research communications
a]pyridine derivatives: N-tert-butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine and N-tert-butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine
and Hirshfeld surface analysis of two imidazo[1,2-aDepartment of Physics, Misrimal Navajee Munoth Jain Engineering College, Chennai 600 097, India, bOrganic & Bio-organic Chemistry Laboratory, Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Leather Research Institute Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: aravindhanpresidency@gmail.com
In the title imidazo[1,2-a]pyridine derivatives, N-tert-butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine, C19H23N3O, (I), and N-tert-butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine, C19H24N4, (II), the 4-methoxyphenyl ring in (I) and the 4-(dimethylamino)phenyl ring in (II) are inclined to the respective imidazole rings by 26.69 (9) and 31.35 (10)°. In the crystal of (I), molecules are linked by N—H⋯N hydrogen bonds, forming chains propagating along the [001] direction. The chains are linked by C—H⋯π interactions, forming layers parallel to the (010) plane. In (II), the crystal packing also features N—H⋯N hydrogen bonds, which together with C—H⋯N hydrogen bonds link molecules to form chains propagating along the c-axis direction. The chains are linked by C—H⋯π interactions to form layers parallel to the (100) plane. Inversion-related layers are linked by offset π–π interactions [intercentroid distance = 3.577 (1) Å]. The intermolecular interactions of both compounds were analyzed using Hirshfeld surface analysis and two-dimensional fingerprint plots.
1. Chemical context
Imidazoles are et al., 2006), anti-bacterial (Jackson et al., 2000), anti-tumour (Dooley et al., 1992; Cui et al., 2003), anti-protozoal (Biftu et al., 2006), anti-herpes (Gudmundsson & Johns, 2007), anti-inflammatory (Rupert et al., 2003), anti-ulcerative, anti-hypertensive, anti-histaminic and anti-helminthic properties (Spasov et al., 1999). They also exhibit different therapeutic (Silvestre et al., 1998; Lhassani et al., 1999; Ertl et al., 2000) and fluorescence properties (Kawai et al., 2001; Abdullah, 2005). Imidazo[1,2-a]pyridines have been shown to be highly active against human cytomegalovirus and varicella-zoster virus (Gueffier et al., 1998; Mavel et al., 2002). In the present study, we report the synthesis, the single crystal X-ray diffraction studies, and Hirshfeld surface analysis of two new novel imidazole derivatives, N-tert-butyl-2-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyridin-3-amine, (I), and N-tert-butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyridin-3-amine, (II).
which show important pharmacological and biochemical properties. They exhibit anti-fungal (Banfi2. Structural commentary
The molecular structure of compound (I) is shown in Fig. 1, and that of compound (II) in Fig. 2. The overall conformation of the two molecules is similar, as shown in the structural overlap drawing, Fig. 3. In compound (I), the imidazole ring system is planar with an r.m.s deviation of 0.062 Å and a maximum deviation of 0.071 (2) Å for atom C1. In compound (II), the imidazole ring system is planar with an r.m.s deviation of 0.029 Å and a maximum deviation of 0.031 (2) Å for atom N2. In (I) the pyridine ring (N2/C1–C5) of the imidazole ring system makes a dihedral angle of 4.91 (11)° with the five-membered ring (N2/N3/C5–C7), while the corresponding angle in (II) is 2.90 (13)°. In both compounds, the difference in endocyclic angles [129.27 (19)° for bond angle C4—C5—N3 and 132.33 (17)° for bond angle C1—N2—C6 in compound (I), and 131.1 (2) and 130.4 (2)°, respectively, in compound (II)] of the imidazole ring systems are due to the merging of five- and six-membered rings and the strain is taken up by angular distortion rather than by bond length distortion.
The dihedral angle between the pyridine (N2/C1–C5) and the benzene (C8–C13) rings is 25.04 (10)° in (I) and 31.11 (12) ° in (II). In (I) the methoxy group (C11/O1/C14) lies in the plane of the benzene ring (C8–C13) to which it is attached, with a dihedral angle of 0.6 (2)°. In (II) the dimethylamine group (N4/C14/C15) also lies close to the plane of the benzene ring (C8–C13) with a dihedral angle of 1.42 (19)°. The dihedral angle between atoms N1/C16/C18 and the imidazole ring mean plane is 80.28 (19)° in (I) and 84.6 (2)° in (II). The sum of the bond angles around atom N2 is 359.87 ° in (I), and the sums around atoms N2 and N4 in (II) are 359.85 and 360.0°, respectively, indicating sp2 In compound (I) the torsion angles C10—C9—C8—C7 and C18—C16—N1—C6 are −178.9 (2) and 170.52 (18)°, respectively, while the corresponding torsion angles in compound (II) are −177.9 (2) and 179.4 (2)°, respectively. This shows that for both compounds the imidazole ring is (−) antiperiplanar with the benzene ring and (+) antiperiplanar with the side-chain atoms N1, C16 and C18.
3. Supramolecular features
In the crystal of (I), molecules are linked by N1—H1A⋯N3i hydrogen bonds (Table 1), forming C(8) chains propagating along the c-axis direction, as shown in Fig. 4. The chains are linked by C—H⋯π interactions, forming layers lying parallel to the ac plane (Fig. 4, Table 1).
In the crystal of (II), molecules are linked by N1—H1A⋯N3i and C13—H13⋯N3i hydrogen bonds (Table 2), forming chains propagating along the [001] direction, as shown in Fig. 5. The chains are also linked by C—H⋯π interactions, forming layers lying parallel to the bc plane (Fig. 5, Table 2). Inversion-related layers are linked by offset π–π interactions involving the pyridine ring of the imidazole ring system: Cg2⋯Cg2iii = 3.577 (1) Å, Cg2 is the centroid of the pyridine ring (N2/C1–C5), α = 0.0 (1)°, β = 22.3°, interplanar distance = 3.309 (1) Å, offset = 1.357 Å; symmetry code (iii) −x + 1, −y + 1, −z + 1.
4. Hirshfeld Surface Analysis
Hirshfeld surface analysis was used to quantify the intermolecular contacts of the title compounds, using the software CrystalExplorer17.5 (Turner et al., 2017). The bright-red spots on the Hirshfeld surface mapped over dnorm [Fig. 6(a) and 7(a)], show the presence of N—H⋯N and C—H⋯ N interactions with neighbouring molecules. The surfaces mapped over the electrostatic potential are illustrated in Fig. 6(b) and 7(b), while Fig. 6(c) and 7(c) show the intermolecular contacts. The presence of red and blue triangles on the shape index map [Fig. 7(d)], indicates the presence of π–π stacking interactions in compound (II), and their absence in Fig. 6(d) shows that such interactions are absent in compound (I). The large flat region in Fig. 7(e), shown on the curvature map, confirms the presence of C—H⋯π interactions in compound (II). The fragment patches on the Hirshfeld surface [Figs. 6(f) and 7(f)] show the coordination environments of the molecules. The complete two-dimensional fingerprint plots are shown in Fig. 8(a) and 9(a). The H⋯H, C⋯H, N⋯H, C⋯N, H⋯O and C⋯C interactions are illustrated in Fig. 8(b)–8(e) for (I) and Fig. 9(b)–9(e) for (II). The H⋯H interactions make the largest contributions [Fig. 8(b) and 9(b)] to the overall Hirshfeld surfaces [68.3% for compound (I) and 71.6% for compound (II)]. The C⋯H interactions appear as two wings in the fingerprint plot [Fig. 8(c) and 9(c)], showing a contribution of 18.2% for compound (I) and 17.7% for compound (II) of the Hirshfeld surfaces. The contribution from the N⋯H contacts, corresponding to C—H⋯N interactions, is represented by a pair of sharp spikes with a contribution of 7.1% for compound (I) and 8.2% for compound (II) of the Hirshfeld surfaces [Fig. 8(d) and 9(d)]. The H⋯O contacts have a contribution of 5.4% of the Hirshfeld surface for compound (I). The C⋯C contacts, which refers to π–π interactions, contribute 1.8% of the Hirshfeld surfaces for compound (II). This can be seen in the shape of a butterfly at de = di 1.7Å [Fig. 9(e)].
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016) revealed 29 hits for imidazo[1,2-a]pyridin-3-amine and 16 hits for 5-methyl imidazo[1,2-a]pyridin-3-amine. Two compounds, (5-methylimidazo-[1,2-a]pyridin-2-yl)methanol (CSD refcode PONVUL; Elaatiaoui et al., 2014), and ethyl 5-methylimidazo[1,2-a]pyridine-2-carboxylate (DUSWOE; Yao et al., 2010) are close analogues of compound (I). A third compound, (E)-2-phenyl-N-(thiophen-2-ylmethylidene)-imidazo[1,2-a]pyridin-3-amine (OLEBOY; Elaatiaoui et al., 2016), is a close analogue of compound (II). The crystal packing of compounds (I) and (II) are stabilized by N—H⋯N, C—H⋯N and C—H⋯π interactions, but the above mentioned crystal structures exhibit in general C—H⋯O, O—H⋯N and π–π interactions.
An interesting pyrazine analogue of compound (II) has been reported, i.e. N-tert-butyl-2-[4-(dimethylamino)phenyl]imidazo[1,2-a]pyrazin-3-amine (WIGKOO; Fatima et al., 2013). Here the pyrazine and benzene rings are inclined to each other by 16.96 (7)°, compared to the corresponding dihedral angle of 31.11 (12)° involving the pyridine and benzene rings in (II). In the crystal, molecules are linked via N—H⋯N hydrogen bonds, forming chains along [010], which in turn are linked by C—H⋯N hydrogen bonds forming layers parallel to the ab plane. This is very similar to the crystal-packing arrangement observed for compound (II).
6. Synthesis and crystallization
Compound (I)
5-Methyl-2-aminopyridine (10 mmol) and 4-methoxybenzaldehyde (1 eq.) were solubilized in ethanol. To this solution, tert-butyl isocyanide (1 eq.) and iodine (0.5 mmol %) were added. The reaction mixture was stirred at room temperature overnight. The white precipitate that had formed was filtered off and purified further using silica-gel to give a white solid in 60% yield.
Compound (II)
2-Aminopyridine (10 mmol) and 4-(dimethylamino) benzaldehyde (1 eq.) were solubilized in ethanol. To this solution, tert-butyl isocyanide (1 eq.) and iodine (0.5 mmol %) were added. The reaction mixture was stirred at room temperature overnight. The white precipitate that formed was filtered off and purified further using silica-gel to give a yellow solid (yield 0.282 g, 91%).
Spectroscopic data: NMR spectra were recorded on a Bruker 400 MHz NMR spectrophotometer in CdCl3 and chemical shifts were recorded in parts per million relative to tetramethylsilane (TMS), used as an internal standard.
Compound (I)
1H NMR (400 MHz, CDCl3) δ = 8.57 (ddd, J = 4.9, 1.8, 0.9, 1H), 8.14 (dt, J = 8.0, 1.0, 1H), 7.77 (td, J = 7.7, 1.8, 1H), 7.40 (d, J = 9.0, 1H), 7.16 (ddd, J = 7.5, 4.9, 1.2, 1H), 7.01 (dd, J = 9.0, 6.7, 1H), 6.46–6.41 (m, 1H), 4.99 (s, 1H), 2.96 (s, 3H), 0.93 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 155.31, 148.37, 142.86, 138.16, 137.65, 137.35, 136.54, 130.34, 124.28, 121.80, 121.79, 115.58, 113.91, 105.48, 57.20, 28.97, 20.21.
Compound (II)
1H NMR (CDCl3, 500 MHz): dH 1.05 [s, 9H, –C(CH3)3], 2.97 [s, 6H, Ar-N(CH3)2], 6.69 (t, 1H, -Ar-H), 6.77 (d, 2H, J = 8.40 Hz, –Ar-H), 7.17 (t, 1H, –Ar-H, –Ar-H), 7.53 (d, 1H, J = 8.40 Hz, –Ar-H), 7.8 (d, 2H, J = 4.5 Hz, –Ar-H), 8.19 (d, 1H, J = 8.40 Hz, –Ar-H). ESI–MS: calculated for C19H24N4 [M + H]+ 308.2007; found: 308.27.
Crystals of compounds (I) and (II), suitable for X-ray were obtained by slow evaporation from ethyl alcohol (EtOH) solution at room temperature.
7. Refinement
Crystal data, data collection and structure . For both compounds the NH H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.
details are summarized in Table 3
|
Supporting information
https://doi.org/10.1107/S2056989018016651/su5459sup1.cif
contains datablocks I, II, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018016651/su5459Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018016651/su5459IIsup3.hkl
For both structures, data collection: APEX2 (Bruker, 2016); cell
APEX2/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008). Software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010) for (I); SHELXL2018 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010). for (II).C19H23N3O | F(000) = 664 |
Mr = 309.40 | Dx = 1.190 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2357 (7) Å | Cell parameters from 3732 reflections |
b = 15.6388 (12) Å | θ = 2.6–29.2° |
c = 11.984 (1) Å | µ = 0.08 mm−1 |
β = 93.998 (3)° | T = 296 K |
V = 1726.7 (2) Å3 | Block, colourless |
Z = 4 | 0.15 × 0.15 × 0.10 mm |
Bruker Kappa APEXII CCD diffractometer | 3208 independent reflections |
Radiation source: fine-focus sealed tube | 2109 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω and φ scan | θmax = 25.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −11→11 |
Tmin = 0.552, Tmax = 0.746 | k = −18→18 |
16458 measured reflections | l = −14→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6929P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3208 reflections | Δρmax = 0.15 e Å−3 |
218 parameters | Δρmin = −0.13 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0063 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.02423 (18) | 0.88980 (13) | 0.62308 (14) | 0.0800 (6) | |
N1 | 0.58139 (18) | 0.64812 (11) | 0.72686 (14) | 0.0385 (4) | |
H1A | 0.560 (2) | 0.6854 (13) | 0.7736 (17) | 0.045 (6)* | |
N2 | 0.71475 (16) | 0.66024 (10) | 0.55928 (13) | 0.0381 (4) | |
N3 | 0.55442 (18) | 0.72815 (11) | 0.43982 (13) | 0.0417 (4) | |
C1 | 0.8497 (2) | 0.62484 (14) | 0.59167 (19) | 0.0480 (6) | |
C2 | 0.9389 (2) | 0.60796 (16) | 0.5092 (2) | 0.0618 (7) | |
H2 | 1.028199 | 0.582474 | 0.528113 | 0.074* | |
C3 | 0.9016 (3) | 0.62747 (17) | 0.3962 (2) | 0.0633 (7) | |
H3 | 0.963493 | 0.611842 | 0.341717 | 0.076* | |
C4 | 0.7768 (2) | 0.66868 (14) | 0.36672 (18) | 0.0524 (6) | |
H4 | 0.754319 | 0.684394 | 0.292687 | 0.063* | |
C5 | 0.6809 (2) | 0.68762 (13) | 0.44948 (16) | 0.0401 (5) | |
C6 | 0.5944 (2) | 0.68161 (12) | 0.61971 (15) | 0.0345 (5) | |
C7 | 0.5016 (2) | 0.72552 (12) | 0.54407 (15) | 0.0361 (5) | |
C8 | 0.3630 (2) | 0.76695 (12) | 0.56396 (15) | 0.0367 (5) | |
C9 | 0.2546 (2) | 0.77465 (15) | 0.47894 (17) | 0.0516 (6) | |
H9 | 0.270036 | 0.752223 | 0.408881 | 0.062* | |
C10 | 0.1244 (2) | 0.81454 (16) | 0.49472 (18) | 0.0574 (6) | |
H10 | 0.053459 | 0.818460 | 0.435930 | 0.069* | |
C11 | 0.0997 (2) | 0.84844 (15) | 0.59730 (18) | 0.0512 (6) | |
C12 | 0.2067 (2) | 0.84190 (15) | 0.68339 (18) | 0.0540 (6) | |
H12 | 0.190965 | 0.864567 | 0.753249 | 0.065* | |
C13 | 0.3361 (2) | 0.80227 (14) | 0.66681 (17) | 0.0463 (5) | |
H13 | 0.407187 | 0.799021 | 0.725600 | 0.056* | |
C14 | −0.1377 (3) | 0.8996 (2) | 0.5385 (2) | 0.0848 (9) | |
H14A | −0.170048 | 0.844251 | 0.512568 | 0.127* | |
H14B | −0.102994 | 0.931447 | 0.477349 | 0.127* | |
H14C | −0.217011 | 0.929636 | 0.568295 | 0.127* | |
C15 | 0.8957 (3) | 0.61354 (19) | 0.7129 (2) | 0.0712 (8) | |
H15A | 0.992141 | 0.590353 | 0.720247 | 0.107* | |
H15B | 0.830116 | 0.575101 | 0.746182 | 0.107* | |
H15C | 0.894405 | 0.667913 | 0.749953 | 0.107* | |
C16 | 0.4969 (2) | 0.56772 (13) | 0.73775 (17) | 0.0478 (5) | |
C17 | 0.3348 (3) | 0.58040 (18) | 0.7103 (3) | 0.0830 (9) | |
H17A | 0.318020 | 0.596991 | 0.633344 | 0.124* | |
H17B | 0.299696 | 0.624313 | 0.757429 | 0.124* | |
H17C | 0.284589 | 0.527895 | 0.722769 | 0.124* | |
C18 | 0.5237 (3) | 0.53949 (16) | 0.85894 (19) | 0.0676 (7) | |
H18A | 0.491235 | 0.583342 | 0.907398 | 0.101* | |
H18B | 0.625574 | 0.529685 | 0.875337 | 0.101* | |
H18C | 0.471174 | 0.487645 | 0.870558 | 0.101* | |
C19 | 0.5532 (3) | 0.50019 (15) | 0.6600 (2) | 0.0712 (8) | |
H19A | 0.654518 | 0.490342 | 0.679215 | 0.107* | |
H19B | 0.540247 | 0.519762 | 0.584077 | 0.107* | |
H19C | 0.500409 | 0.447913 | 0.667862 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0547 (10) | 0.1337 (17) | 0.0507 (11) | 0.0372 (11) | −0.0036 (8) | −0.0104 (11) |
N1 | 0.0478 (10) | 0.0425 (10) | 0.0246 (9) | −0.0031 (8) | −0.0024 (7) | −0.0012 (8) |
N2 | 0.0392 (9) | 0.0403 (9) | 0.0346 (10) | −0.0010 (7) | 0.0019 (7) | −0.0022 (7) |
N3 | 0.0473 (10) | 0.0488 (10) | 0.0290 (9) | 0.0023 (8) | 0.0035 (7) | 0.0027 (8) |
C1 | 0.0412 (12) | 0.0509 (13) | 0.0513 (14) | 0.0026 (10) | −0.0018 (10) | −0.0050 (11) |
C2 | 0.0425 (13) | 0.0714 (17) | 0.0720 (18) | 0.0081 (12) | 0.0084 (12) | −0.0068 (14) |
C3 | 0.0550 (15) | 0.0765 (17) | 0.0612 (17) | 0.0001 (13) | 0.0240 (13) | −0.0099 (14) |
C4 | 0.0582 (15) | 0.0613 (15) | 0.0392 (13) | −0.0063 (12) | 0.0147 (11) | −0.0027 (11) |
C5 | 0.0472 (12) | 0.0430 (11) | 0.0307 (11) | −0.0073 (10) | 0.0058 (9) | −0.0019 (9) |
C6 | 0.0374 (10) | 0.0398 (11) | 0.0263 (10) | −0.0045 (9) | 0.0019 (8) | −0.0040 (8) |
C7 | 0.0416 (11) | 0.0407 (11) | 0.0257 (10) | −0.0025 (9) | −0.0001 (8) | 0.0006 (9) |
C8 | 0.0400 (11) | 0.0428 (11) | 0.0267 (10) | −0.0002 (9) | −0.0013 (8) | 0.0032 (9) |
C9 | 0.0536 (13) | 0.0747 (16) | 0.0256 (11) | 0.0113 (12) | −0.0037 (10) | −0.0055 (11) |
C10 | 0.0494 (13) | 0.0846 (17) | 0.0363 (13) | 0.0130 (12) | −0.0114 (10) | −0.0019 (12) |
C11 | 0.0428 (12) | 0.0695 (15) | 0.0410 (13) | 0.0112 (11) | 0.0000 (10) | 0.0011 (11) |
C12 | 0.0516 (13) | 0.0801 (16) | 0.0300 (12) | 0.0137 (12) | 0.0002 (10) | −0.0098 (11) |
C13 | 0.0457 (12) | 0.0609 (14) | 0.0307 (12) | 0.0066 (10) | −0.0090 (9) | −0.0043 (10) |
C14 | 0.0514 (15) | 0.127 (3) | 0.074 (2) | 0.0277 (16) | −0.0128 (14) | −0.0110 (18) |
C15 | 0.0511 (14) | 0.097 (2) | 0.0626 (17) | 0.0198 (14) | −0.0146 (12) | −0.0050 (15) |
C16 | 0.0568 (13) | 0.0468 (12) | 0.0386 (12) | −0.0101 (11) | −0.0062 (10) | 0.0059 (10) |
C17 | 0.0623 (17) | 0.0747 (18) | 0.109 (2) | −0.0249 (14) | −0.0135 (16) | 0.0225 (17) |
C18 | 0.097 (2) | 0.0635 (16) | 0.0422 (14) | −0.0124 (14) | 0.0028 (13) | 0.0133 (12) |
C19 | 0.112 (2) | 0.0494 (14) | 0.0506 (15) | −0.0149 (15) | −0.0056 (14) | −0.0033 (12) |
O1—C11 | 1.368 (3) | C10—C11 | 1.372 (3) |
O1—C14 | 1.414 (3) | C10—H10 | 0.9300 |
N1—C6 | 1.400 (2) | C11—C12 | 1.382 (3) |
N1—C16 | 1.490 (3) | C12—C13 | 1.373 (3) |
N1—H1A | 0.84 (2) | C12—H12 | 0.9300 |
N2—C1 | 1.394 (3) | C13—H13 | 0.9300 |
N2—C5 | 1.398 (2) | C14—H14A | 0.9600 |
N2—C6 | 1.409 (2) | C14—H14B | 0.9600 |
N3—C5 | 1.327 (2) | C14—H14C | 0.9600 |
N3—C7 | 1.373 (2) | C15—H15A | 0.9600 |
C1—C2 | 1.355 (3) | C15—H15B | 0.9600 |
C1—C15 | 1.495 (3) | C15—H15C | 0.9600 |
C2—C3 | 1.407 (3) | C16—C18 | 1.522 (3) |
C2—H2 | 0.9300 | C16—C19 | 1.523 (3) |
C3—C4 | 1.346 (3) | C16—C17 | 1.523 (3) |
C3—H3 | 0.9300 | C17—H17A | 0.9600 |
C4—C5 | 1.407 (3) | C17—H17B | 0.9600 |
C4—H4 | 0.9300 | C17—H17C | 0.9600 |
C6—C7 | 1.385 (3) | C18—H18A | 0.9600 |
C7—C8 | 1.469 (3) | C18—H18B | 0.9600 |
C8—C9 | 1.383 (3) | C18—H18C | 0.9600 |
C8—C13 | 1.389 (3) | C19—H19A | 0.9600 |
C9—C10 | 1.380 (3) | C19—H19B | 0.9600 |
C9—H9 | 0.9300 | C19—H19C | 0.9600 |
C11—O1—C14 | 118.61 (19) | C13—C12—H12 | 119.7 |
C6—N1—C16 | 118.36 (16) | C11—C12—H12 | 119.7 |
C6—N1—H1A | 112.9 (14) | C12—C13—C8 | 121.27 (19) |
C16—N1—H1A | 112.4 (14) | C12—C13—H13 | 119.4 |
C1—N2—C5 | 121.38 (17) | C8—C13—H13 | 119.4 |
C1—N2—C6 | 132.33 (17) | O1—C14—H14A | 109.5 |
C5—N2—C6 | 106.16 (15) | O1—C14—H14B | 109.5 |
C5—N3—C7 | 105.83 (16) | H14A—C14—H14B | 109.5 |
C2—C1—N2 | 116.8 (2) | O1—C14—H14C | 109.5 |
C2—C1—C15 | 122.6 (2) | H14A—C14—H14C | 109.5 |
N2—C1—C15 | 120.36 (19) | H14B—C14—H14C | 109.5 |
C1—C2—C3 | 122.6 (2) | C1—C15—H15A | 109.5 |
C1—C2—H2 | 118.7 | C1—C15—H15B | 109.5 |
C3—C2—H2 | 118.7 | H15A—C15—H15B | 109.5 |
C4—C3—C2 | 120.3 (2) | C1—C15—H15C | 109.5 |
C4—C3—H3 | 119.9 | H15A—C15—H15C | 109.5 |
C2—C3—H3 | 119.9 | H15B—C15—H15C | 109.5 |
C3—C4—C5 | 119.0 (2) | N1—C16—C18 | 106.10 (17) |
C3—C4—H4 | 120.5 | N1—C16—C19 | 109.17 (18) |
C5—C4—H4 | 120.5 | C18—C16—C19 | 110.05 (19) |
N3—C5—N2 | 111.49 (16) | N1—C16—C17 | 112.57 (18) |
N3—C5—C4 | 129.27 (19) | C18—C16—C17 | 109.6 (2) |
N2—C5—C4 | 119.23 (19) | C19—C16—C17 | 109.3 (2) |
C7—C6—N1 | 134.20 (17) | C16—C17—H17A | 109.5 |
C7—C6—N2 | 104.80 (15) | C16—C17—H17B | 109.5 |
N1—C6—N2 | 120.27 (17) | H17A—C17—H17B | 109.5 |
N3—C7—C6 | 111.55 (17) | C16—C17—H17C | 109.5 |
N3—C7—C8 | 120.23 (17) | H17A—C17—H17C | 109.5 |
C6—C7—C8 | 128.23 (17) | H17B—C17—H17C | 109.5 |
C9—C8—C13 | 117.03 (18) | C16—C18—H18A | 109.5 |
C9—C8—C7 | 120.86 (17) | C16—C18—H18B | 109.5 |
C13—C8—C7 | 122.08 (18) | H18A—C18—H18B | 109.5 |
C10—C9—C8 | 122.11 (19) | C16—C18—H18C | 109.5 |
C10—C9—H9 | 118.9 | H18A—C18—H18C | 109.5 |
C8—C9—H9 | 118.9 | H18B—C18—H18C | 109.5 |
C11—C10—C9 | 119.9 (2) | C16—C19—H19A | 109.5 |
C11—C10—H10 | 120.0 | C16—C19—H19B | 109.5 |
C9—C10—H10 | 120.0 | H19A—C19—H19B | 109.5 |
O1—C11—C10 | 125.4 (2) | C16—C19—H19C | 109.5 |
O1—C11—C12 | 115.63 (19) | H19A—C19—H19C | 109.5 |
C10—C11—C12 | 119.0 (2) | H19B—C19—H19C | 109.5 |
C13—C12—C11 | 120.7 (2) | ||
C5—N2—C1—C2 | −8.4 (3) | N1—C6—C7—N3 | −166.5 (2) |
C6—N2—C1—C2 | 176.4 (2) | N2—C6—C7—N3 | 3.3 (2) |
C5—N2—C1—C15 | 166.7 (2) | N1—C6—C7—C8 | 14.0 (4) |
C6—N2—C1—C15 | −8.5 (3) | N2—C6—C7—C8 | −176.20 (18) |
N2—C1—C2—C3 | 2.2 (3) | N3—C7—C8—C9 | 29.4 (3) |
C15—C1—C2—C3 | −172.7 (2) | C6—C7—C8—C9 | −151.2 (2) |
C1—C2—C3—C4 | 3.7 (4) | N3—C7—C8—C13 | −148.62 (19) |
C2—C3—C4—C5 | −3.5 (4) | C6—C7—C8—C13 | 30.8 (3) |
C7—N3—C5—N2 | −1.7 (2) | C13—C8—C9—C10 | −0.8 (3) |
C7—N3—C5—C4 | 176.8 (2) | C7—C8—C9—C10 | −178.9 (2) |
C1—N2—C5—N3 | −172.63 (17) | C8—C9—C10—C11 | 0.3 (4) |
C6—N2—C5—N3 | 3.7 (2) | C14—O1—C11—C10 | −0.2 (4) |
C1—N2—C5—C4 | 8.7 (3) | C14—O1—C11—C12 | 179.3 (2) |
C6—N2—C5—C4 | −174.96 (18) | C9—C10—C11—O1 | 179.6 (2) |
C3—C4—C5—N3 | 179.1 (2) | C9—C10—C11—C12 | 0.0 (4) |
C3—C4—C5—N2 | −2.5 (3) | O1—C11—C12—C13 | −179.5 (2) |
C16—N1—C6—C7 | 75.4 (3) | C10—C11—C12—C13 | 0.1 (4) |
C16—N1—C6—N2 | −93.2 (2) | C11—C12—C13—C8 | −0.6 (4) |
C1—N2—C6—C7 | 171.71 (19) | C9—C8—C13—C12 | 0.9 (3) |
C5—N2—C6—C7 | −4.1 (2) | C7—C8—C13—C12 | 179.0 (2) |
C1—N2—C6—N1 | −16.7 (3) | C6—N1—C16—C18 | 170.52 (18) |
C5—N2—C6—N1 | 167.46 (17) | C6—N1—C16—C19 | 52.0 (2) |
C5—N3—C7—C6 | −1.1 (2) | C6—N1—C16—C17 | −69.6 (3) |
C5—N3—C7—C8 | 178.47 (17) |
Cg4 is the centroid of the imidazole ring system N2/N3/C1–C7. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N3i | 0.84 (2) | 2.41 (2) | 3.226 (2) | 163.6 (19) |
C14—H14A···Cg4ii | 0.96 | 2.93 | 3.862 (3) | 165 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x−1, y, z. |
C19H24N4 | F(000) = 1328 |
Mr = 308.42 | Dx = 1.171 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 34.9185 (14) Å | Cell parameters from 4941 reflections |
b = 8.4656 (5) Å | θ = 2.3–21.5° |
c = 11.8361 (6) Å | µ = 0.07 mm−1 |
β = 91.061 (5)° | T = 296 K |
V = 3498.2 (3) Å3 | Block, brown |
Z = 8 | 0.15 × 0.10 × 0.10 mm |
Bruker Kappa APEXII CCD diffractometer | 3259 independent reflections |
Radiation source: fine-focus sealed tube | 1834 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
ω and φ scan | θmax = 25.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −42→42 |
Tmin = 0.697, Tmax = 0.745 | k = −10→10 |
32313 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.159 | w = 1/[σ2(Fo2) + (0.0675P)2 + 2.4598P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3259 reflections | Δρmax = 0.22 e Å−3 |
218 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0021 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.58246 (6) | 0.2712 (2) | 0.25418 (17) | 0.0442 (6) | |
H1A | 0.5872 (7) | 0.328 (3) | 0.196 (2) | 0.059 (8)* | |
N2 | 0.55040 (5) | 0.3250 (2) | 0.42684 (15) | 0.0409 (5) | |
N3 | 0.58530 (6) | 0.5154 (2) | 0.50989 (15) | 0.0438 (5) | |
N4 | 0.72538 (7) | 0.8380 (3) | 0.2431 (2) | 0.0757 (8) | |
C1 | 0.52002 (7) | 0.2237 (3) | 0.4153 (2) | 0.0508 (7) | |
H1 | 0.517019 | 0.162595 | 0.350459 | 0.061* | |
C2 | 0.49463 (8) | 0.2134 (3) | 0.4987 (2) | 0.0571 (7) | |
H2 | 0.473839 | 0.145323 | 0.491098 | 0.068* | |
C3 | 0.49907 (8) | 0.3043 (3) | 0.5975 (2) | 0.0582 (7) | |
H3 | 0.481526 | 0.294650 | 0.655271 | 0.070* | |
C4 | 0.52893 (7) | 0.4063 (3) | 0.6088 (2) | 0.0534 (7) | |
H4 | 0.531869 | 0.466408 | 0.674089 | 0.064* | |
C5 | 0.55533 (7) | 0.4205 (3) | 0.52145 (18) | 0.0421 (6) | |
C6 | 0.57963 (7) | 0.3602 (3) | 0.35289 (18) | 0.0393 (6) | |
C7 | 0.60021 (6) | 0.4794 (3) | 0.40559 (18) | 0.0401 (6) | |
C8 | 0.63292 (7) | 0.5687 (3) | 0.36299 (18) | 0.0402 (6) | |
C9 | 0.66073 (7) | 0.6297 (3) | 0.4354 (2) | 0.0497 (7) | |
H9 | 0.658973 | 0.610551 | 0.512451 | 0.060* | |
C10 | 0.69081 (8) | 0.7177 (3) | 0.3970 (2) | 0.0553 (7) | |
H10 | 0.708854 | 0.756665 | 0.448615 | 0.066* | |
C11 | 0.69492 (7) | 0.7499 (3) | 0.2825 (2) | 0.0508 (7) | |
C12 | 0.66718 (7) | 0.6877 (3) | 0.2090 (2) | 0.0508 (7) | |
H12 | 0.669089 | 0.705457 | 0.131802 | 0.061* | |
C13 | 0.63701 (7) | 0.6006 (3) | 0.24861 (19) | 0.0462 (6) | |
H13 | 0.618807 | 0.561903 | 0.197371 | 0.055* | |
C14 | 0.75347 (10) | 0.8995 (5) | 0.3193 (3) | 0.1142 (15) | |
H14A | 0.741602 | 0.971727 | 0.370444 | 0.171* | |
H14B | 0.772753 | 0.954037 | 0.277596 | 0.171* | |
H14C | 0.765061 | 0.814507 | 0.361250 | 0.171* | |
C15 | 0.72835 (11) | 0.8749 (5) | 0.1261 (3) | 0.1039 (13) | |
H15A | 0.727624 | 0.779098 | 0.082673 | 0.156* | |
H15B | 0.752067 | 0.928862 | 0.113508 | 0.156* | |
H15C | 0.707347 | 0.941516 | 0.103264 | 0.156* | |
C16 | 0.60865 (8) | 0.1322 (3) | 0.25466 (19) | 0.0507 (7) | |
C17 | 0.64993 (10) | 0.1807 (4) | 0.2766 (4) | 0.1032 (13) | |
H17A | 0.657379 | 0.256783 | 0.220981 | 0.155* | |
H17B | 0.666177 | 0.089525 | 0.272039 | 0.155* | |
H17C | 0.652367 | 0.226531 | 0.350538 | 0.155* | |
C18 | 0.60542 (11) | 0.0597 (4) | 0.1387 (2) | 0.0899 (12) | |
H18A | 0.579787 | 0.021809 | 0.125922 | 0.135* | |
H18B | 0.623086 | −0.026745 | 0.133299 | 0.135* | |
H18C | 0.611317 | 0.137832 | 0.082842 | 0.135* | |
C19 | 0.59690 (11) | 0.0154 (4) | 0.3429 (3) | 0.0996 (13) | |
H19A | 0.597112 | 0.065823 | 0.415539 | 0.149* | |
H19B | 0.614509 | −0.071669 | 0.344110 | 0.149* | |
H19C | 0.571574 | −0.022513 | 0.325394 | 0.149* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0602 (14) | 0.0398 (12) | 0.0327 (12) | 0.0071 (10) | 0.0018 (10) | −0.0009 (9) |
N2 | 0.0434 (12) | 0.0376 (11) | 0.0417 (11) | −0.0020 (10) | 0.0017 (9) | −0.0031 (9) |
N3 | 0.0492 (12) | 0.0451 (12) | 0.0372 (11) | −0.0053 (10) | 0.0044 (9) | −0.0036 (9) |
N4 | 0.0694 (17) | 0.0800 (19) | 0.0784 (18) | −0.0236 (15) | 0.0188 (14) | 0.0092 (14) |
C1 | 0.0549 (16) | 0.0452 (15) | 0.0524 (16) | −0.0078 (13) | −0.0015 (13) | −0.0073 (12) |
C2 | 0.0529 (17) | 0.0563 (17) | 0.0623 (17) | −0.0120 (14) | 0.0069 (14) | −0.0029 (14) |
C3 | 0.0564 (17) | 0.0631 (18) | 0.0556 (17) | −0.0070 (15) | 0.0144 (13) | 0.0000 (14) |
C4 | 0.0596 (17) | 0.0574 (17) | 0.0434 (14) | −0.0049 (15) | 0.0107 (12) | −0.0057 (13) |
C5 | 0.0490 (15) | 0.0422 (14) | 0.0350 (13) | −0.0032 (12) | 0.0017 (11) | −0.0043 (11) |
C6 | 0.0462 (14) | 0.0375 (13) | 0.0343 (12) | 0.0014 (11) | 0.0017 (11) | −0.0019 (10) |
C7 | 0.0438 (14) | 0.0400 (13) | 0.0365 (13) | 0.0026 (11) | 0.0020 (10) | 0.0013 (11) |
C8 | 0.0437 (14) | 0.0388 (13) | 0.0384 (13) | 0.0017 (12) | 0.0037 (10) | −0.0016 (11) |
C9 | 0.0542 (16) | 0.0538 (16) | 0.0411 (14) | −0.0058 (14) | 0.0017 (12) | −0.0010 (12) |
C10 | 0.0514 (16) | 0.0569 (17) | 0.0575 (17) | −0.0098 (14) | 0.0015 (13) | −0.0036 (13) |
C11 | 0.0501 (16) | 0.0431 (15) | 0.0596 (17) | −0.0023 (13) | 0.0114 (13) | −0.0004 (13) |
C12 | 0.0621 (17) | 0.0482 (15) | 0.0426 (14) | 0.0011 (14) | 0.0128 (13) | 0.0041 (12) |
C13 | 0.0516 (16) | 0.0464 (15) | 0.0407 (14) | −0.0017 (13) | 0.0015 (11) | 0.0005 (11) |
C14 | 0.082 (3) | 0.131 (4) | 0.129 (3) | −0.059 (3) | −0.003 (2) | 0.019 (3) |
C15 | 0.107 (3) | 0.115 (3) | 0.092 (3) | −0.034 (2) | 0.043 (2) | 0.006 (2) |
C16 | 0.0687 (18) | 0.0412 (14) | 0.0422 (14) | 0.0131 (13) | 0.0054 (12) | −0.0005 (11) |
C17 | 0.074 (2) | 0.082 (3) | 0.154 (4) | 0.029 (2) | −0.012 (2) | −0.021 (2) |
C18 | 0.145 (3) | 0.071 (2) | 0.0538 (18) | 0.040 (2) | 0.0069 (19) | −0.0116 (16) |
C19 | 0.150 (3) | 0.066 (2) | 0.084 (2) | 0.046 (2) | 0.043 (2) | 0.0315 (19) |
N1—C6 | 1.395 (3) | C10—C11 | 1.393 (3) |
N1—C16 | 1.491 (3) | C10—H10 | 0.9300 |
N1—H1A | 0.86 (3) | C11—C12 | 1.393 (4) |
N2—C1 | 1.369 (3) | C12—C13 | 1.375 (3) |
N2—C6 | 1.389 (3) | C12—H12 | 0.9300 |
N2—C5 | 1.389 (3) | C13—H13 | 0.9300 |
N3—C5 | 1.329 (3) | C14—H14A | 0.9600 |
N3—C7 | 1.383 (3) | C14—H14B | 0.9600 |
N4—C11 | 1.387 (3) | C14—H14C | 0.9600 |
N4—C14 | 1.419 (4) | C15—H15A | 0.9600 |
N4—C15 | 1.425 (4) | C15—H15B | 0.9600 |
C1—C2 | 1.342 (4) | C15—H15C | 0.9600 |
C1—H1 | 0.9300 | C16—C19 | 1.500 (4) |
C2—C3 | 1.406 (4) | C16—C18 | 1.506 (4) |
C2—H2 | 0.9300 | C16—C17 | 1.516 (4) |
C3—C4 | 1.358 (4) | C17—H17A | 0.9600 |
C3—H3 | 0.9300 | C17—H17B | 0.9600 |
C4—C5 | 1.403 (3) | C17—H17C | 0.9600 |
C4—H4 | 0.9300 | C18—H18A | 0.9600 |
C6—C7 | 1.381 (3) | C18—H18B | 0.9600 |
C7—C8 | 1.467 (3) | C18—H18C | 0.9600 |
C8—C9 | 1.383 (3) | C19—H19A | 0.9600 |
C8—C13 | 1.390 (3) | C19—H19B | 0.9600 |
C9—C10 | 1.372 (3) | C19—H19C | 0.9600 |
C9—H9 | 0.9300 | ||
C6—N1—C16 | 118.45 (19) | C13—C12—C11 | 121.2 (2) |
C6—N1—H1A | 112.8 (17) | C13—C12—H12 | 119.4 |
C16—N1—H1A | 108.6 (17) | C11—C12—H12 | 119.4 |
C1—N2—C6 | 130.4 (2) | C12—C13—C8 | 121.9 (2) |
C1—N2—C5 | 121.9 (2) | C12—C13—H13 | 119.0 |
C6—N2—C5 | 107.55 (18) | C8—C13—H13 | 119.0 |
C5—N3—C7 | 105.59 (18) | N4—C14—H14A | 109.5 |
C11—N4—C14 | 120.6 (3) | N4—C14—H14B | 109.5 |
C11—N4—C15 | 121.0 (3) | H14A—C14—H14B | 109.5 |
C14—N4—C15 | 118.4 (3) | N4—C14—H14C | 109.5 |
C2—C1—N2 | 119.2 (2) | H14A—C14—H14C | 109.5 |
C2—C1—H1 | 120.4 | H14B—C14—H14C | 109.5 |
N2—C1—H1 | 120.4 | N4—C15—H15A | 109.5 |
C1—C2—C3 | 120.8 (3) | N4—C15—H15B | 109.5 |
C1—C2—H2 | 119.6 | H15A—C15—H15B | 109.5 |
C3—C2—H2 | 119.6 | N4—C15—H15C | 109.5 |
C4—C3—C2 | 120.1 (2) | H15A—C15—H15C | 109.5 |
C4—C3—H3 | 119.9 | H15B—C15—H15C | 109.5 |
C2—C3—H3 | 119.9 | N1—C16—C19 | 110.3 (2) |
C3—C4—C5 | 119.7 (2) | N1—C16—C18 | 106.4 (2) |
C3—C4—H4 | 120.1 | C19—C16—C18 | 110.4 (3) |
C5—C4—H4 | 120.1 | N1—C16—C17 | 111.6 (2) |
N3—C5—N2 | 110.80 (19) | C19—C16—C17 | 109.3 (3) |
N3—C5—C4 | 131.1 (2) | C18—C16—C17 | 108.7 (3) |
N2—C5—C4 | 118.1 (2) | C16—C17—H17A | 109.5 |
C7—C6—N2 | 104.74 (19) | C16—C17—H17B | 109.5 |
C7—C6—N1 | 136.7 (2) | H17A—C17—H17B | 109.5 |
N2—C6—N1 | 118.4 (2) | C16—C17—H17C | 109.5 |
C6—C7—N3 | 111.3 (2) | H17A—C17—H17C | 109.5 |
C6—C7—C8 | 128.5 (2) | H17B—C17—H17C | 109.5 |
N3—C7—C8 | 120.1 (2) | C16—C18—H18A | 109.5 |
C9—C8—C13 | 116.5 (2) | C16—C18—H18B | 109.5 |
C9—C8—C7 | 121.5 (2) | H18A—C18—H18B | 109.5 |
C13—C8—C7 | 122.0 (2) | C16—C18—H18C | 109.5 |
C10—C9—C8 | 122.1 (2) | H18A—C18—H18C | 109.5 |
C10—C9—H9 | 119.0 | H18B—C18—H18C | 109.5 |
C8—C9—H9 | 119.0 | C16—C19—H19A | 109.5 |
C9—C10—C11 | 121.5 (2) | C16—C19—H19B | 109.5 |
C9—C10—H10 | 119.3 | H19A—C19—H19B | 109.5 |
C11—C10—H10 | 119.3 | C16—C19—H19C | 109.5 |
N4—C11—C10 | 121.7 (2) | H19A—C19—H19C | 109.5 |
N4—C11—C12 | 121.5 (2) | H19B—C19—H19C | 109.5 |
C10—C11—C12 | 116.8 (2) | ||
C6—N2—C1—C2 | −178.1 (2) | C5—N3—C7—C6 | −0.7 (3) |
C5—N2—C1—C2 | −1.4 (4) | C5—N3—C7—C8 | 177.1 (2) |
N2—C1—C2—C3 | −0.5 (4) | C6—C7—C8—C9 | −150.6 (2) |
C1—C2—C3—C4 | 1.2 (4) | N3—C7—C8—C9 | 32.0 (3) |
C2—C3—C4—C5 | 0.0 (4) | C6—C7—C8—C13 | 31.5 (4) |
C7—N3—C5—N2 | −0.4 (2) | N3—C7—C8—C13 | −145.9 (2) |
C7—N3—C5—C4 | −178.6 (3) | C13—C8—C9—C10 | 0.2 (4) |
C1—N2—C5—N3 | −175.9 (2) | C7—C8—C9—C10 | −177.9 (2) |
C6—N2—C5—N3 | 1.4 (3) | C8—C9—C10—C11 | −0.1 (4) |
C1—N2—C5—C4 | 2.5 (3) | C14—N4—C11—C10 | −0.4 (4) |
C6—N2—C5—C4 | 179.9 (2) | C15—N4—C11—C10 | −177.6 (3) |
C3—C4—C5—N3 | 176.3 (3) | C14—N4—C11—C12 | −179.6 (3) |
C3—C4—C5—N2 | −1.8 (4) | C15—N4—C11—C12 | 3.2 (4) |
C1—N2—C6—C7 | 175.3 (2) | C9—C10—C11—N4 | −179.6 (3) |
C5—N2—C6—C7 | −1.7 (2) | C9—C10—C11—C12 | −0.4 (4) |
C1—N2—C6—N1 | −7.4 (4) | N4—C11—C12—C13 | −179.9 (2) |
C5—N2—C6—N1 | 175.56 (19) | C10—C11—C12—C13 | 0.8 (4) |
C16—N1—C6—C7 | 81.8 (4) | C11—C12—C13—C8 | −0.8 (4) |
C16—N1—C6—N2 | −94.4 (3) | C9—C8—C13—C12 | 0.3 (4) |
N2—C6—C7—N3 | 1.6 (3) | C7—C8—C13—C12 | 178.3 (2) |
N1—C6—C7—N3 | −175.0 (2) | C6—N1—C16—C19 | 59.6 (3) |
N2—C6—C7—C8 | −176.1 (2) | C6—N1—C16—C18 | 179.4 (2) |
N1—C6—C7—C8 | 7.4 (4) | C6—N1—C16—C17 | −62.1 (3) |
Cg3 is the centroid of benzene ring C8–C13. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N3i | 0.86 (3) | 2.56 (3) | 3.412 (3) | 167 (2) |
C13—H13···N3i | 0.93 | 2.57 | 3.467 (3) | 161 |
C19—H19B···Cg3ii | 0.96 | 2.87 | 3.829 (4) | 174 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) x, y−1, z. |
Acknowledgements
The authors wish to acknowledge the SAIF, IIT, Madras for the data collection.
References
Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15. CAS Google Scholar
Banfi, E., Scialino, G., Zampieri, D., Mamolo, M. G., Vio, L., Ferrone, M., Fermeglia, M., Paneni, M. S. & Pricl, S. (2006). J. Antimicrob. Chemother. 58, 76–84. Web of Science CrossRef PubMed CAS Google Scholar
Biftu, T., Feng, D., Fisher, M., Liang, G. B., Qian, X., Scribner, A., Dennis, R., Lee, S., Liberator, P. A., Brown, C., Gurnett, A., Leavitt, P. S., Thompson, D., Mathew, J., Misura, A., Samaras, S., Tamas, T., Sina, J. F., McNulty, K. A., McKnight, C. G., Schmatz, D. M. & Wyvratt, M. (2006). Bioorg. Med. Chem. Lett. 16, 2479–2483. CrossRef CAS Google Scholar
Bruker (2016). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.. Google Scholar
Cui, B., Zheng, B. L., He, K. & Zheng, Q. Y. (2003). J. Nat. Prod. 66, 1101–1103. CrossRef Google Scholar
Dooley, S. W., Jarvis, W. R., Martone, W. J. & Snider, D. E. Jr (1992). Ann. Intern. Med. 117, 257–259. CrossRef PubMed CAS Web of Science Google Scholar
Elaatiaoui, A., Elkalai, F., Benchat, N., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x160723. Google Scholar
Elaatiaoui, A., Koudad, M., Saddik, R., Benchat, N. & El Ammari, L. (2014). Acta Cryst. E70, o1189–o1190. CrossRef IUCr Journals Google Scholar
Ertl, P., Rohde, B. & Selzer, P. (2000). J. Med. Chem. 43, 3714–3717. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fatima, Z., Srinivasan, T., Koorathota, S., Thennarasu, S. & Velmurugan, D. (2013). Acta Cryst. E69, o612–o613. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gudmundsson, K. S. & Johns, B. A. (2007). Bioorg. Med. Chem. Lett. 17, 2735–2739. Web of Science CrossRef PubMed CAS Google Scholar
Gueiffier, A., Mavel, S., Lhassani, M., Elhakmaoui, A., Snoeck, R., Andrei, G., Chavignon, O., Teulade, J. C., Witvrouw, M., Balzarini, J., De Clercq, E. & Chapat, J. (1998). J. Med. Chem. 41, 5108–5112. CrossRef Google Scholar
Jackson, C. J., Lamb, D. C., Kelly, D. E. & Kelly, S. L. (2000). FEMS Microbiol. Lett. 192, 159–162. Web of Science CrossRef PubMed CAS Google Scholar
Kawai, M., Lee, M. J., Evans, K. O. & Nordlund, T. M. (2001). J. Fluoresc. 11, 23–32. Web of Science CrossRef CAS Google Scholar
Lhassani, M., Chavignon, O., Chezal, J. M., Teulade, J. C., Chapat, J. P., Snoeck, R., Andrei, G., Balzarini, J., De Clercq, E. & Gueiffier, A. (1999). Eur. J. Med. Chem. 34, 271–274. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mavel, S., Renou, J. L., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941–946. CrossRef Google Scholar
Rupert, K. C., Henry, J. R., Dodd, J. H., Wadsworth, S. A., Cavender, D. E., Olini, G. C., Fahmy, B. & Siekierka, J. J. (2003). Bioorg. Med. Chem. Lett. 13, 347–350. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silvestre, J., Leeson, P. A. & Castañer, J. (1998). Drugs Fut. 23, 598–601. CrossRef CAS Google Scholar
Spasov, A. A., Yozhitsa, I. N., Bugaeva, L. I. & Anisimova, V. A. (1999). Pharm. Chem. J. 33, 232–243. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, J., Wang, L., Guo, B., An, K. & Guan, J. (2010). Acta Cryst. E66, o1999. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.