 (3)
C20.79427 (17)0.11850 (12)0.69258 (6)0.0258 (3)
C30.81413 (17)0.00556 (12)0.68405 (6)0.0277 (3)
H30.8819990.0339440.7074640.033*
C40.73832 (17)0.05232 (12)0.64241 (6)0.0270 (3)
C50.64357 (18)0.00932 (12)0.60713 (6)0.0287 (3)
H50.5944610.0261130.5772270.034*
C60.62141 (17)0.12092 (12)0.61563 (6)0.0268 (3)
H60.5556610.1606740.5915720.032*
C70.65276 (17)0.29433 (11)0.66734 (5)0.0242 (3)
C80.56121 (17)0.46080 (11)0.64655 (5)0.0244 (3)
C90.49737 (18)0.55453 (11)0.62294 (5)0.0257 (3)
H90.4797660.5592150.5849350.031*
C100.46019 (17)0.64149 (11)0.65739 (6)0.0253 (3)
C110.48861 (18)0.63285 (12)0.71361 (6)0.0281 (3)
H110.4644550.6937670.7362650.034*
C120.55047 (19)0.53861 (12)0.73678 (5)0.0287 (3)
H120.5663040.5333600.7748610.034*
C130.58903 (17)0.45133 (11)0.70256 (5)0.0249 (3)
C140.38673 (17)0.74118 (11)0.63489 (5)0.0248 (3)
C150.27354 (17)0.90514 (12)0.63245 (6)0.0253 (3)
C160.21044 (18)1.00914 (12)0.64186 (6)0.0272 (3)
H160.1964341.0357780.6776710.033*
C170.16846 (17)1.07293 (12)0.59683 (6)0.0287 (3)
C180.1847 (2)1.02899 (13)0.54424 (6)0.0330 (3)
H180.1531951.0722710.5139460.040*
C190.2453 (2)0.92474 (13)0.53543 (6)0.0318 (3)
H190.2542610.8963440.4997240.038*
C200.29259 (18)0.86253 (12)0.58001 (6)0.0266 (3)
C210.2269 (2)1.25553 (12)0.63172 (7)0.0340 (3)
H21A0.3140591.2663120.6070040.041*
H21B0.2666201.2199780.6652120.041*
C220.1582 (2)1.36723 (13)0.64567 (7)0.0378 (4)
H22A0.0759151.3572140.6724630.045*
H22B0.2383481.4150390.6621810.045*
C230.0209 (2)1.34796 (14)0.57307 (9)0.0430 (4)
H23A0.0658111.3834310.5403480.052*
H23B0.1042841.3360530.5992650.052*
C240.0488 (2)1.23730 (13)0.55780 (8)0.0390 (4)
H24A0.0309721.1895650.5410290.047*
H24B0.1305601.2489210.5309450.047*
C250.88799 (19)0.17115 (13)0.73735 (6)0.0322 (3)
H25A0.8326060.1655700.7715190.048*
H25B0.9056260.2492220.7287490.048*
H25C0.9867320.1329160.7409060.048*
C260.7615 (2)0.21319 (13)0.58283 (7)0.0370 (4)
H26A0.6863730.1768990.5588700.056*
H26B0.7398730.2926820.5842540.056*
H26C0.8649000.2014210.5688830.056*
C270.8446 (2)0.22581 (13)0.67654 (7)0.0398 (4)
H27A0.9531290.2085600.6710100.060*
H27B0.8282820.3055360.6721960.060*
H27C0.8154220.2033910.7131280.060*
C280.0293 (2)1.52855 (14)0.61022 (9)0.0481 (5)
H28A0.1097691.5770170.6249280.072*
H28B0.0510691.5190720.6372060.072*
H28C0.0150431.5618090.5773470.072*
N10.75161 (17)0.16655 (10)0.63700 (5)0.0326 (3)
N20.60315 (15)0.35974 (10)0.62531 (5)0.0247 (3)
N30.64741 (15)0.34701 (10)0.71470 (5)0.0258 (3)
N40.33347 (15)0.82541 (9)0.66670 (5)0.0252 (3)
N50.36288 (15)0.75965 (10)0.58267 (5)0.0276 (3)
N60.11305 (15)1.18284 (10)0.60580 (5)0.0304 (3)
N70.09523 (16)1.42065 (11)0.59706 (6)0.0340 (3)
O10.71569 (15)0.55306 (10)0.49523 (5)0.0367 (3)
O20.43370 (15)0.65458 (9)0.48653 (4)0.0320 (2)
H1A0.685 (3)0.481 (2)0.4987 (10)0.064 (7)*
H1B0.768 (4)0.559 (3)0.4623 (13)0.088 (10)*
H20.5989 (19)0.3436 (14)0.5915 (7)0.024 (4)*
H2A0.413 (3)0.691 (2)0.5155 (9)0.049 (6)*
H2B0.532 (3)0.631 (2)0.4886 (11)0.079 (9)*
H4A0.339 (2)0.8289 (15)0.7019 (8)0.029 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0348 (7)0.0171 (6)0.0212 (6)0.0013 (5)0.0027 (5)0.0007 (5)
C20.0335 (7)0.0217 (7)0.0222 (6)0.0003 (6)0.0013 (5)0.0005 (5)
C30.0346 (7)0.0222 (7)0.0262 (7)0.0041 (6)0.0018 (6)0.0027 (5)
C40.0350 (7)0.0191 (7)0.0269 (7)0.0020 (5)0.0028 (6)0.0002 (5)
C50.0392 (8)0.0214 (7)0.0256 (7)0.0006 (6)0.0029 (6)0.0029 (5)
C60.0367 (7)0.0211 (7)0.0226 (6)0.0037 (6)0.0010 (5)0.0005 (5)
C70.0345 (7)0.0182 (6)0.0199 (6)0.0004 (5)0.0013 (5)0.0017 (5)
C80.0369 (7)0.0177 (6)0.0186 (6)0.0003 (5)0.0027 (5)0.0012 (5)
C90.0418 (8)0.0188 (6)0.0163 (6)0.0023 (6)0.0001 (5)0.0002 (5)
C100.0382 (7)0.0169 (6)0.0207 (6)0.0011 (5)0.0001 (5)0.0002 (5)
C110.0459 (8)0.0182 (6)0.0201 (7)0.0032 (6)0.0001 (6)0.0030 (5)
C120.0477 (8)0.0227 (7)0.0156 (6)0.0038 (6)0.0000 (6)0.0002 (5)
C130.0390 (7)0.0171 (6)0.0186 (6)0.0010 (5)0.0003 (5)0.0018 (5)
C140.0389 (7)0.0174 (6)0.0181 (6)0.0006 (5)0.0004 (5)0.0016 (5)
C150.0350 (7)0.0190 (6)0.0219 (7)0.0001 (5)0.0005 (5)0.0015 (5)
C160.0379 (7)0.0194 (6)0.0243 (7)0.0014 (6)0.0019 (5)0.0011 (5)
C170.0333 (7)0.0193 (7)0.0335 (8)0.0008 (6)0.0003 (6)0.0014 (6)
C180.0475 (9)0.0232 (7)0.0282 (7)0.0007 (6)0.0072 (6)0.0053 (6)
C190.0495 (9)0.0242 (7)0.0216 (7)0.0020 (6)0.0041 (6)0.0009 (5)
C200.0392 (8)0.0189 (6)0.0217 (7)0.0002 (6)0.0011 (6)0.0002 (5)
C210.0434 (9)0.0213 (7)0.0369 (8)0.0041 (6)0.0054 (7)0.0022 (6)
C220.0536 (10)0.0219 (7)0.0381 (9)0.0051 (7)0.0041 (7)0.0010 (6)
C230.0373 (8)0.0280 (8)0.0634 (12)0.0063 (7)0.0037 (8)0.0076 (8)
C240.0429 (9)0.0237 (7)0.0498 (10)0.0025 (7)0.0131 (7)0.0034 (7)
C250.0402 (8)0.0264 (7)0.0297 (8)0.0028 (6)0.0055 (6)0.0016 (6)
C260.0538 (10)0.0215 (7)0.0358 (8)0.0046 (7)0.0007 (7)0.0045 (6)
C270.0573 (10)0.0217 (7)0.0403 (9)0.0090 (7)0.0062 (8)0.0018 (6)
C280.0591 (11)0.0256 (8)0.0598 (12)0.0146 (8)0.0114 (9)0.0020 (8)
N10.0474 (8)0.0185 (6)0.0318 (7)0.0049 (5)0.0021 (6)0.0010 (5)
N20.0410 (7)0.0173 (5)0.0158 (6)0.0035 (5)0.0012 (5)0.0006 (4)
N30.0420 (7)0.0171 (5)0.0184 (5)0.0017 (5)0.0010 (5)0.0012 (4)
N40.0411 (7)0.0170 (5)0.0175 (6)0.0026 (5)0.0007 (5)0.0003 (4)
N50.0446 (7)0.0185 (6)0.0198 (6)0.0031 (5)0.0013 (5)0.0006 (4)
N60.0355 (6)0.0193 (6)0.0362 (7)0.0027 (5)0.0012 (5)0.0027 (5)
N70.0397 (7)0.0197 (6)0.0429 (8)0.0059 (5)0.0069 (6)0.0029 (5)
O10.0456 (6)0.0286 (6)0.0360 (6)0.0002 (5)0.0037 (5)0.0011 (5)
O20.0499 (7)0.0276 (5)0.0186 (5)0.0081 (5)0.0014 (4)0.0036 (4)
Geometric parameters (Å, º) top
C1—C21.403 (2)C19—H190.9500
C1—C61.405 (2)C20—N51.3877 (19)
C1—C71.4698 (18)C21—N61.466 (2)
C2—C31.393 (2)C21—C221.519 (2)
C2—C251.506 (2)C21—H21A0.9900
C3—C41.401 (2)C21—H21B0.9900
C3—H30.9500C22—N71.463 (2)
C4—N11.3923 (18)C22—H22A0.9900
C4—C51.406 (2)C22—H22B0.9900
C5—C61.379 (2)C23—N71.460 (2)
C5—H50.9500C23—C241.519 (2)
C6—H60.9500C23—H23A0.9900
C7—N21.3695 (17)C23—H23B0.9900
C7—N31.3325 (18)C24—N61.460 (2)
C8—N21.3808 (17)C24—H24A0.9900
C8—C91.3871 (19)C24—H24B0.9900
C8—C131.4047 (19)C25—H25A0.9800
C9—C101.3931 (19)C25—H25B0.9800
C9—H90.9500C25—H25C0.9800
C10—C111.410 (2)C26—N11.455 (2)
C10—C141.4701 (19)C26—H26A0.9800
C11—C121.381 (2)C26—H26B0.9800
C11—H110.9500C26—H26C0.9800
C12—C131.3957 (19)C27—N11.449 (2)
C12—H120.9500C27—H27A0.9800
C13—N31.3910 (18)C27—H27B0.9800
C14—N41.3708 (18)C27—H27C0.9800
C14—N51.3215 (18)C28—N71.464 (2)
C15—N41.3799 (18)C28—H28A0.9800
C15—C161.393 (2)C28—H28B0.9800
C15—C201.4051 (19)C28—H28C0.9800
C16—C171.397 (2)N2—H20.856 (18)
C16—H160.9500N4—H4A0.870 (19)
C17—C181.412 (2)O1—H1A0.91 (3)
C17—N61.4321 (19)O1—H1B0.94 (3)
C18—C191.385 (2)O2—H2A0.86 (2)
C18—H180.9500O2—H2B0.90 (3)
C19—C201.390 (2)
C2—C1—C6118.14 (12)C22—C21—H21B109.3
C2—C1—C7123.56 (13)H21A—C21—H21B108.0
C6—C1—C7118.25 (13)N7—C22—C21110.56 (14)
C3—C2—C1119.22 (13)N7—C22—H22A109.5
C3—C2—C25117.25 (13)C21—C22—H22A109.5
C1—C2—C25123.50 (13)N7—C22—H22B109.5
C2—C3—C4122.83 (13)C21—C22—H22B109.5
C2—C3—H3118.6H22A—C22—H22B108.1
C4—C3—H3118.6N7—C23—C24110.66 (14)
N1—C4—C3121.77 (13)N7—C23—H23A109.5
N1—C4—C5121.03 (13)C24—C23—H23A109.5
C3—C4—C5117.17 (13)N7—C23—H23B109.5
C6—C5—C4120.44 (13)C24—C23—H23B109.5
C6—C5—H5119.8H23A—C23—H23B108.1
C4—C5—H5119.8N6—C24—C23110.25 (15)
C5—C6—C1122.07 (13)N6—C24—H24A109.6
C5—C6—H6119.0C23—C24—H24A109.6
C1—C6—H6119.0N6—C24—H24B109.6
N3—C7—N2111.95 (12)C23—C24—H24B109.6
N3—C7—C1126.63 (12)H24A—C24—H24B108.1
N2—C7—C1121.22 (12)C2—C25—H25A109.5
N2—C8—C9132.08 (13)C2—C25—H25B109.5
N2—C8—C13104.98 (12)H25A—C25—H25B109.5
C9—C8—C13122.86 (12)C2—C25—H25C109.5
C8—C9—C10117.10 (12)H25A—C25—H25C109.5
C8—C9—H9121.4H25B—C25—H25C109.5
C10—C9—H9121.4N1—C26—H26A109.5
C9—C10—C11120.36 (13)N1—C26—H26B109.5
C9—C10—C14119.47 (12)H26A—C26—H26B109.5
C11—C10—C14120.14 (12)N1—C26—H26C109.5
C12—C11—C10122.06 (13)H26A—C26—H26C109.5
C12—C11—H11119.0H26B—C26—H26C109.5
C10—C11—H11119.0N1—C27—H27A109.5
C11—C12—C13117.98 (13)N1—C27—H27B109.5
C11—C12—H12121.0H27A—C27—H27B109.5
C13—C12—H12121.0N1—C27—H27C109.5
N3—C13—C12130.21 (13)H27A—C27—H27C109.5
N3—C13—C8110.09 (12)H27B—C27—H27C109.5
C12—C13—C8119.61 (13)N7—C28—H28A109.5
N5—C14—N4112.53 (12)N7—C28—H28B109.5
N5—C14—C10124.66 (13)H28A—C28—H28B109.5
N4—C14—C10122.81 (12)N7—C28—H28C109.5
N4—C15—C16132.48 (13)H28A—C28—H28C109.5
N4—C15—C20105.04 (12)H28B—C28—H28C109.5
C16—C15—C20122.44 (13)C4—N1—C27118.18 (13)
C15—C16—C17117.71 (13)C4—N1—C26118.60 (13)
C15—C16—H16121.1C27—N1—C26112.78 (13)
C17—C16—H16121.1C7—N2—C8107.81 (11)
C16—C17—C18119.68 (13)C7—N2—H2127.9 (12)
C16—C17—N6118.32 (13)C8—N2—H2124.2 (12)
C18—C17—N6121.99 (13)C7—N3—C13105.17 (11)
C19—C18—C17122.03 (14)C14—N4—C15107.25 (12)
C19—C18—H18119.0C14—N4—H4A126.4 (12)
C17—C18—H18119.0C15—N4—H4A126.3 (12)
C18—C19—C20118.53 (14)C14—N5—C20105.13 (12)
C18—C19—H19120.7C17—N6—C24114.80 (13)
C20—C19—H19120.7C17—N6—C21113.32 (12)
N5—C20—C19130.40 (13)C24—N6—C21109.48 (12)
N5—C20—C15110.05 (12)C23—N7—C22108.50 (13)
C19—C20—C15119.54 (13)C23—N7—C28110.72 (14)
N6—C21—C22111.44 (14)C22—N7—C28110.83 (14)
N6—C21—H21A109.3H1A—O1—H1B108 (2)
C22—C21—H21A109.3H2A—O2—H2B109 (2)
N6—C21—H21B109.3
C6—C1—C2—C33.2 (2)C18—C19—C20—N5176.53 (16)
C7—C1—C2—C3174.06 (13)C18—C19—C20—C152.0 (2)
C6—C1—C2—C25174.91 (14)N4—C15—C20—N50.20 (17)
C7—C1—C2—C257.8 (2)C16—C15—C20—N5177.83 (14)
C1—C2—C3—C40.8 (2)N4—C15—C20—C19178.99 (14)
C25—C2—C3—C4177.47 (14)C16—C15—C20—C191.0 (2)
C2—C3—C4—N1175.39 (14)N6—C21—C22—N757.69 (19)
C2—C3—C4—C52.5 (2)N7—C23—C24—N660.2 (2)
N1—C4—C5—C6174.59 (14)C3—C4—N1—C271.2 (2)
C3—C4—C5—C63.3 (2)C5—C4—N1—C27176.68 (15)
C4—C5—C6—C10.9 (2)C3—C4—N1—C26141.25 (15)
C2—C1—C6—C52.4 (2)C5—C4—N1—C2640.9 (2)
C7—C1—C6—C5175.00 (14)N3—C7—N2—C80.72 (17)
C2—C1—C7—N330.0 (2)C1—C7—N2—C8174.58 (13)
C6—C1—C7—N3147.26 (15)C9—C8—N2—C7176.60 (16)
C2—C1—C7—N2155.44 (14)C13—C8—N2—C70.18 (16)
C6—C1—C7—N227.3 (2)N2—C7—N3—C130.92 (17)
N2—C8—C9—C10176.15 (15)C1—C7—N3—C13174.06 (14)
C13—C8—C9—C100.1 (2)C12—C13—N3—C7175.75 (16)
C8—C9—C10—C110.5 (2)C8—C13—N3—C70.79 (17)
C8—C9—C10—C14177.65 (13)N5—C14—N4—C151.25 (18)
C9—C10—C11—C121.4 (2)C10—C14—N4—C15179.45 (13)
C14—C10—C11—C12176.79 (15)C16—C15—N4—C14176.92 (16)
C10—C11—C12—C131.7 (2)C20—C15—N4—C140.83 (16)
C11—C12—C13—N3177.60 (15)N4—C14—N5—C201.09 (17)
C11—C12—C13—C81.3 (2)C10—C14—N5—C20179.62 (14)
N2—C8—C13—N30.38 (17)C19—C20—N5—C14178.09 (17)
C9—C8—C13—N3177.53 (14)C15—C20—N5—C140.53 (17)
N2—C8—C13—C12176.59 (14)C16—C17—N6—C24170.61 (14)
C9—C8—C13—C120.6 (2)C18—C17—N6—C2410.8 (2)
C9—C10—C14—N55.7 (2)C16—C17—N6—C2162.58 (19)
C11—C10—C14—N5176.15 (15)C18—C17—N6—C21115.97 (17)
C9—C10—C14—N4173.54 (14)C23—C24—N6—C17174.17 (14)
C11—C10—C14—N44.6 (2)C23—C24—N6—C2157.08 (18)
N4—C15—C16—C17176.01 (15)C22—C21—N6—C17174.13 (13)
C20—C15—C16—C171.4 (2)C22—C21—N6—C2456.31 (18)
C15—C16—C17—C182.7 (2)C24—C23—N7—C2259.96 (19)
C15—C16—C17—N6175.89 (13)C24—C23—N7—C28178.21 (15)
C16—C17—C18—C191.7 (2)C21—C22—N7—C2358.40 (18)
N6—C17—C18—C19176.81 (15)C21—C22—N7—C28179.83 (15)
C17—C18—C19—C200.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23B···N2i0.992.653.542 (2)149
O1—H1A···O2ii0.91 (3)1.98 (3)2.8665 (17)164 (2)
O1—H1B···N7iii0.94 (3)1.91 (3)2.8482 (18)170 (3)
N2—H2···O2ii0.856 (18)1.944 (18)2.7797 (15)165.0 (17)
O2—H2A···N50.86 (2)1.91 (2)2.7685 (16)175 (2)
O2—H2B···O10.90 (3)1.86 (3)2.7537 (18)168 (3)
N4—H4A···N3iv0.870 (19)2.072 (19)2.9411 (16)176.7 (17)
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+1/2, z+3/2.
N,N,3-Trimethyl-4-[6-(4-methylpiperazin-1-yl)-1H,3'H-[2,5'-bibenzo[d]imidazol]-2'-yl]aniline monohydrate (1_hydrate) top
Crystal data top
C28H31N7·H2OF(000) = 1032
Mr = 483.61Dx = 1.241 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.8750 (1) ÅCell parameters from 12480 reflections
b = 22.6561 (3) Åθ = 4.3–77.4°
c = 11.7917 (1) ŵ = 0.63 mm1
β = 101.188 (1)°T = 100 K
V = 2588.01 (5) Å3ROD, brown
Z = 40.29 × 0.16 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5468 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4622 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.072
ω scansθmax = 78.2°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1212
Tmin = 0.724, Tmax = 1.000k = 1328
33621 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.8256P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5468 reflectionsΔρmax = 0.51 e Å3
345 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01456 (15)0.36648 (7)0.26721 (12)0.0241 (3)
C20.00764 (15)0.41121 (7)0.18284 (13)0.0248 (3)
C30.11128 (16)0.44501 (7)0.15471 (13)0.0271 (3)
H30.1147860.4742530.0988610.032*
C40.22698 (16)0.43717 (7)0.20671 (13)0.0281 (3)
C50.22147 (16)0.39030 (8)0.28626 (14)0.0301 (3)
H50.2975150.3821710.3194360.036*
C60.10332 (16)0.35642 (7)0.31502 (13)0.0273 (3)
H60.1017180.3258550.3679180.033*
C70.14024 (15)0.33245 (7)0.31155 (12)0.0229 (3)
C80.34140 (15)0.29191 (7)0.33857 (12)0.0228 (3)
C90.47236 (15)0.27141 (7)0.33039 (13)0.0241 (3)
H90.5084960.2779530.2642820.029*
C100.54734 (15)0.24077 (7)0.42464 (12)0.0234 (3)
C110.49178 (15)0.23108 (7)0.52482 (12)0.0236 (3)
H110.5444750.2109780.5868060.028*
C120.36138 (15)0.25057 (7)0.53357 (12)0.0241 (3)
H120.3244160.2433520.5990150.029*
C130.28837 (15)0.28160 (6)0.43910 (13)0.0228 (3)
C140.68280 (15)0.21645 (6)0.41738 (12)0.0223 (3)
C150.85786 (15)0.18224 (6)0.35357 (13)0.0228 (3)
C160.95061 (15)0.16217 (7)0.28615 (13)0.0252 (3)
H160.9293050.1649040.2059610.030*
C171.07574 (15)0.13799 (6)0.34208 (13)0.0244 (3)
C181.10692 (15)0.13588 (7)0.46444 (13)0.0263 (3)
H181.1913520.1203580.5009630.032*
C191.01680 (16)0.15595 (7)0.53104 (13)0.0266 (3)
H191.0393310.1545140.6113170.032*
C200.89077 (15)0.17849 (6)0.47443 (13)0.0231 (3)
C211.13723 (19)0.11372 (9)0.15611 (15)0.0368 (4)
H21A1.1457580.1538970.1299530.044*
H21B1.0424760.1011400.1295980.044*
C221.2334 (2)0.07369 (9)0.10524 (16)0.0392 (4)
H22A1.2196140.0331880.1271200.047*
H22B1.2107010.0761230.0215660.047*
C231.41019 (19)0.08795 (8)0.27129 (15)0.0361 (4)
H23A1.5052090.1000720.2981350.043*
H23B1.4004720.0478770.2975640.043*
C241.31556 (17)0.12828 (8)0.32169 (15)0.0329 (4)
H24A1.3377980.1260020.4053950.039*
H24B1.3295490.1686990.2994020.039*
C250.12476 (17)0.42521 (7)0.12195 (15)0.0314 (3)
H25A0.1344510.3938320.0693910.047*
H25B0.2088650.4292380.1779690.047*
H25C0.1054810.4614550.0797480.047*
C260.3390 (2)0.52112 (8)0.09748 (18)0.0413 (4)
H26A0.2655560.5479160.1278810.062*
H26B0.4255570.5416830.0859720.062*
H26C0.3246270.5055770.0249960.062*
C270.45043 (19)0.47056 (10)0.24402 (18)0.0435 (5)
H27A0.4938930.4325030.2341410.065*
H27B0.5174600.5006040.2169140.065*
H27C0.4126490.4769040.3244280.065*
C281.4660 (2)0.04941 (9)0.09566 (18)0.0452 (5)
H28A1.4522150.0098360.1202550.068*
H28B1.5607560.0604610.1216960.068*
H28C1.4432960.0514350.0128190.068*
N10.34070 (14)0.47306 (7)0.17847 (13)0.0347 (3)
N20.24614 (13)0.32318 (6)0.25861 (11)0.0239 (3)
N30.16059 (13)0.30763 (6)0.41935 (11)0.0236 (3)
N40.72636 (13)0.20628 (6)0.31942 (11)0.0244 (3)
N50.77794 (13)0.20066 (6)0.51316 (11)0.0231 (3)
N61.17078 (13)0.11179 (6)0.28103 (11)0.0268 (3)
N71.37733 (15)0.08964 (6)0.14459 (12)0.0324 (3)
O10.03124 (13)0.30826 (6)0.60438 (10)0.0343 (3)
H1A0.016 (4)0.3420 (17)0.618 (3)0.091 (11)*
H1B0.097 (3)0.3046 (11)0.675 (2)0.051 (7)*
H3A0.107 (2)0.3088 (9)0.476 (2)0.039 (6)*
H5A0.765 (2)0.1996 (9)0.585 (2)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (7)0.0309 (7)0.0192 (7)0.0020 (6)0.0016 (5)0.0043 (5)
C20.0229 (7)0.0282 (7)0.0219 (7)0.0014 (6)0.0013 (5)0.0035 (5)
C30.0256 (7)0.0285 (7)0.0254 (7)0.0015 (6)0.0006 (6)0.0019 (6)
C40.0221 (7)0.0341 (8)0.0262 (7)0.0037 (6)0.0001 (6)0.0059 (6)
C50.0221 (7)0.0427 (9)0.0251 (7)0.0027 (6)0.0041 (6)0.0043 (6)
C60.0225 (7)0.0362 (8)0.0225 (7)0.0016 (6)0.0029 (6)0.0003 (6)
C70.0207 (7)0.0295 (7)0.0183 (6)0.0013 (5)0.0034 (5)0.0011 (5)
C80.0207 (7)0.0302 (7)0.0172 (6)0.0014 (5)0.0025 (5)0.0001 (5)
C90.0215 (7)0.0324 (7)0.0188 (7)0.0011 (6)0.0053 (5)0.0016 (6)
C100.0205 (7)0.0285 (7)0.0212 (7)0.0004 (5)0.0043 (5)0.0002 (5)
C110.0226 (7)0.0293 (7)0.0182 (7)0.0014 (6)0.0018 (5)0.0016 (5)
C120.0239 (7)0.0307 (7)0.0183 (7)0.0001 (6)0.0058 (5)0.0003 (5)
C130.0195 (7)0.0292 (7)0.0200 (7)0.0011 (5)0.0042 (5)0.0009 (5)
C140.0200 (7)0.0274 (7)0.0191 (7)0.0005 (5)0.0028 (5)0.0011 (5)
C150.0201 (7)0.0271 (7)0.0212 (7)0.0002 (5)0.0036 (5)0.0020 (5)
C160.0242 (7)0.0331 (8)0.0187 (7)0.0017 (6)0.0054 (5)0.0017 (6)
C170.0226 (7)0.0272 (7)0.0242 (7)0.0002 (5)0.0068 (6)0.0002 (5)
C180.0210 (7)0.0325 (8)0.0244 (7)0.0025 (6)0.0017 (6)0.0007 (6)
C190.0238 (7)0.0348 (8)0.0202 (7)0.0022 (6)0.0016 (6)0.0012 (6)
C200.0201 (7)0.0278 (7)0.0215 (7)0.0003 (5)0.0046 (5)0.0005 (5)
C210.0329 (9)0.0517 (10)0.0268 (8)0.0055 (7)0.0081 (7)0.0003 (7)
C220.0394 (10)0.0496 (10)0.0305 (9)0.0007 (8)0.0117 (7)0.0062 (7)
C230.0316 (8)0.0454 (10)0.0329 (9)0.0093 (7)0.0104 (7)0.0043 (7)
C240.0257 (8)0.0432 (9)0.0309 (8)0.0016 (7)0.0082 (6)0.0037 (7)
C250.0295 (8)0.0323 (8)0.0335 (8)0.0039 (6)0.0088 (6)0.0062 (6)
C260.0326 (9)0.0393 (9)0.0503 (11)0.0119 (7)0.0040 (8)0.0043 (8)
C270.0297 (9)0.0549 (11)0.0465 (11)0.0148 (8)0.0086 (8)0.0015 (9)
C280.0525 (11)0.0468 (10)0.0426 (10)0.0168 (9)0.0246 (9)0.0038 (8)
N10.0253 (7)0.0422 (8)0.0356 (8)0.0100 (6)0.0036 (6)0.0001 (6)
N20.0209 (6)0.0323 (6)0.0181 (6)0.0041 (5)0.0031 (4)0.0015 (5)
N30.0203 (6)0.0325 (6)0.0186 (6)0.0036 (5)0.0055 (5)0.0002 (5)
N40.0210 (6)0.0328 (6)0.0194 (6)0.0029 (5)0.0038 (5)0.0026 (5)
N50.0192 (6)0.0324 (6)0.0175 (6)0.0023 (5)0.0027 (5)0.0002 (5)
N60.0228 (6)0.0338 (7)0.0245 (6)0.0012 (5)0.0063 (5)0.0025 (5)
N70.0331 (7)0.0363 (7)0.0312 (7)0.0081 (6)0.0152 (6)0.0017 (6)
O10.0325 (6)0.0502 (7)0.0213 (6)0.0055 (5)0.0077 (5)0.0010 (5)
Geometric parameters (Å, º) top
C1—C61.407 (2)C19—C201.390 (2)
C1—C21.412 (2)C19—H190.9300
C1—C71.468 (2)C20—N51.3783 (19)
C2—C31.387 (2)C21—N61.446 (2)
C2—C251.509 (2)C21—C221.518 (2)
C3—C41.409 (2)C21—H21A0.9700
C3—H30.9300C21—H21B0.9700
C4—N11.374 (2)C22—N71.453 (2)
C4—C51.411 (2)C22—H22A0.9700
C5—C61.383 (2)C22—H22B0.9700
C5—H50.9300C23—N71.467 (2)
C6—H60.9300C23—C241.509 (2)
C7—N21.3344 (19)C23—H23A0.9700
C7—N31.3687 (19)C23—H23B0.9700
C8—N21.3899 (19)C24—N61.465 (2)
C8—C91.395 (2)C24—H24A0.9700
C8—C131.405 (2)C24—H24B0.9700
C9—C101.395 (2)C25—H25A0.9600
C9—H90.9300C25—H25B0.9600
C10—C111.413 (2)C25—H25C0.9600
C10—C141.464 (2)C26—N11.451 (2)
C11—C121.384 (2)C26—H26A0.9600
C11—H110.9300C26—H26B0.9600
C12—C131.394 (2)C26—H26C0.9600
C12—H120.9300C27—N11.449 (2)
C13—N31.3712 (19)C27—H27A0.9600
C14—N41.3286 (19)C27—H27B0.9600
C14—N51.3691 (19)C27—H27C0.9600
C15—N41.3936 (19)C28—N71.458 (2)
C15—C161.400 (2)C28—H28A0.9600
C15—C201.402 (2)C28—H28B0.9600
C16—C171.395 (2)C28—H28C0.9600
C16—H160.9300N3—H3A0.93 (2)
C17—C181.417 (2)N5—H5A0.89 (2)
C17—N61.4190 (19)O1—H1A0.93 (4)
C18—C191.374 (2)O1—H1B0.95 (3)
C18—H180.9300
C6—C1—C2117.89 (14)N6—C21—H21B109.6
C6—C1—C7118.69 (14)C22—C21—H21B109.6
C2—C1—C7123.34 (13)H21A—C21—H21B108.1
C3—C2—C1119.18 (14)N7—C22—C21111.93 (15)
C3—C2—C25117.50 (14)N7—C22—H22A109.2
C1—C2—C25123.31 (13)C21—C22—H22A109.2
C2—C3—C4123.14 (15)N7—C22—H22B109.2
C2—C3—H3118.4C21—C22—H22B109.2
C4—C3—H3118.4H22A—C22—H22B107.9
N1—C4—C3120.91 (15)N7—C23—C24110.73 (14)
N1—C4—C5122.05 (15)N7—C23—H23A109.5
C3—C4—C5117.02 (14)C24—C23—H23A109.5
C6—C5—C4120.18 (15)N7—C23—H23B109.5
C6—C5—H5119.9C24—C23—H23B109.5
C4—C5—H5119.9H23A—C23—H23B108.1
C5—C6—C1122.42 (15)N6—C24—C23110.86 (14)
C5—C6—H6118.8N6—C24—H24A109.5
C1—C6—H6118.8C23—C24—H24A109.5
N2—C7—N3112.50 (13)N6—C24—H24B109.5
N2—C7—C1126.94 (13)C23—C24—H24B109.5
N3—C7—C1120.53 (13)H24A—C24—H24B108.1
N2—C8—C9129.60 (13)C2—C25—H25A109.5
N2—C8—C13110.06 (12)C2—C25—H25B109.5
C9—C8—C13120.34 (13)H25A—C25—H25B109.5
C10—C9—C8117.80 (13)C2—C25—H25C109.5
C10—C9—H9121.1H25A—C25—H25C109.5
C8—C9—H9121.1H25B—C25—H25C109.5
C9—C10—C11120.75 (13)N1—C26—H26A109.5
C9—C10—C14119.36 (13)N1—C26—H26B109.5
C11—C10—C14119.85 (13)H26A—C26—H26B109.5
C12—C11—C10122.05 (13)N1—C26—H26C109.5
C12—C11—H11119.0H26A—C26—H26C109.5
C10—C11—H11119.0H26B—C26—H26C109.5
C11—C12—C13116.47 (13)N1—C27—H27A109.5
C11—C12—H12121.8N1—C27—H27B109.5
C13—C12—H12121.8H27A—C27—H27B109.5
N3—C13—C12131.98 (14)N1—C27—H27C109.5
N3—C13—C8105.46 (12)H27A—C27—H27C109.5
C12—C13—C8122.57 (13)H27B—C27—H27C109.5
N4—C14—N5112.69 (13)N7—C28—H28A109.5
N4—C14—C10124.72 (13)N7—C28—H28B109.5
N5—C14—C10122.58 (13)H28A—C28—H28B109.5
N4—C15—C16129.68 (13)N7—C28—H28C109.5
N4—C15—C20109.67 (13)H28A—C28—H28C109.5
C16—C15—C20120.64 (13)H28B—C28—H28C109.5
C17—C16—C15118.43 (14)C4—N1—C27120.55 (15)
C17—C16—H16120.8C4—N1—C26119.35 (15)
C15—C16—H16120.8C27—N1—C26119.08 (14)
C16—C17—C18119.50 (14)C7—N2—C8104.57 (12)
C16—C17—N6122.47 (13)C7—N3—C13107.39 (12)
C18—C17—N6117.92 (13)C7—N3—H3A130.9 (14)
C19—C18—C17122.29 (14)C13—N3—H3A121.5 (14)
C19—C18—H18118.9C14—N4—C15104.91 (12)
C17—C18—H18118.9C14—N5—C20106.94 (12)
C18—C19—C20117.78 (14)C14—N5—H5A126.4 (13)
C18—C19—H19121.1C20—N5—H5A126.0 (13)
C20—C19—H19121.1C17—N6—C21117.43 (13)
N5—C20—C19132.90 (14)C17—N6—C24115.25 (13)
N5—C20—C15105.78 (12)C21—N6—C24109.98 (13)
C19—C20—C15121.32 (14)C22—N7—C28110.09 (16)
N6—C21—C22110.31 (15)C22—N7—C23109.16 (14)
N6—C21—H21A109.6C28—N7—C23110.83 (14)
C22—C21—H21A109.6H1A—O1—H1B102 (3)
C6—C1—C2—C33.1 (2)C18—C19—C20—N5178.45 (16)
C7—C1—C2—C3173.56 (13)C18—C19—C20—C151.8 (2)
C6—C1—C2—C25177.96 (14)N4—C15—C20—N50.14 (16)
C7—C1—C2—C255.4 (2)C16—C15—C20—N5178.90 (14)
C1—C2—C3—C40.2 (2)N4—C15—C20—C19179.98 (14)
C25—C2—C3—C4178.84 (14)C16—C15—C20—C191.3 (2)
C2—C3—C4—N1177.91 (14)N6—C21—C22—N757.8 (2)
C2—C3—C4—C53.5 (2)N7—C23—C24—N658.11 (19)
N1—C4—C5—C6177.94 (15)C3—C4—N1—C27170.86 (16)
C3—C4—C5—C63.5 (2)C5—C4—N1—C2710.6 (2)
C4—C5—C6—C10.3 (2)C3—C4—N1—C262.5 (2)
C2—C1—C6—C53.1 (2)C5—C4—N1—C26178.98 (16)
C7—C1—C6—C5173.73 (14)N3—C7—N2—C81.61 (17)
C6—C1—C7—N2159.76 (15)C1—C7—N2—C8176.41 (14)
C2—C1—C7—N223.6 (2)C9—C8—N2—C7178.69 (15)
C6—C1—C7—N322.4 (2)C13—C8—N2—C71.39 (17)
C2—C1—C7—N3154.23 (14)N2—C7—N3—C131.24 (17)
N2—C8—C9—C10179.95 (15)C1—C7—N3—C13176.92 (13)
C13—C8—C9—C100.0 (2)C12—C13—N3—C7179.70 (16)
C8—C9—C10—C110.1 (2)C8—C13—N3—C70.30 (16)
C8—C9—C10—C14177.48 (13)N5—C14—N4—C150.15 (17)
C9—C10—C11—C120.9 (2)C10—C14—N4—C15178.70 (14)
C14—C10—C11—C12176.70 (14)C16—C15—N4—C14178.62 (16)
C10—C11—C12—C131.4 (2)C20—C15—N4—C140.00 (16)
C11—C12—C13—N3178.69 (15)N4—C14—N5—C200.24 (17)
C11—C12—C13—C81.3 (2)C10—C14—N5—C20178.64 (13)
N2—C8—C13—N30.68 (17)C19—C20—N5—C14179.96 (16)
C9—C8—C13—N3179.39 (13)C15—C20—N5—C140.22 (16)
N2—C8—C13—C12179.32 (14)C16—C17—N6—C213.4 (2)
C9—C8—C13—C120.6 (2)C18—C17—N6—C21179.43 (15)
C9—C10—C14—N419.8 (2)C16—C17—N6—C24135.47 (16)
C11—C10—C14—N4157.83 (15)C18—C17—N6—C2448.47 (19)
C9—C10—C14—N5161.50 (14)C22—C21—N6—C17168.74 (14)
C11—C10—C14—N520.9 (2)C22—C21—N6—C2456.83 (19)
N4—C15—C16—C17177.97 (14)C23—C24—N6—C17166.65 (13)
C20—C15—C16—C170.5 (2)C23—C24—N6—C2157.84 (18)
C15—C16—C17—C181.7 (2)C21—C22—N7—C28178.82 (15)
C15—C16—C17—N6174.29 (14)C21—C22—N7—C2356.96 (19)
C16—C17—C18—C191.2 (2)C24—C23—N7—C2256.93 (19)
N6—C17—C18—C19174.97 (15)C24—C23—N7—C28178.34 (16)
C17—C18—C19—C200.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N7i0.93 (4)1.93 (4)2.858 (2)177 (3)
O1—H1B···N4ii0.95 (3)1.94 (3)2.8905 (18)177 (2)
N3—H3A···O10.93 (2)1.82 (2)2.7338 (17)170 (2)
N5—H5A···N2iii0.89 (2)2.15 (2)3.0199 (18)167.2 (18)
O1—H1A···N7i0.93 (4)1.93 (4)2.858 (2)177 (3)
O1—H1B···N4ii0.95 (3)1.94 (3)2.8905 (18)177 (2)
N3—H3A···O10.93 (2)1.82 (2)2.7338 (17)170 (2)
N5—H5A···N2iii0.89 (2)2.15 (2)3.0199 (18)167.2 (18)
Symmetry codes: (i) x3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Sirtex Medical.

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, R. F., Broadhurst, S., Reum, M. E., Squire, C. J., Clark, G. R., Lobachevsky, P. N., White, J. M., Clark, C., Sy, D., Spotheim-Maurizot, M. & Kelly, D. P. (2004). Cancer Res. 64, 1067–1070.  CrossRef Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.  Google Scholar
First citationPjura, P. E., Grzeskowiak, G. & Dickerson, R. E. (1987). J. Mol. Biol. 197, 257–271.  CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds