research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of two (E)-N′-(para-substituted benzyl­­idene) 4-chloro­benzene­sulfono­hydrazides

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and cKarnataka State Rural Development and Panchayat Raj University, Gadag-582101, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 October 2018; accepted 9 November 2018; online 16 November 2018)

Two (E)-N′-(p-substituted benzyl­idene)-4-chloro­benzene­sulfono­hydrazides, namely, (E)-4-chloro-N′-(4-chloro­benzyl­idene)benzene­sulfono­hydrazide, C13H10Cl2N2O2S, (I), and (E)-4-chloro-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide, C13H10ClN3O4S, (II), have been synthesized, characterized and their crystal structures studied to explore the effect of the nature of substituents on the structural parameters. Compound (II) crystallized with two independent mol­ecules [(IIA) and IIB)] in the asymmetric unit. In both compounds, the configuration around the C=N bond is E. The mol­ecules are twisted at the S atom with C—S—N—N torsion angles of −62.4 (2)° in (I), and −46.8 (2)° and 56.8 (2)° in the mol­ecules A and B of (II). The 4-chloro­phenyl­sulfonyl and 4-substituted benzyl­idene rings form dihedral angles of 81.0 (1)° in (I), 75.9 (1)° in (IIA) and 73.4 (1)° in (IIB). In the crystal of (I), mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(8) ring motif. The dimers are linked by C—Cl⋯π inter­actions, forming a three-dimensional structure. In the crystal of (II), mol­ecules are linked by C—H⋯π inter­actions and N—H⋯O hydrogen bonds, forming –ABAB– chains along the c-axis direction. The chains are linked via C—H⋯O and C—H⋯π inter­actions, forming layers parallel to the bc plane. Two-dimensional fingerprint plots show that the most significant contacts contributing to the Hirshfeld surface for (I) are H⋯H contacts (26.6%), followed by Cl⋯H/H⋯Cl (21.3%), O⋯H/H⋯O (15.5%) and Cl⋯C/C⋯Cl (10.7%), while for (II) the O⋯H/H⋯O contacts are dominant, with a contribution of 34.8%, followed by H⋯H (15.2%), C⋯H/H⋯C (14.0%) and Cl⋯H/H⋯Cl (10.0%) contacts.

1. Chemical context

In the field of synthetic chemistry, hydrazones are frequently used as nucleophiles and electrophiles (Ogawa et al., 2004[Ogawa, C., Konishi, H., Sugiura, M. & Kobayashi, S. (2004). Org. Biomol. Chem. 2, 446-448.]). They also play an important role in organic synthesis as one of the reaction inter­mediates due to their ring-closure reactions (Rollas & Küçükgüzel, 2007[Rollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910-1939.]). Hydrazones have drawn considerable attention in the field of coordination chemistry (Weber et al., 2007[Weber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159-1162.]). They also find various industrial applications (Reis et al., 2013[Reis, D. C., Despaigne, A. A. R., Da Silva, J. G., Silva, N. F., Vilela, C. F., Mendes, I. C., Takahashi, J. A. & Beraldo, H. (2013). Molecules, 18, 12645-12662.]) and exhibit a wide spectrum of biological activities (da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1-8.]). Aryl­sulfonyl-hydrazones have shown anti­tumour activity in addition to their role as a versatile source of diazo compounds in many metal-catalysed and metal-free reactions (Hashemi, 2012[Hashemi, S. A. (2012). Tetrahedron Lett. 53, 5141-5143.]). In a continuation of our efforts to explore the effect of site and nature of substituents on the crystal structures of 4-chloro-aryl­sulfono­hydrazide derivatives (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]), we report herein the synthesis, characterization, crystal structures and Hirshfeld surface analysis of the title compounds, (I)[link] and (II)[link], and compare them with those of the recently reported structures of (E)-4-chloro-N′-(benzyl­idene) benzene­sulfono­hydrazide (III), (E)-4-chloro-N′-(2-methyl­benzyl­idene)benzene­sulfono­hydrazide (IV) and (E)-4-chloro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide (V) (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]).

[Scheme 1]

2. Structural commentary

Compound (I)[link], crystallizes in the triclinic crystal system, space group P[\overline{1}], with one mol­ecule in the asymmetric unit (Fig. 1[link]), while compound (II)[link] crystallizes in the monoclinic crystal system, space group P21/c, with two independent mol­ecules [(IIA) and (IIB)] in the asymmetric unit (Fig. 2[link]). For both the compounds, the configuration about the C=N bond is E and the conformations of the N—H and C—H bonds in the hydrazone segments are syn to each other.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], with the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of (II)[link], with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

The C=N bond lengths of 1.269 (3), 1.269 (3) and 1.269 (3) Å in (I)[link], (IIA) and (IIB), and the N—N bond lengths of 1.388 (2) 1.397 (3) and 1.390 (2) Å in (I)[link], (IIA) and (IIB), respectively, indicate the delocalization of the π-electron density over the hydrazone part of the mol­ecules. The other bond lengths are in close agreement with those of the parent compound (III), and the ortho-methyl (IV) and para-methyl (V) derivatives (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]). Selected geometrical parameters of compounds (I)–(V) are compared in Table 1[link] (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]).

Table 1
Comparison of selected geometrical parameters (Å, °) of compounds (I)–(V)

The dihedral angle is that between the aromatic rings. The equivalent bond lengths and torsion angles are given for (IIB).

Bond length (I) (II) Mol­ecule A (II) Mol­ecule B (III) (IV) (V)
C1—S1 1.763 (2) 1.754 (2) 1.760 (2) 1.752 (4) 1.751 (5) 1.761 (2)
S1—N1 1.631 (2) 1.645 (2) 1.641 (2) 1.644 (4) 1.645 (4) 1.625 (2)
N1—N2 1.388 (2) 1.397 (3) 1.390 (2) 1.394 (5) 1.407 (5) 1.393 (2)
N2—C7 1.269 (3) 1.269 (3) 1.269 (3) 1.258 (5) 1.272 (5) 1.273 (3)
C7—C8 1.463 (3) 1.465 (3) 1.462 (3) 1.473 (6) 1.461 (6) 1.458 (3)
Torsion angle            
C1—S1—N1—N2 −62.4 (2) −46.8 (2) 56.8 (2) −66.0 (3) −66.0 (3) −58.4 (2)
S1—N1—N2—C7 158.9 (2) 171.4 (2) −165.3 (2) 166.5 (3) 165.4 (3) 157.9 (2)
N1—N2—C7—C8 175.0 (2) −175.9 (2) 178.2 (2) 177.8 (4) 175.8 (4) 175.8 (2)
Dihedral angle 81.0 (1) 75.9 (1) 73.4 (1) 78.4 (2) 74.8 (2) 76.9 (1)

In the title compounds the mol­ecules are twisted at the S atom with C—S—N—N torsion angles of −62.4 (2)° in (I)[link], and −46.8 (2) and 56.8 (2)° in (IIA) and (IIB), respectively. The respective S—N—N=C torsion angles of 158.9 (2)° in (I)[link], and 171.4 (2) and −165.3 (2)° in (IIA) and (IIB), denote the non-planarity of the sulfono­hydrazide parts of the mol­ecules. However, the N—N—C—C torsion angles of 175.0 (2)° in (I)[link], and −175.9 (2) and 178.2 (2)° in (IIA) and (IIB), indicate near coplanarity of the hydrazide units with the benzyl­idene rings. The dihedral angles between the 4-chloro-substituted phenyl­sulfonyl ring and 4-substituted benzyl­idene ring are 81.0 (1)° in (I)[link], and 75.9 (1) and 73.4 (1°) in mol­ecules A and B of compound (II)[link]. In comparison, the corresponding values in compounds (III), (IV) and (V) are 78.4 (2), 74.8 (2) and 76.9 (1)°, respectively (see Table 1[link]). In (II)[link] the A and B mol­ecules are linked by a C—H⋯Cl inter­action (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg3 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.85 (2) 2.06 (2) 2.887 (3) 163 (2)
N4—H4N⋯O1ii 0.84 (2) 2.13 (2) 2.918 (2) 157 (2)
C10—H10⋯O7iii 0.93 2.58 3.465 (3) 159
C16—H16⋯O4iv 0.93 2.58 3.259 (3) 131
C25—H25⋯O5ii 0.93 2.45 3.340 (3) 161
C12—H12⋯Cg3 0.93 2.96 3.843 (2) 160
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

The pattern of the hydrogen-bonding inter­actions in the crystal structures of (I)[link] and (II)[link] are different. In the crystal of (I)[link], mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers enclosing R22(8) loops (Fig. 3[link], Table 2[link]). The dimers are linked by C—Cl⋯π inter­actions, forming a three-dimensional arrangement (Fig. 3[link]). This is very similar to the situation observed in the crystal of compound (V) [(E)- 4-chloro-N′-(4-methyl­benzyl­idene)benzene­sulfono­hydrazide; Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]].

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 (2) 2.07 (2) 2.903 (2) 178 (2)
C4—Cl1⋯Cg2ii 1.73 (1) 3.41 (1) 5.112 (2) 166 (1)
C11—Cl2⋯Cg1iii 1.74 (1) 3.65 (1) 5.372 (3) 171 (1)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y-1, z; (iii) -x, -y+1, -z+1.
[Figure 3]
Figure 3
Crystal packing of (I)[link], viewed along the a axis, with hydrogen bonds (Table 2[link]) shown as dashed lines and C—Cl⋯π inter­actions as blue arrows. C-bound H atoms have been omitted.

Replacement of the 4-chloro group in (I)[link] by the 4-nitro group to produce compound (II)[link] introduces C—H⋯O inter­actions, which stabilize the crystal packing (Table 3[link] and Figs. 4[link] and 5[link]). The N—H⋯O hydrogen bond involving the sulfonyl O atom and the amino H atom of the hydrazide segment between the A and B mol­ecules results in the formation of –ABAB– chains propagating along the c-axis direction (Fig. 4[link]). The chains are linked by C—H⋯O inter­actions involving O atoms O4 in (IIA) and O5 in (IIB) and O7 of the nitro group and the aromatic hydrogen atoms ortho to the Cl or NO2 group. The sulfonyl O atom of (IIB), i.e. O5, shows bifurcated hydrogen bonding, one with the amino H atom of the hydrazide segment and the other with one of the aromatic H atoms (H25), adjacent to the nitro group. These inter­actions link the chains, forming layers lying parallel to the bc plane (Table 3[link] and Fig. 5[link]).

[Figure 4]
Figure 4
A partial view along the a axis of the crystal packing of (II)[link], with hydrogen bonds (Table 3[link]) shown as dashed lines. H atoms not involved in these inter­actions have been omitted. Colour code: black A mol­ecules; red B mol­ecules.
[Figure 5]
Figure 5
Crystal packing of (II)[link], viewed along the b axis, with hydrogen bonds shown as dashed lines. H atoms not involved in these inter­actions have been omitted.

4. Hirshfeld surface analysis

Hirshfeld surfaces and two-dimensional fingerprint plots were generated for the two substituted compounds (I)[link] and (II)[link] using CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. The University of Western Australia.]) to visualize the inter­molecular inter­actions, to investigate the impact of each kind of inter­molecular contact on the crystal packing and to study the relative strengths of the different inter­actions in the two compounds. The mol­ecular Hirshfeld surfaces were generated using a standard (high) surface resolution. di and de are the contact distances from the Hirshfeld surface to the nearest atom inside and outside, respectively [Fig. 6[link](a) for (I)[link] and Fig. 6[link](b) for (II)]. The strong hydrogen bonds appear as dark-red spots and weak inter­actions as light-red spots on the dnorm surface (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]).

[Figure 6]
Figure 6
(a) View of the Hirshfeld surface mapped over dnorm for (I)[link]; (b) two views of the Hirshfeld surface mapped over dnorm for (II)[link].

Comparison of fingerprint plots for various atom–atom inter­actions show that the percentage contributions of these inter­actions to the Hirshfeld surfaces vary significantly from (I)[link] to (II)[link]. The major contribution to the Hirshfeld surface in (I)[link] is from H⋯H contacts (26.6%), followed by Cl⋯H/H⋯Cl (21.3%), O⋯H/H⋯O (15.5%), Cl⋯C/C⋯Cl (10.7%) and C⋯H/ H⋯C (9.1%) [Fig. 7[link](a)], while in (II)[link], as a result of C—H⋯O inter­actions, O⋯H/H⋯O contacts are dominant and serve as the major contributors (34.8%) in the crystal packing, followed by H⋯H contacts (15.2%), C⋯H/ H⋯C (14.0%) and Cl⋯H/H⋯Cl (10.0%) [Fig. 7[link](b)]. The Cl⋯C/C⋯Cl contribution to the dnorm surface is almost negligible (0.5%) in (II)[link]. However, C⋯C, H⋯N/N⋯H and C⋯O/O⋯C contacts make very similar contributions in the two compounds, their respective contributions being 4.7, 2.8, 3.0%, in (I)[link] and 5.3, 3.6 and 4.1% in (II)[link]. Two pairs of symmetrical, long narrow spikes are present at di + de ∼2.2 Å for the O⋯H/H⋯O contacts in the fingerprint plots of (I)[link] and (II)[link] and these values are very close to the H⋯A distances for the N—H⋯O hydrogen bonds observed in the crystal structures (Tables 2[link] and 3[link]). The contributions of the other weak inter­molecular contacts to the Hirshfeld surfaces are: Cl⋯N/N⋯Cl (1.0 and 1.5%), C⋯N/N⋯C (0.0 and 2.8%), O⋯O (0, 2.3%), N⋯N (0, 0.4%) in (I)[link] and (II)[link], respectively. The result of the qu­anti­tative analysis of all types of inter­molecular contacts present in (I)[link] and (II)[link] is summarized in Fig. 8[link].

[Figure 7]
Figure 7
Two-dimensional fingerprint plots for (a) (I)[link] and (b) (II)[link]. di is the closest inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact.
[Figure 8]
Figure 8
Qu­anti­tative results of different inter­molecular inter­actions contributing to the Hirshfield surfaces of (I)[link] and (II)[link].

5. Database survey

The structures reported in the literature similar to the title compounds include (E)-N′-(4-chloro­benzyl­idene)-p-toluene­sulfono­hydrazide 0.15-hydrate (Kia et al., 2009a[Kia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o1119-o1120.]), (E)-N′-(4-chloro­benzyl­idene)-p-toluene­sulfono­hydrazide (Balaji et al., 2014[Balaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250-o1251.]), (E)-N′-(4-bromo­benzyl­idene)-p-toluene­sulfono­hydra­zide (Kia et al., 2009b[Kia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o821-o822.]], (E)-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide (Hussain et al., 2017a[Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017a). ACS Omega, 2, 420-431.]) and (E)-4-methyl-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide (Hussain et al., 2017b[Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017b). Sci. Rep. 7, 5832.]). In all of these structures, inter­molecular N—H⋯O hydrogen bonds link neighbouring mol­ecules to form chains, which are linked by C—H⋯O hydrogen bonds. There are also inter­molecular ππ inter­actions present, which further stabil­ize the crystal structures.

6. Synthesis and crystallization

Synthesis of 4-chloro­benzene­sulfono­hydrazide

4-Chloro­benzene­sulfono­hydrazide was synthesized by a recently reported procedure (Salian et al., 2018[Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613-1618.]).

Synthesis of compounds (I)[link] and (II)

A mixture of 4-chloro­benzene­sulfono­hydrazide (0.01 mol) and 4-chloro­benzaldehyde (0.01 mol) for (I)[link], and 4-nitro­benzaldehyde (0.01 mol) for (II)[link], in ethanol (30 ml) and two drops of glacial acetic acid were stirred for 4 h. The reaction mixtures were cooled to room temperature and concentrated by evaporating off the excess of solvent. The solid products obtained were washed with cold water, dried and recrystallized to constant melting points from ethanol to obtain the pure compounds. The purity of the compounds was checked by TLC.

Crystals of compounds (I)[link] and (II)[link], suitable for X-ray diffraction analysis, were obtained by slow evaporation of their DMF solutions at room temperature.

Both compounds were characterized by measuring their IR, 1H and 13C NMR spectra.

(E)-4-Chloro-N′-(4-chloro­benzyl­idene)benzene­sulfono­hydrazide (I)

Colourless rod-shaped crystals; m.p. 432–433 K; IR (cm−1): 3180.6 (N—H asym. stretch), 1573.9 (C=N), 1327.0 (S=O asym. stretch) and 1166.9 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 7.32 (d, 1H, J = 8.4Hz, Ar-H), 7.51–7.56 (m, 4H, Ar-H), 7.87–7.89 (m, 2H, Ar-H), 7.92 (s, 1H), 11.50 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 128.38, 129.42, 130.73, 132.06, 134.96, 137.47, 138.39, 139.32, 145.66.

(E)-4-Chloro-N′-(4-nitro­benzyl­idene)benzene­sulfono­hydrazide (II)

Yellow rod-shaped crystals; m.p. 414–415 K; IR (cm−1): 3093.8 (N—H asym. stretch), 1653.0 (C=N), 1392.6 (S=O asym. stretch) and 1153.4 (S=O sym. stretch).

1H NMR (400 MHz, DMSO-d6): δ 7.0 (d, 1H, J = 8.80, Ar-H), 7.38 (d, 1H, J = 8.52, Ar-H), 7.63 (d, 1H, J = 8.36, Ar-H), 7.64 (s, 1H), 7.79 (d, 1H, J = 8.56, Ar-H), 7.80 (d, 2H, J = 8.28, Ar-H), 7.90 (s, 1H), 11.60 (s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 115.49, 124.47, 128.45, 129.63, 136.85, 137.87, 138.28, 147.97, 159.43.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. C-bound H atoms were positioned with idealized geometry and refined using a riding model: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The amino H atoms were located in difference-Fourier maps and refined with an N—H distance restraint of 0.86 (2) Å and Uiso(H) = 1.2Ueq(N). In (I)[link], reflection 011 was masked by the beam stop and omitted from the refinement. In (II)[link], atom O3 is disordered and was refined using a split model. The corresponding site-occupation factors were fixed at 0.55:0.45 and the corresponding N—O bond lengths in the disordered group were restrained to be equal. The Uij components of O3 and O3′ were restrained to be approximately isotropic.

Table 4
Experimental details

  (I) (II)
Crystal data
Chemical formula C13H10Cl2N2O2S C13H10ClN3O4S
Mr 329.19 339.75
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 5.9306 (6), 9.477 (1), 13.040 (2) 19.903 (1), 10.2517 (7), 15.064 (1)
α, β, γ (°) 98.822 (9), 96.046 (9), 92.416 (9) 90, 103.929 (7), 90
V3) 718.94 (15) 2983.3 (3)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.60 0.42
Crystal size (mm) 0.48 × 0.40 × 0.36 0.48 × 0.40 × 0.36
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.])
Tmin, Tmax 0.762, 0.814 0.825, 0.864
No. of measured, independent and observed [I > 2σ(I)] reflections 4153, 2626, 2321 19194, 5455, 4247
Rint 0.016 0.025
(sin θ/λ)max−1) 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.08 0.038, 0.101, 1.02
No. of reflections 2626 5455
No. of parameters 185 414
No. of restraints 1 15
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.35 0.43, −0.38
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(E)-4-Chloro-N'-(4-chlorobenzylidene)benzenesulfonohydrazide (I) top
Crystal data top
C13H10Cl2N2O2SZ = 2
Mr = 329.19F(000) = 336
Triclinic, P1Dx = 1.521 Mg m3
a = 5.9306 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.477 (1) ÅCell parameters from 2722 reflections
c = 13.040 (2) Åθ = 2.9–27.8°
α = 98.822 (9)°µ = 0.60 mm1
β = 96.046 (9)°T = 293 K
γ = 92.416 (9)°Rod, colourless
V = 718.94 (15) Å30.48 × 0.40 × 0.36 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
2321 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.016
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 47
Tmin = 0.762, Tmax = 0.814k = 1111
4153 measured reflectionsl = 1511
2626 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.3082P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.37 e Å3
2626 reflectionsΔρmin = 0.35 e Å3
185 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.025 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3867 (3)0.1943 (2)0.08046 (14)0.0366 (4)
C20.6099 (3)0.2317 (2)0.12163 (17)0.0481 (5)
H20.68530.31190.10520.058*
C30.7193 (4)0.1486 (3)0.18737 (19)0.0556 (6)
H30.86830.17310.21660.067*
C40.6054 (4)0.0289 (2)0.20921 (17)0.0526 (6)
C50.3850 (4)0.0103 (2)0.16683 (18)0.0549 (6)
H50.31180.09250.18130.066*
C60.2746 (4)0.0736 (2)0.10286 (16)0.0450 (5)
H60.12480.04930.07470.054*
C70.1757 (3)0.5784 (2)0.22864 (16)0.0423 (4)
H70.29650.63860.21850.051*
C80.0609 (3)0.6140 (2)0.32242 (16)0.0427 (5)
C90.1405 (4)0.5433 (3)0.33612 (18)0.0542 (5)
H90.20370.46810.28550.065*
C100.2480 (4)0.5832 (3)0.4236 (2)0.0618 (6)
H100.38370.53560.43190.074*
C110.1539 (4)0.6935 (3)0.49867 (18)0.0575 (6)
C120.0449 (4)0.7658 (3)0.48740 (19)0.0630 (6)
H120.10680.84100.53830.076*
C130.1518 (4)0.7252 (3)0.39922 (18)0.0548 (6)
H130.28720.77340.39130.066*
N10.2346 (3)0.45985 (18)0.07324 (14)0.0426 (4)
H1N0.345 (3)0.517 (2)0.0743 (19)0.051*
N20.1173 (3)0.46871 (18)0.16049 (13)0.0414 (4)
O10.3856 (3)0.33553 (16)0.07638 (11)0.0487 (4)
O20.0199 (2)0.24297 (16)0.03067 (12)0.0492 (4)
Cl10.74291 (16)0.07477 (8)0.29214 (6)0.0886 (3)
Cl20.29271 (14)0.74500 (11)0.60842 (6)0.0909 (3)
S10.24404 (8)0.30435 (5)0.00069 (4)0.03746 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0347 (9)0.0351 (9)0.0370 (9)0.0002 (7)0.0035 (7)0.0024 (8)
C20.0372 (10)0.0498 (12)0.0547 (12)0.0056 (9)0.0048 (9)0.0032 (10)
C30.0394 (11)0.0632 (15)0.0580 (13)0.0069 (10)0.0054 (10)0.0029 (11)
C40.0661 (14)0.0415 (11)0.0443 (11)0.0170 (10)0.0079 (10)0.0060 (9)
C50.0682 (15)0.0346 (11)0.0581 (13)0.0040 (10)0.0038 (11)0.0044 (9)
C60.0433 (11)0.0377 (10)0.0499 (11)0.0066 (8)0.0053 (9)0.0033 (9)
C70.0429 (11)0.0383 (10)0.0459 (11)0.0015 (8)0.0056 (9)0.0078 (9)
C80.0460 (11)0.0406 (10)0.0420 (11)0.0083 (8)0.0036 (9)0.0068 (8)
C90.0571 (13)0.0519 (13)0.0501 (12)0.0022 (10)0.0100 (10)0.0040 (10)
C100.0570 (14)0.0708 (16)0.0574 (14)0.0003 (12)0.0175 (11)0.0030 (12)
C110.0581 (14)0.0723 (16)0.0416 (11)0.0186 (12)0.0071 (10)0.0023 (11)
C120.0666 (16)0.0666 (16)0.0473 (13)0.0053 (12)0.0027 (11)0.0117 (11)
C130.0522 (13)0.0573 (13)0.0512 (12)0.0001 (10)0.0031 (10)0.0004 (10)
N10.0459 (9)0.0357 (9)0.0461 (9)0.0045 (7)0.0133 (8)0.0032 (7)
N20.0426 (9)0.0396 (9)0.0438 (9)0.0039 (7)0.0110 (7)0.0074 (7)
O10.0569 (9)0.0475 (8)0.0396 (7)0.0107 (7)0.0117 (6)0.0005 (6)
O20.0413 (8)0.0474 (8)0.0559 (9)0.0080 (6)0.0055 (6)0.0093 (7)
Cl10.1200 (7)0.0595 (4)0.0754 (5)0.0290 (4)0.0372 (4)0.0025 (3)
Cl20.0868 (5)0.1270 (7)0.0546 (4)0.0193 (5)0.0230 (4)0.0133 (4)
S10.0382 (3)0.0352 (3)0.0372 (3)0.00503 (18)0.00356 (19)0.00245 (19)
Geometric parameters (Å, º) top
C1—C61.384 (3)C8—C91.386 (3)
C1—C21.385 (3)C9—C101.376 (3)
C1—S11.763 (2)C9—H90.9300
C2—C31.382 (3)C10—C111.373 (4)
C2—H20.9300C10—H100.9300
C3—C41.377 (4)C11—C121.371 (4)
C3—H30.9300C11—Cl21.741 (2)
C4—C51.377 (3)C12—C131.382 (3)
C4—Cl11.734 (2)C12—H120.9300
C5—C61.374 (3)C13—H130.9300
C5—H50.9300N1—N21.388 (2)
C6—H60.9300N1—S11.6311 (17)
C7—N21.269 (3)N1—H1N0.830 (16)
C7—C81.463 (3)O1—S11.4316 (14)
C7—H70.9300O2—S11.4212 (15)
C8—C131.385 (3)
C6—C1—C2120.77 (19)C10—C9—H9119.6
C6—C1—S1120.05 (15)C8—C9—H9119.6
C2—C1—S1119.18 (15)C11—C10—C9119.6 (2)
C3—C2—C1119.3 (2)C11—C10—H10120.2
C3—C2—H2120.4C9—C10—H10120.2
C1—C2—H2120.4C12—C11—C10121.0 (2)
C4—C3—C2119.3 (2)C12—C11—Cl2119.5 (2)
C4—C3—H3120.3C10—C11—Cl2119.4 (2)
C2—C3—H3120.3C11—C12—C13119.0 (2)
C5—C4—C3121.6 (2)C11—C12—H12120.5
C5—C4—Cl1119.19 (19)C13—C12—H12120.5
C3—C4—Cl1119.22 (18)C12—C13—C8121.2 (2)
C6—C5—C4119.2 (2)C12—C13—H13119.4
C6—C5—H5120.4C8—C13—H13119.4
C4—C5—H5120.4N2—N1—S1118.76 (13)
C5—C6—C1119.84 (19)N2—N1—H1N118.8 (17)
C5—C6—H6120.1S1—N1—H1N115.6 (17)
C1—C6—H6120.1C7—N2—N1114.02 (16)
N2—C7—C8122.74 (19)O2—S1—O1119.93 (9)
N2—C7—H7118.6O2—S1—N1109.69 (9)
C8—C7—H7118.6O1—S1—N1102.85 (9)
C13—C8—C9118.4 (2)O2—S1—C1107.94 (9)
C13—C8—C7119.19 (19)O1—S1—C1109.14 (9)
C9—C8—C7122.40 (19)N1—S1—C1106.52 (9)
C10—C9—C8120.8 (2)
C6—C1—C2—C31.2 (3)C10—C11—C12—C130.6 (4)
S1—C1—C2—C3177.57 (16)Cl2—C11—C12—C13179.08 (19)
C1—C2—C3—C41.1 (3)C11—C12—C13—C80.4 (4)
C2—C3—C4—C50.2 (3)C9—C8—C13—C120.3 (4)
C2—C3—C4—Cl1179.75 (17)C7—C8—C13—C12177.7 (2)
C3—C4—C5—C61.3 (4)C8—C7—N2—N1175.01 (17)
Cl1—C4—C5—C6178.64 (17)S1—N1—N2—C7158.96 (15)
C4—C5—C6—C11.1 (3)N2—N1—S1—O254.13 (17)
C2—C1—C6—C50.1 (3)N2—N1—S1—O1177.17 (15)
S1—C1—C6—C5178.67 (17)N2—N1—S1—C162.44 (17)
N2—C7—C8—C13172.1 (2)C6—C1—S1—O20.97 (19)
N2—C7—C8—C910.0 (3)C2—C1—S1—O2179.78 (15)
C13—C8—C9—C100.3 (4)C6—C1—S1—O1132.84 (16)
C7—C8—C9—C10177.6 (2)C2—C1—S1—O148.35 (18)
C8—C9—C10—C110.5 (4)C6—C1—S1—N1116.77 (17)
C9—C10—C11—C120.7 (4)C2—C1—S1—N162.04 (18)
C9—C10—C11—Cl2179.13 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1–C6 and C8–C13, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (2)2.07 (2)2.903 (2)178 (2)
C4—Cl1···Cg2ii1.73 (1)3.41 (1)5.112 (2)166 (1)
C11—Cl2···Cg1iii1.74 (1)3.65 (1)5.372 (3)171 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1, z; (iii) x, y+1, z+1.
(E)-4-chloro-N'-(4-Nitrobenzylidene)benzenesulfonohydrazide (II) top
Crystal data top
C13H10ClN3O4SF(000) = 1392
Mr = 339.75Dx = 1.513 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.903 (1) ÅCell parameters from 7054 reflections
b = 10.2517 (7) Åθ = 2.8–27.8°
c = 15.064 (1) ŵ = 0.42 mm1
β = 103.929 (7)°T = 293 K
V = 2983.3 (3) Å3Rod, yellow
Z = 80.48 × 0.40 × 0.36 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
4247 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.025
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2323
Tmin = 0.825, Tmax = 0.864k = 1212
19194 measured reflectionsl = 1818
5455 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.8451P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.43 e Å3
5455 reflectionsΔρmin = 0.38 e Å3
414 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 restraintsExtinction coefficient: 0.0034 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.44715 (4)0.44299 (7)0.63321 (5)0.0692 (2)
S10.41281 (3)1.03308 (5)0.53686 (4)0.03843 (15)
O10.42255 (8)1.04883 (15)0.44626 (10)0.0447 (4)
O20.44990 (8)1.11288 (16)0.60973 (11)0.0529 (4)
O30.0285 (6)0.5036 (8)0.3381 (6)0.081 (3)0.55
O3'0.0324 (8)0.5149 (10)0.3044 (7)0.075 (3)0.45
O40.04648 (9)0.6576 (2)0.30599 (13)0.0681 (5)
N10.33087 (10)1.06413 (19)0.53180 (14)0.0449 (5)
H1N0.3271 (13)1.086 (2)0.5849 (12)0.054*
N20.28443 (9)0.97344 (18)0.48183 (12)0.0426 (4)
N30.01310 (11)0.6206 (2)0.32944 (15)0.0562 (5)
C10.42530 (10)0.8671 (2)0.56436 (14)0.0367 (5)
C20.44115 (12)0.8290 (2)0.65534 (15)0.0465 (6)
H20.44610.89120.70140.056*
C30.44953 (12)0.6982 (3)0.67705 (16)0.0519 (6)
H30.46100.67140.73780.062*
C40.44062 (11)0.6085 (2)0.60760 (17)0.0457 (6)
C50.42596 (13)0.6447 (2)0.51720 (17)0.0534 (6)
H50.42090.58210.47140.064*
C60.41891 (13)0.7760 (2)0.49545 (15)0.0484 (6)
H60.40990.80270.43470.058*
C70.22211 (11)0.9867 (2)0.48701 (16)0.0438 (5)
H70.21001.05690.51920.053*
C80.16896 (11)0.8929 (2)0.44293 (15)0.0406 (5)
C90.09969 (12)0.9292 (2)0.42131 (17)0.0499 (6)
H90.08771.01420.43270.060*
C100.04837 (12)0.8412 (2)0.38318 (17)0.0497 (6)
H100.00210.86610.36790.060*
C110.06736 (11)0.7159 (2)0.36837 (16)0.0443 (5)
C120.13570 (12)0.6763 (2)0.38937 (18)0.0508 (6)
H120.14720.59070.37870.061*
C130.18635 (12)0.7649 (2)0.42624 (17)0.0476 (6)
H130.23260.73950.44020.057*
Cl20.11071 (4)0.30845 (9)0.53034 (6)0.0814 (3)
S20.32436 (3)0.34333 (5)0.28991 (4)0.04203 (16)
O50.28924 (9)0.38026 (17)0.19868 (11)0.0542 (4)
O60.38459 (9)0.41231 (17)0.33703 (13)0.0610 (5)
O70.10708 (11)0.49600 (19)0.13632 (16)0.0778 (6)
O80.03109 (10)0.3435 (2)0.12357 (18)0.0896 (7)
N40.34961 (10)0.19182 (18)0.28409 (13)0.0413 (4)
H4N0.3793 (11)0.167 (2)0.3306 (13)0.050*
N50.29454 (9)0.10878 (17)0.24828 (12)0.0386 (4)
N60.09076 (11)0.3814 (2)0.14089 (16)0.0582 (6)
C140.26262 (11)0.3420 (2)0.35620 (15)0.0388 (5)
C150.19424 (12)0.3099 (2)0.31583 (15)0.0432 (5)
H150.18030.29480.25320.052*
C160.14730 (12)0.3006 (2)0.36964 (17)0.0479 (6)
H160.10140.27900.34370.058*
C170.16929 (13)0.3237 (2)0.46229 (17)0.0483 (6)
C180.23655 (13)0.3573 (3)0.50252 (16)0.0534 (6)
H180.25000.37420.56500.064*
C190.28388 (12)0.3655 (2)0.44925 (16)0.0489 (6)
H190.32980.38680.47570.059*
C200.30626 (12)0.0126 (2)0.25909 (15)0.0413 (5)
H200.35030.04190.28810.050*
C210.25043 (11)0.1061 (2)0.22580 (15)0.0395 (5)
C220.18148 (12)0.0665 (2)0.20002 (18)0.0496 (6)
H220.17070.02150.20260.060*
C230.12929 (12)0.1552 (2)0.17098 (18)0.0511 (6)
H230.08340.12830.15340.061*
C240.14638 (12)0.2851 (2)0.16848 (16)0.0436 (5)
C250.21363 (12)0.3280 (2)0.19346 (17)0.0498 (6)
H250.22380.41630.19070.060*
C260.26565 (12)0.2384 (2)0.22262 (17)0.0482 (6)
H260.31140.26630.24040.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0651 (4)0.0455 (4)0.0853 (5)0.0022 (3)0.0048 (4)0.0214 (3)
S10.0359 (3)0.0367 (3)0.0404 (3)0.0048 (2)0.0046 (2)0.0003 (2)
O10.0414 (8)0.0469 (9)0.0454 (9)0.0022 (7)0.0096 (7)0.0086 (7)
O20.0544 (10)0.0450 (10)0.0524 (10)0.0110 (8)0.0006 (8)0.0087 (8)
O30.058 (3)0.050 (3)0.129 (7)0.007 (2)0.010 (5)0.002 (4)
O3'0.069 (4)0.062 (4)0.087 (5)0.005 (4)0.005 (4)0.018 (4)
O40.0382 (10)0.0845 (15)0.0791 (13)0.0053 (9)0.0093 (9)0.0026 (11)
N10.0406 (10)0.0446 (11)0.0488 (11)0.0001 (9)0.0094 (9)0.0083 (9)
N20.0380 (10)0.0443 (11)0.0438 (10)0.0011 (9)0.0065 (8)0.0028 (9)
N30.0421 (12)0.0600 (15)0.0649 (14)0.0050 (11)0.0102 (10)0.0023 (12)
C10.0310 (10)0.0404 (12)0.0371 (11)0.0048 (9)0.0051 (8)0.0017 (9)
C20.0483 (13)0.0506 (14)0.0360 (12)0.0052 (11)0.0014 (10)0.0009 (10)
C30.0507 (14)0.0594 (16)0.0393 (13)0.0033 (12)0.0015 (11)0.0136 (12)
C40.0367 (12)0.0401 (13)0.0557 (14)0.0023 (10)0.0021 (10)0.0126 (11)
C50.0664 (16)0.0405 (13)0.0511 (14)0.0042 (12)0.0097 (12)0.0031 (11)
C60.0650 (15)0.0447 (14)0.0337 (12)0.0035 (12)0.0085 (11)0.0028 (10)
C70.0400 (12)0.0392 (12)0.0527 (14)0.0061 (10)0.0119 (10)0.0010 (10)
C80.0355 (11)0.0437 (13)0.0434 (12)0.0033 (10)0.0113 (9)0.0039 (10)
C90.0397 (12)0.0435 (13)0.0667 (16)0.0103 (11)0.0131 (11)0.0002 (12)
C100.0324 (11)0.0535 (15)0.0614 (15)0.0076 (11)0.0081 (11)0.0050 (12)
C110.0383 (12)0.0475 (14)0.0472 (13)0.0010 (10)0.0105 (10)0.0034 (11)
C120.0419 (13)0.0418 (13)0.0677 (16)0.0059 (11)0.0113 (11)0.0033 (12)
C130.0327 (11)0.0481 (14)0.0616 (15)0.0079 (10)0.0106 (10)0.0033 (12)
Cl20.0824 (5)0.0998 (6)0.0759 (5)0.0171 (5)0.0459 (4)0.0163 (4)
S20.0445 (3)0.0341 (3)0.0487 (3)0.0011 (2)0.0137 (2)0.0007 (2)
O50.0642 (11)0.0510 (10)0.0514 (10)0.0132 (9)0.0218 (8)0.0169 (8)
O60.0524 (10)0.0512 (10)0.0824 (13)0.0141 (8)0.0219 (9)0.0147 (9)
O70.0715 (13)0.0450 (11)0.1165 (18)0.0122 (10)0.0217 (12)0.0072 (11)
O80.0452 (11)0.0735 (15)0.143 (2)0.0107 (10)0.0096 (12)0.0044 (14)
N40.0401 (10)0.0353 (10)0.0446 (11)0.0022 (8)0.0027 (8)0.0006 (8)
N50.0395 (10)0.0349 (10)0.0397 (10)0.0002 (8)0.0064 (8)0.0001 (8)
N60.0521 (13)0.0532 (14)0.0700 (15)0.0095 (11)0.0160 (11)0.0011 (11)
C140.0439 (12)0.0315 (11)0.0407 (12)0.0031 (9)0.0094 (9)0.0009 (9)
C150.0451 (13)0.0432 (13)0.0388 (12)0.0024 (10)0.0050 (10)0.0056 (10)
C160.0425 (13)0.0468 (14)0.0533 (14)0.0016 (11)0.0093 (11)0.0062 (11)
C170.0542 (14)0.0443 (13)0.0511 (14)0.0032 (11)0.0216 (11)0.0061 (11)
C180.0642 (16)0.0565 (16)0.0388 (13)0.0021 (13)0.0110 (11)0.0084 (11)
C190.0462 (13)0.0501 (14)0.0474 (14)0.0060 (11)0.0051 (11)0.0078 (11)
C200.0411 (12)0.0405 (13)0.0419 (12)0.0052 (10)0.0092 (10)0.0001 (10)
C210.0423 (12)0.0346 (12)0.0413 (12)0.0043 (10)0.0094 (10)0.0013 (10)
C220.0452 (13)0.0356 (12)0.0669 (16)0.0070 (10)0.0112 (12)0.0032 (11)
C230.0389 (12)0.0443 (14)0.0683 (16)0.0054 (11)0.0089 (11)0.0055 (12)
C240.0441 (13)0.0399 (13)0.0486 (13)0.0041 (10)0.0149 (10)0.0008 (10)
C250.0517 (14)0.0334 (12)0.0660 (16)0.0041 (11)0.0173 (12)0.0051 (11)
C260.0404 (12)0.0403 (13)0.0631 (15)0.0058 (10)0.0107 (11)0.0031 (11)
Geometric parameters (Å, º) top
Cl1—C41.738 (2)Cl2—C171.735 (2)
S1—O21.4245 (16)S2—O61.4252 (17)
S1—O11.4331 (16)S2—O51.4346 (17)
S1—N11.6452 (19)S2—N41.6414 (19)
S1—C11.754 (2)S2—C141.760 (2)
O3—N31.237 (8)O7—N61.226 (3)
O3'—N31.239 (10)O8—N61.217 (3)
O4—N31.213 (3)N4—N51.390 (2)
N1—N21.397 (3)N4—H4N0.839 (16)
N1—H1N0.849 (16)N5—C201.269 (3)
N2—C71.269 (3)N6—C241.467 (3)
N3—C111.469 (3)C14—C191.384 (3)
C1—C61.379 (3)C14—C151.390 (3)
C1—C21.386 (3)C15—C161.380 (3)
C2—C31.381 (3)C15—H150.9300
C2—H20.9300C16—C171.379 (3)
C3—C41.372 (4)C16—H160.9300
C3—H30.9300C17—C181.374 (3)
C4—C51.373 (3)C18—C191.379 (3)
C5—C61.385 (3)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—H60.9300C20—C211.462 (3)
C7—C81.465 (3)C20—H200.9300
C7—H70.9300C21—C261.393 (3)
C8—C91.389 (3)C21—C221.394 (3)
C8—C131.396 (3)C22—C231.370 (3)
C9—C101.380 (3)C22—H220.9300
C9—H90.9300C23—C241.377 (3)
C10—C111.372 (3)C23—H230.9300
C10—H100.9300C24—C251.373 (3)
C11—C121.381 (3)C25—C261.375 (3)
C12—C131.371 (3)C25—H250.9300
C12—H120.9300C26—H260.9300
C13—H130.9300
O2—S1—O1120.35 (10)C8—C13—H13119.8
O2—S1—N1104.40 (10)O6—S2—O5120.24 (11)
O1—S1—N1107.10 (10)O6—S2—N4105.33 (10)
O2—S1—C1110.93 (10)O5—S2—N4106.46 (10)
O1—S1—C1106.87 (10)O6—S2—C14109.87 (10)
N1—S1—C1106.33 (10)O5—S2—C14107.46 (10)
N2—N1—S1114.59 (15)N4—S2—C14106.70 (10)
N2—N1—H1N118.9 (18)N5—N4—S2112.16 (14)
S1—N1—H1N108.5 (17)N5—N4—H4N118.0 (17)
C7—N2—N1115.17 (19)S2—N4—H4N113.8 (17)
O4—N3—O3122.2 (6)C20—N5—N4116.56 (18)
O4—N3—O3'122.5 (8)O8—N6—O7123.5 (2)
O4—N3—C11118.8 (2)O8—N6—C24118.5 (2)
O3—N3—C11117.5 (6)O7—N6—C24118.0 (2)
O3'—N3—C11116.8 (8)C19—C14—C15120.8 (2)
C6—C1—C2120.7 (2)C19—C14—S2119.21 (17)
C6—C1—S1119.78 (17)C15—C14—S2119.83 (17)
C2—C1—S1119.49 (17)C16—C15—C14119.3 (2)
C3—C2—C1119.6 (2)C16—C15—H15120.3
C3—C2—H2120.2C14—C15—H15120.3
C1—C2—H2120.2C17—C16—C15119.2 (2)
C4—C3—C2119.0 (2)C17—C16—H16120.4
C4—C3—H3120.5C15—C16—H16120.4
C2—C3—H3120.5C18—C17—C16121.9 (2)
C3—C4—C5122.2 (2)C18—C17—Cl2118.95 (19)
C3—C4—Cl1119.75 (19)C16—C17—Cl2119.19 (19)
C5—C4—Cl1118.1 (2)C17—C18—C19119.2 (2)
C4—C5—C6118.8 (2)C17—C18—H18120.4
C4—C5—H5120.6C19—C18—H18120.4
C6—C5—H5120.6C18—C19—C14119.6 (2)
C1—C6—C5119.6 (2)C18—C19—H19120.2
C1—C6—H6120.2C14—C19—H19120.2
C5—C6—H6120.2N5—C20—C21119.9 (2)
N2—C7—C8120.8 (2)N5—C20—H20120.1
N2—C7—H7119.6C21—C20—H20120.1
C8—C7—H7119.6C26—C21—C22118.8 (2)
C9—C8—C13119.0 (2)C26—C21—C20119.8 (2)
C9—C8—C7119.9 (2)C22—C21—C20121.3 (2)
C13—C8—C7121.0 (2)C23—C22—C21121.0 (2)
C10—C9—C8121.0 (2)C23—C22—H22119.5
C10—C9—H9119.5C21—C22—H22119.5
C8—C9—H9119.5C22—C23—C24118.5 (2)
C11—C10—C9118.3 (2)C22—C23—H23120.8
C11—C10—H10120.8C24—C23—H23120.8
C9—C10—H10120.8C25—C24—C23122.3 (2)
C10—C11—C12122.2 (2)C25—C24—N6118.8 (2)
C10—C11—N3118.8 (2)C23—C24—N6118.9 (2)
C12—C11—N3119.0 (2)C24—C25—C26118.9 (2)
C13—C12—C11119.0 (2)C24—C25—H25120.6
C13—C12—H12120.5C26—C25—H25120.6
C11—C12—H12120.5C25—C26—C21120.6 (2)
C12—C13—C8120.4 (2)C25—C26—H26119.7
C12—C13—H13119.8C21—C26—H26119.7
O2—S1—N1—N2164.14 (15)C7—C8—C13—C12176.5 (2)
O1—S1—N1—N267.20 (18)O6—S2—N4—N5173.52 (15)
C1—S1—N1—N246.79 (18)O5—S2—N4—N557.76 (17)
S1—N1—N2—C7171.43 (17)C14—S2—N4—N556.77 (17)
O2—S1—C1—C6153.93 (18)S2—N4—N5—C20165.33 (16)
O1—S1—C1—C621.0 (2)O6—S2—C14—C1919.8 (2)
N1—S1—C1—C693.2 (2)O5—S2—C14—C19152.28 (18)
O2—S1—C1—C226.4 (2)N4—S2—C14—C1993.9 (2)
O1—S1—C1—C2159.36 (17)O6—S2—C14—C15163.92 (18)
N1—S1—C1—C286.50 (19)O5—S2—C14—C1531.5 (2)
C6—C1—C2—C31.0 (3)N4—S2—C14—C1582.38 (19)
S1—C1—C2—C3178.61 (18)C19—C14—C15—C160.5 (3)
C1—C2—C3—C41.2 (4)S2—C14—C15—C16175.69 (17)
C2—C3—C4—C52.3 (4)C14—C15—C16—C170.2 (3)
C2—C3—C4—Cl1177.17 (18)C15—C16—C17—C180.8 (4)
C3—C4—C5—C61.0 (4)C15—C16—C17—Cl2178.57 (18)
Cl1—C4—C5—C6178.45 (19)C16—C17—C18—C191.3 (4)
C2—C1—C6—C52.3 (4)Cl2—C17—C18—C19178.0 (2)
S1—C1—C6—C5177.32 (19)C17—C18—C19—C141.0 (4)
C4—C5—C6—C11.3 (4)C15—C14—C19—C180.1 (4)
N1—N2—C7—C8175.87 (19)S2—C14—C19—C18176.29 (19)
N2—C7—C8—C9157.7 (2)N4—N5—C20—C21178.17 (18)
N2—C7—C8—C1325.5 (3)N5—C20—C21—C26168.5 (2)
C13—C8—C9—C100.5 (4)N5—C20—C21—C2213.9 (3)
C7—C8—C9—C10177.3 (2)C26—C21—C22—C230.7 (4)
C8—C9—C10—C111.0 (4)C20—C21—C22—C23178.4 (2)
C9—C10—C11—C120.7 (4)C21—C22—C23—C240.5 (4)
C9—C10—C11—N3178.8 (2)C22—C23—C24—C250.4 (4)
O4—N3—C11—C104.8 (3)C22—C23—C24—N6177.7 (2)
O3—N3—C11—C10161.9 (5)O8—N6—C24—C25176.1 (2)
O3'—N3—C11—C10169.5 (6)O7—N6—C24—C254.1 (4)
O4—N3—C11—C12175.6 (2)O8—N6—C24—C232.1 (4)
O3—N3—C11—C1217.7 (6)O7—N6—C24—C23177.8 (2)
O3'—N3—C11—C1210.9 (6)C23—C24—C25—C260.5 (4)
C10—C11—C12—C130.0 (4)N6—C24—C25—C26177.6 (2)
N3—C11—C12—C13179.6 (2)C24—C25—C26—C210.7 (4)
C11—C12—C13—C80.5 (4)C22—C21—C26—C250.8 (4)
C9—C8—C13—C120.2 (4)C20—C21—C26—C25178.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.85 (2)2.06 (2)2.887 (3)163 (2)
N4—H4N···O1ii0.84 (2)2.13 (2)2.918 (2)157 (2)
C10—H10···O7iii0.932.583.465 (3)159
C16—H16···O4iv0.932.583.259 (3)131
C25—H25···O5ii0.932.453.340 (3)161
C12—H12···Cg30.932.963.843 (2)160
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x, y+3/2, z+1/2; (iv) x, y1/2, z+1/2.
Comparison of selected geometrical parameters (Å, °) of compounds (I)–(V) top
The dihedral angle is that between the aromatic rings.
Bond length(I)(II) Molecule A(II) Molecule B(III)(IV)(V)
C1—S11.763 (2)1.754 (2)1.760 (2)1.752 (4)1.751 (5)1.761 (2)
S1—N11.631 (2)1.645 (2)1.641 (2)1.644 (4)1.645 (4)1.625 (2)
N1—N21.388 (2)1.397 (3)1.390 (2)1.394 (5)1.407 (5)1.393 (2)
N2—C71.269 (3)1.269 (3)1.269 (3)1.258 (5)1.272 (5)1.273 (3)
C7—C81.463 (3)1.465 (3)1.462 (3)1.473 (6)1.461 (6)1.458 (3)
Torsion angle
C1—S1—N1—N2-62.4 (2)-46.8 (2)56.8 (2)-66.0 (3)-66.0 (3)-58.4 (2)
S1—N1—N2—C7158.9 (2)171.4 (2)-165.3 (2)166.5 (3)165.4 (3)157.9 (2)
N1—N2—C7—C8175.0 (2)-175.9 (2)178.2 (2)177.8 (4)175.8 (4)175.8 (2)
Dihedral angle81.0 (1)75.9 (1)73.4 (1)78.4 (2)74.8 (2)76.9 (1)
 

Acknowledgements

The authors thank SAIF Panjab University for extending the services of their NMR facility and Mangalore University for providing all the facilities required.

Funding information

ARS thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its DST-PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.

References

First citationBalaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250–o1251.  CrossRef IUCr Journals Google Scholar
First citationHashemi, S. A. (2012). Tetrahedron Lett. 53, 5141–5143.  CrossRef Google Scholar
First citationHussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017a). ACS Omega, 2, 420–431.  CrossRef Google Scholar
First citationHussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017b). Sci. Rep. 7, 5832.  CrossRef PubMed Google Scholar
First citationKia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o821–o822.  CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o1119–o1120.  CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOgawa, C., Konishi, H., Sugiura, M. & Kobayashi, S. (2004). Org. Biomol. Chem. 2, 446–448.  CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationReis, D. C., Despaigne, A. A. R., Da Silva, J. G., Silva, N. F., Vilela, C. F., Mendes, I. C., Takahashi, J. A. & Beraldo, H. (2013). Molecules, 18, 12645–12662.  CrossRef Google Scholar
First citationRollas, S. & Küçükgüzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSalian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613–1618.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B. & de Fátima, A. (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationWeber, B., Tandon, R. & Himsl, D. (2007). Z. Anorg. Allg. Chem. 633, 1159–1162.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds