research communications
Crystal structures and the Hirshfeld surface analysis of (E)-4-nitro-N′-(o-chloro, o- and p-methylbenzylidene)benzenesulfonohydrazides
aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and cKarnataka State Rural Development and Panchayat Raj University, Raitha Bhavan, Gadag-582101, India
*Correspondence e-mail: gowdabt@yahoo.com
The crystal structures of (E)-N′-(2-chlorobenzylidene)-4-nitrobenzenesulfonohydrazide, C13H10ClN3O4S (I), (E)-N′-(2-methylbenzylidene)-4-nitrobenzenesulfonohydrazide, C14H13N3O4S (II), and (E)-N′-(4-methylbenzylidene)-4-nitrobenzenesulfonohydrazide monohydrate, C14H13N3O4S·H2O (III), have been synthesized, characterized and their crystal structures determined to study the effects of the nature and sites of substitutions on the structural parameters and the hydrogen-bonding interactions. All three compounds crystallize in the monoclinic with P21 for (I) and P21/c for (II) and (III). Compound (III) crystallizes as a monohydrate. All three compounds adopt an E configuration around the C=N bond. The molecules are bent at the S atom with C—S—N—N torsion angles of −59.0 (3), 58.0 (2) and −70.2 (1)° in (I), (II) and (III), respectively. The sulfonohydrazide parts are also non-linear, as is evident from the S—N—N—C torsional angles of 159.3 (3), −164.2 (1) and 152.3 (1)° in (I), (II) and (III), respectively, while the hydrazide parts are almost planar with the N—N=C—C torsion angles being −179.1 (3)° in (I), 176.7 (2)° in (II) and 175.0 (2)° in (III). The 4-nitro-substituted phenylsulfonyl and 2/4-substituted benzylidene rings are inclined to each other by 81.1 (1)° in (I), 81.4 (1)° in (II) and 74.4 (1)° in (III). The compounds show differences in hydrogen-bonding interactions. In the crystal of (I), molecules are linked via N—H⋯O hydrogen bonds, forming C(4) chains along the a-axis direction that are interconnected by weak C—H⋯O hydrogen bonds, generating layers parallel to the ac plane. In the crystal of (II), the amino H atom shows bifurcated N—H⋯O(O) hydrogen bonding with both O atoms of the nitro group generating C(9) chains along the b-axis direction. The chains are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional framework. In the crystal of (III), molecules are linked by Ow—H⋯O, N—H⋯Ow and C—H⋯O hydrogen bonds, forming layers lying parallel to the bc plane. The fingerprint plots generated for the three compounds show that for (I) and (II) the O⋯H/H⋯O contacts make the largest contributions, while for the para-substituted compound (III), H⋯H contacts are the major contributors to the Hirshfeld surfaces.
1. Chemical context
Sulfonyl et al., 2016). Reactions of with other functional groups produce compounds with unique physical and chemical characteristics (Xavier et al., 2012). derived from the condensation reactions of with show excellent biological properties (Küçükgüzel et al., 2006). As a result of the ease of the electron-transport mechanism through the π-conjugated framework, the azomethine-bridged benzene derivatives exhibit excellent optical non-linearities (Manivannan & Dhanuskodi, 2004). Organic polymers containing the azomethine group are known to have good mechanical strength (Morgan et al., 1987) and high thermal stability (Catanescu et al., 2001). As part of our continuing studies to explore the effect of the nature and site of substituents on the crystal structures of sulfonyl hydrazide derivatives (Salian et al., 2018), we report herein the synthesis, crystal structures and Hirshfeld surface analyses of the title compounds, (E)-4-nitro-N′-(2-chlorobenzylidene)benzenesulfonohydrazide (I), (E)-4-nitro-N′-(2-methylbenzylidene)benzenesulfonohydrazide (II) and (E)-4-nitro-N′-(4-methylbenzylidene)benzenesulfonohydrazide monohydrate (III).
have been used extensively to synthesize new owing to the presence of two chemically and biologically important sulfonyl and hydrazine moieties (Murtaza2. Structural commentary
The title compounds crystallize in the monoclinic P21 for (I) and P21/c for (II) and (III). The molecular structures of the three compounds are shown in Figs. 1, 2 and 3. Compound (III) crystallizes as a monohydrate. In all three compounds the configuration about the C=N bond is E, with C7=N2 bond lengths of 1.269 (5), 1.275 (2) and 1.263 (3) Å in (I), (II) and (III), respectively. The respective N1—N2 bond lengths of 1.404 (4), 1.400 (2) and 1.398 (2) Å are consistent with the azine bond lengths of 1.40 Å in similar structures (Salian et al., 2018), indicating the delocalization of π-electron density over the hydrazone portion of the molecules. The conformation of the N—H and C—H bonds in (I) and (II), with respect to the ortho-substituents, are syn to each other (Figs. 1 and 2). In the central parts of each molecule the S1—N1—N2=C7 torsion angles deviate from linearity with values of 159.3 (3)° in (I), −164.2 (1)° in (II) and 152.3 (1)° in (III), while the hydrazide parts are almost planar with the N1—N2=C7—C8 torsion angles being −179.1 (3), 176.7 (2) and 175.0 (2)° in (I), (II) and (III), respectively. The dihedral angles between the 4-nitrobenzene ring (C1–C6) and benzene ring (C8–C13) are 81.1 (1), 81.4 (1) and 74.4 (1)°, respectively. The plane of the nitro group (N3/O3/O4) is inclined to the 4-nitrobenzene ring (C1–C6) by 9.3 (5) ° in (I) and 9.1 (3) ° in (II), but is significantly out of plane in (III) with a dihedral angle of 16.1 (2)°.
in3. Supramolecular features
In the crystals of the title compounds there are significant difference in the hydrogen-bonding interactions. In the crystal of the ortho-chloro-substituted compound (I), molecules are linked via N—H⋯O hydrogen bonds, forming C4 chains along the a-axis direction (Table 1 and Fig. 4). These chains are interconnected by weak C—H⋯O hydrogen bonds, generating layers parallel to the ab plane (Table 1 and Fig. 5). In the crystal of the ortho-methyl-substituted compound (II), the amino H atom shows bifurcated N—H⋯O(O) hydrogen bonding with both the O atoms of the nitro group, generating chains with a C(9) motif that propagate along the b-axis direction (Table 2 and Fig. 6). These chains are linked by C—H⋯O hydrogen bonds, resulting in the formation of a three-dimensional framework (Table 2 and Fig. 7). Finally, in the crystal of the para-methyl-substituted compound (III), the presence of the water molecule of crystallization has an important effect on the crystal packing. The molecules of compound (III) are bridged by the water molecule, via Ow—H⋯O and N—H⋯Ow hydrogen bonds, forming layers lying parallel to the bc plane that are reinforced by C—H⋯O hydrogen bonds (Table 3 and Fig. 8).
|
4. Hirshfeld surface analysis
The type of intermolecular contacts and their quantitative contribution to the crystal packing in all the three compounds were studied by Hirshfeld surfaces and two-dimensional fingerprint plots, which were generated using CrystalExplorer3.1 (Wolff et al., 2012). The Hirshfeld surfaces mapped over dnorm are in the scale of −0.56–1.43 a.u. The bright-red spots on the Hirshfeld surfaces mapped over dnorm indicate the strong N—H⋯O interactions present in the (McKinnon et al., 2004; Spackman & Jayatilaka, 2009); these correspond to N1—H1N⋯O1i in (I) (Fig. 9a; Table 1), N1—H1N⋯O3i and N1—H1N⋯O4i in (II) (Fig. 9b; Table 2) and N1—H1N⋯O5i, O5—H51⋯O2ii and O5—H52⋯O1iii in (III) (Fig. 9c; Table 3). The fingerprint plots corresponding to the various contacts contributing more than 10% (along with the C⋯C contacts) to the Hirshfeld surfaces are shown in Fig. 10. Table 4 lists all the contacts present in the crystal structures of the three compounds, and their respective percentage contributions to the Hirshfeld surfaces. The O⋯H/H⋯O contacts correspond to the N—H⋯O/O—H⋯O interactions at de + di ∼2.2 Å in (I) and (III) and at 2.6 Å in (II), which is very close to the hydrogen-bonding distances observed in these compounds [Tables 1, 2 and 3 for (I), (II) and (III), respectively]. These interactions are the major contributor in (I) and (II) [35.0% in (I) and 37.3% in (II)] followed by H⋯H contacts [17.5% in (I) and 28.4% in (II)]. In (III), H⋯H interactions make the largest contribution to the Hirshfeld surface (37.2%), followed by O⋯H/H⋯O contacts (32.0%). The H⋯H interactions appear as a short single peak at de + di ∼2.2 Å in the fingerprint plot of (III) (see Fig. 10c). The distinct pair of wings corresponds to C⋯H/H⋯C contacts, which are the third largest contributor to the Hirshfeld surfaces in all three compounds [17.3% in (I), 13.4% in (II) and 11.0% in (III)]. A significant difference is in the percentage contribution from C⋯C contacts found for the three compounds. They are characterized by two overlapping broad peaks in the fingerprint plot for (II) (see Fig. 10b), accounting for 7.8% of the Hirshfeld surface with de + di ∼3.4 Å, whereas for (I) and (III) these interactions make negligible contributions of 1.0 and 0.3%, respectively. The O⋯C/C⋯O contacts contribute 4.3% in (I), 1.8% in (II) and 9.4% in (III). N⋯H/H⋯N contacts contribute 4.3, 7.3 and 5.0% in (I), (II) and (III), respectively. In (I), the Cl⋯H/H⋯Cl, Cl⋯C/C⋯Cl, Cl⋯O/O⋯Cl and Cl⋯N/N⋯Cl contacts contribute 6.1, 4.7, 3.1 and 1.4%, respectively, to the Hirshfeld surfaces. The percentage contributions for the various interactions in the title compounds are compared in Table 4.
|
5. Database survey
Structures similar to the title compounds that have been reported in the literature include N′-[(E)-4-methylbenzylidene]-4-methylbenzenesulfonohydrazide (Tabatabaee et al., 2007), (E)-N′-(4-chlorobenzylidene)-p-toluenesulfonohydrazide 0.15-hydrate (Kia et al., 2009a), (E)-N′-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (Balaji et al., 2014), (E)-N′-(4-bromobenzylidene)-p-toluenesulfonohydrazide (Kia et al., 2009b), (E)-N′-(4-nitrobenzylidene)-benzenesulfonohydrazide (Hussain et al., 2017a), E)-4-methyl-N′-(4-nitrobenzylidene)benzenesulfonohydrazide (Hussain et al., 2017b). (E)-N′-(2-methylbenzylidene)-4-chlorobenzenesulfonohydrazide and (E)-N′-(4-methylbenzylidene)-4-chlorobenzenesulfonohydrazide (Salian et al., 2018). In all the structures, intermolecular N—H⋯O hydrogen bonds link neighbouring molecules to form chains, which are linked by π–π interactions, further stabilizing the crystal structures. The chains are linked via C—H⋯O hydrogen bonds, forming layers. This situation is similar to that in the recently reported structures of (E)-N′-benzylidene-4-chlorobenzenesulfonolydrazine and the 2-methylbenzilidene derivative, (E)-N′-(2-methylbenzylidene)-4-chlorobenzenesulfonolydrazine (Salian et al., 2018).
6. Synthesis and crystallization
Synthesis of 4-nitrobenzenesulfonohydrazide
Hydrazine hydrate (99%, 5 ml) was added to 4-nitrobenzenesulfonyl chloride (0.01 mol), dissolved in ethanol (30 ml) at 273 K under constant stirring. The stirring continued for 15 min at 273 K and then at 303 K for 3 h. The reaction mixture was then concentrated by evaporating off the excess ethanol. The solid product obtained, i.e. 4-nitrobenzenesulfonohydrazide, was washed with cold water and dried.
Synthesis of the title compounds (I), (II) and (III)
The title compounds were synthesized by refluxing the mixtures of 4-nitrobenzenesulfonohydrazide (0.01 mol) and 0.01 mol of 2-chlorobenzaldehyde for (I), 2-methylbenzaldehyde for (II), and 4-methylbenzaldehyde for (III), in ethanol (30 ml) and two drops of glacial acetic acid for 4 h. The reaction mixtures were cooled to room temperature and concentrated by evaporating off the excess of solvent. The solid products obtained were washed with cold water, dried and recrystallized to constant melting points from ethanol. Purity of the compounds was checked by TLC. All three compounds were characterized by measuring their IR, 1H and 13C NMR spectra.
(E)-N′-(2-chlorobenzylidene)-4-nitrobenzenesulfonohydrazide (I)
Colourless prismatic crystals; m.p: 438–439 K; IR (cm−1): 3182.5 (N—H asym. stretch), 1604.8 (C=N), 1311.6 (S=O asym. stretch) and 1168.9 (S=O sym. stretch).
1H NMR (400 MHz, DMSO-d6): δ 7.16–7.18 (m, 2H, Ar-H), 7.45–7.47 (m, 2H, Ar-H), 7.91 (s, 1H), 8.15 (d, 2H, Ar-H), 8.41 (d, 2H, Ar-H), 11.71 (s, 1H): 13C NMR (400 MHz, DMSO-d6): δ 124.41, 126.67, 127.34, 128.75, 129.67, 130.55, 131.46, 133.08, 143.80, 144.27, 149.88.
(E)-N′-(2-methylbenzylidene)-4-nitrobenzenesulfonohydrazide (II)
Yellow rod-shaped crystals; m.p: 417–418 K; IR (cm−1): 3217.3 (N—H asym. stretch), 1602.9 (C=N), 1332.1 (S=O asym. stretch) and 1172.7 (S=O sym. stretch).
1H NMR (400 MHz, DMSO-d6): δ 2.31 (s, 3H), 7.34-7.37 (m, 3H, Ar-H), 7.40 (t, 1H, Ar-H), 7.81 (d, 1H, Ar-H), 8.16 (d, 1H, Ar-H), 8.31 (s, 1H), 8.44 (d, 2H, Ar-H), 12.10 (s, 1H). 13C NMR (400 MHz, DMSO-d6): δ 20.97, 124.21, 125.90, 126.78, 128.75, 129.01, 130.61, 131.68, 139.99, 144.48, 148.13, 149.74.
(E)-N′-(4-methylbenzylidene)-4-nitrobenzenesulfonohydrazide (III)
Yellow prismatic crystals; m.p: 447–448 K; IR (cm−1): 3291.5 (N—H asym. stretch), 1606.7 (C=N), 1305.8 (S=O asym. stretch) and 1165.0 (S=O sym. stretch).
1H NMR (400 MHz, DMSO-d6): δ 2.31 (s, 3H), 7.34 (d, 2H, Ar-H), 7.60 (d, 2H, Ar-H), 8.16 (d, 2H, Ar-H), 8.30 (s, 1H), 8.42 (d, 2H, Ar-H), 12.03 (s, 1H): 13C NMR (400 MHz, DMSO-d6): δ 20.96, 123.81, 126.65, 128.59, 128.96, 130.47, 139.94, 144.64, 147.96, 149.58.
Single crystals of the title compounds used for the single-crystal X-ray diffraction analyses were obtained by slow evaporation of the solvent in their DMF solutions at room temperature.
7. Refinement
Crystal data, data collection and structure . The C-bound H atoms were positioned with idealized geometry and refined using a riding model with the aromatic C—H = 0.93 Å. The amino H atoms were refined with an N—H distance restraint of 0.86 (2) Å. For (III), the H atoms of the water molecule were refined with the O—H distance restrained to 0.82 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C-aromatic, N, O) and 1.5Ueq(C-methyl). For (I), the low angle reflection (0 1) had a poor agreement with its calculated value and was omitted from the refinement.
details are summarized in Table 5
|
Supporting information
https://doi.org/10.1107/S2056989018015207/su5460sup1.cif
contains datablocks I, II, III, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018015207/su5460Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989018015207/su5460IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989018015207/su5460IIIsup4.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015207/su5460Isup5.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015207/su5460IIsup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015207/su5460IIIsup7.cml
For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).C13H10ClN3O4S | F(000) = 348 |
Mr = 339.75 | Dx = 1.505 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.9498 (6) Å | Cell parameters from 1264 reflections |
b = 22.340 (3) Å | θ = 3.0–27.7° |
c = 7.0003 (9) Å | µ = 0.42 mm−1 |
β = 104.40 (1)° | T = 293 K |
V = 749.76 (17) Å3 | Prism, colourless |
Z = 2 | 0.24 × 0.24 × 0.12 mm |
Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector | 2457 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.015 |
Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −3→5 |
Tmin = 0.907, Tmax = 0.952 | k = −26→26 |
4582 measured reflections | l = −8→7 |
2696 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0489P)2 + 0.0544P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
2696 reflections | Δρmax = 0.14 e Å−3 |
202 parameters | Δρmin = −0.20 e Å−3 |
2 restraints | Absolute structure: Flack x determined using 1102 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.05 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.0897 (2) | −0.10843 (5) | 0.44188 (16) | 0.0737 (3) | |
S1 | 0.59163 (16) | 0.12968 (4) | 0.08796 (12) | 0.0429 (2) | |
O1 | 0.8691 (5) | 0.11233 (13) | 0.0900 (4) | 0.0603 (7) | |
O2 | 0.4169 (5) | 0.15582 (12) | −0.0845 (3) | 0.0519 (6) | |
O3 | 0.8117 (8) | 0.27393 (16) | 0.9402 (5) | 0.0788 (9) | |
O4 | 0.4147 (8) | 0.3096 (2) | 0.7925 (5) | 0.1064 (14) | |
N1 | 0.4239 (6) | 0.07005 (13) | 0.1288 (4) | 0.0445 (7) | |
H1N | 0.248 (5) | 0.0750 (18) | 0.109 (5) | 0.053* | |
N2 | 0.5519 (6) | 0.04007 (13) | 0.3042 (4) | 0.0472 (7) | |
N3 | 0.6159 (8) | 0.27887 (16) | 0.7968 (5) | 0.0619 (9) | |
C1 | 0.6093 (7) | 0.17729 (15) | 0.2929 (5) | 0.0411 (7) | |
C2 | 0.8188 (7) | 0.16808 (16) | 0.4642 (5) | 0.0480 (8) | |
H2 | 0.9556 | 0.1393 | 0.4672 | 0.058* | |
C3 | 0.8216 (7) | 0.20189 (17) | 0.6288 (5) | 0.0509 (9) | |
H3 | 0.9590 | 0.1963 | 0.7451 | 0.061* | |
C4 | 0.6175 (8) | 0.24394 (16) | 0.6174 (5) | 0.0467 (8) | |
C5 | 0.4109 (8) | 0.25443 (17) | 0.4481 (6) | 0.0517 (9) | |
H5 | 0.2762 | 0.2836 | 0.4456 | 0.062* | |
C6 | 0.4083 (8) | 0.22071 (16) | 0.2829 (5) | 0.0479 (8) | |
H6 | 0.2728 | 0.2271 | 0.1662 | 0.057* | |
C7 | 0.3937 (8) | 0.00577 (16) | 0.3719 (6) | 0.0498 (9) | |
H7 | 0.2072 | 0.0013 | 0.3054 | 0.060* | |
C8 | 0.5085 (8) | −0.02677 (16) | 0.5566 (5) | 0.0504 (9) | |
C9 | 0.3835 (9) | −0.07856 (17) | 0.6049 (6) | 0.0553 (9) | |
C10 | 0.4901 (10) | −0.1087 (2) | 0.7781 (6) | 0.0719 (11) | |
H10 | 0.4014 | −0.1428 | 0.8084 | 0.086* | |
C11 | 0.7282 (13) | −0.0882 (2) | 0.9061 (7) | 0.0875 (17) | |
H11 | 0.8007 | −0.1084 | 1.0237 | 0.105* | |
C12 | 0.8616 (12) | −0.0377 (2) | 0.8620 (7) | 0.0861 (16) | |
H12 | 1.0268 | −0.0247 | 0.9471 | 0.103* | |
C13 | 0.7476 (11) | −0.00665 (19) | 0.6908 (6) | 0.0715 (13) | |
H13 | 0.8324 | 0.0285 | 0.6645 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0766 (7) | 0.0678 (6) | 0.0675 (6) | −0.0191 (6) | 0.0002 (5) | 0.0046 (6) |
S1 | 0.0340 (4) | 0.0534 (5) | 0.0430 (4) | 0.0058 (4) | 0.0128 (3) | 0.0063 (4) |
O1 | 0.0368 (13) | 0.080 (2) | 0.0683 (16) | 0.0089 (12) | 0.0213 (12) | −0.0014 (14) |
O2 | 0.0519 (14) | 0.0638 (15) | 0.0395 (13) | 0.0067 (12) | 0.0103 (11) | 0.0142 (12) |
O3 | 0.084 (2) | 0.083 (2) | 0.0589 (18) | −0.0005 (18) | −0.0023 (17) | −0.0094 (17) |
O4 | 0.110 (3) | 0.128 (3) | 0.076 (2) | 0.055 (3) | 0.011 (2) | −0.027 (2) |
N1 | 0.0362 (15) | 0.0500 (16) | 0.0443 (16) | 0.0064 (13) | 0.0041 (13) | 0.0079 (12) |
N2 | 0.0466 (17) | 0.0437 (16) | 0.0472 (17) | 0.0088 (14) | 0.0039 (14) | 0.0061 (13) |
N3 | 0.072 (2) | 0.0595 (19) | 0.053 (2) | 0.0030 (18) | 0.0142 (19) | −0.0050 (17) |
C1 | 0.0350 (17) | 0.0456 (17) | 0.0433 (18) | 0.0022 (14) | 0.0110 (14) | 0.0077 (14) |
C2 | 0.0355 (18) | 0.054 (2) | 0.052 (2) | 0.0097 (15) | 0.0059 (16) | 0.0040 (16) |
C3 | 0.0401 (19) | 0.059 (2) | 0.048 (2) | 0.0028 (16) | 0.0006 (16) | 0.0039 (17) |
C4 | 0.048 (2) | 0.047 (2) | 0.045 (2) | −0.0013 (16) | 0.0096 (17) | 0.0016 (16) |
C5 | 0.048 (2) | 0.050 (2) | 0.056 (2) | 0.0108 (16) | 0.0100 (19) | 0.0057 (18) |
C6 | 0.044 (2) | 0.052 (2) | 0.0443 (19) | 0.0118 (16) | 0.0048 (16) | 0.0082 (16) |
C7 | 0.057 (2) | 0.046 (2) | 0.043 (2) | 0.0017 (16) | 0.0059 (17) | −0.0016 (16) |
C8 | 0.065 (2) | 0.0430 (19) | 0.0394 (18) | 0.0024 (18) | 0.0053 (17) | −0.0017 (15) |
C9 | 0.070 (3) | 0.0474 (19) | 0.0442 (19) | −0.0012 (18) | 0.0055 (18) | −0.0009 (16) |
C10 | 0.101 (3) | 0.058 (2) | 0.051 (2) | −0.007 (3) | 0.007 (2) | 0.007 (2) |
C11 | 0.132 (5) | 0.068 (3) | 0.046 (2) | −0.005 (3) | −0.011 (3) | 0.011 (2) |
C12 | 0.111 (4) | 0.074 (3) | 0.051 (2) | −0.015 (3) | −0.021 (2) | 0.000 (2) |
C13 | 0.095 (4) | 0.054 (2) | 0.052 (3) | −0.018 (2) | −0.006 (2) | 0.003 (2) |
Cl1—C9 | 1.743 (4) | C4—C5 | 1.379 (5) |
S1—O1 | 1.424 (3) | C5—C6 | 1.378 (5) |
S1—O2 | 1.424 (2) | C5—H5 | 0.9300 |
S1—N1 | 1.632 (3) | C6—H6 | 0.9300 |
S1—C1 | 1.770 (3) | C7—C8 | 1.468 (5) |
O3—N3 | 1.214 (4) | C7—H7 | 0.9300 |
O4—N3 | 1.204 (4) | C8—C13 | 1.390 (6) |
N1—N2 | 1.404 (4) | C8—C9 | 1.393 (5) |
N1—H1N | 0.86 (2) | C9—C10 | 1.373 (6) |
N2—C7 | 1.269 (5) | C10—C11 | 1.370 (7) |
N3—C4 | 1.481 (5) | C10—H10 | 0.9300 |
C1—C6 | 1.379 (5) | C11—C12 | 1.380 (7) |
C1—C2 | 1.391 (5) | C11—H11 | 0.9300 |
C2—C3 | 1.375 (5) | C12—C13 | 1.378 (6) |
C2—H2 | 0.9300 | C12—H12 | 0.9300 |
C3—C4 | 1.367 (5) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | ||
O1—S1—O2 | 120.09 (15) | C6—C5—H5 | 120.7 |
O1—S1—N1 | 107.89 (16) | C4—C5—H5 | 120.7 |
O2—S1—N1 | 104.77 (15) | C1—C6—C5 | 119.1 (3) |
O1—S1—C1 | 107.59 (16) | C1—C6—H6 | 120.5 |
O2—S1—C1 | 109.75 (16) | C5—C6—H6 | 120.5 |
N1—S1—C1 | 105.87 (15) | N2—C7—C8 | 119.2 (3) |
N2—N1—S1 | 113.8 (2) | N2—C7—H7 | 120.4 |
N2—N1—H1N | 115 (3) | C8—C7—H7 | 120.4 |
S1—N1—H1N | 114 (3) | C13—C8—C9 | 117.3 (3) |
C7—N2—N1 | 115.4 (3) | C13—C8—C7 | 120.9 (4) |
O4—N3—O3 | 123.9 (4) | C9—C8—C7 | 121.8 (3) |
O4—N3—C4 | 117.3 (4) | C10—C9—C8 | 121.8 (4) |
O3—N3—C4 | 118.8 (4) | C10—C9—Cl1 | 117.7 (3) |
C6—C1—C2 | 121.4 (3) | C8—C9—Cl1 | 120.5 (3) |
C6—C1—S1 | 119.4 (3) | C11—C10—C9 | 119.4 (4) |
C2—C1—S1 | 119.0 (3) | C11—C10—H10 | 120.3 |
C3—C2—C1 | 119.4 (3) | C9—C10—H10 | 120.3 |
C3—C2—H2 | 120.3 | C10—C11—C12 | 120.7 (4) |
C1—C2—H2 | 120.3 | C10—C11—H11 | 119.7 |
C4—C3—C2 | 118.3 (3) | C12—C11—H11 | 119.7 |
C4—C3—H3 | 120.8 | C11—C12—C13 | 119.3 (5) |
C2—C3—H3 | 120.8 | C11—C12—H12 | 120.3 |
C3—C4—C5 | 123.1 (3) | C13—C12—H12 | 120.3 |
C3—C4—N3 | 118.2 (3) | C12—C13—C8 | 121.4 (4) |
C5—C4—N3 | 118.7 (3) | C12—C13—H13 | 119.3 |
C6—C5—C4 | 118.6 (3) | C8—C13—H13 | 119.3 |
O1—S1—N1—N2 | 56.0 (3) | C3—C4—C5—C6 | 0.5 (6) |
O2—S1—N1—N2 | −175.0 (2) | N3—C4—C5—C6 | −178.2 (3) |
C1—S1—N1—N2 | −59.0 (3) | C2—C1—C6—C5 | −1.9 (5) |
S1—N1—N2—C7 | 159.3 (3) | S1—C1—C6—C5 | 174.9 (3) |
O1—S1—C1—C6 | 151.0 (3) | C4—C5—C6—C1 | 0.8 (5) |
O2—S1—C1—C6 | 18.7 (3) | N1—N2—C7—C8 | −179.1 (3) |
N1—S1—C1—C6 | −93.9 (3) | N2—C7—C8—C13 | 22.2 (5) |
O1—S1—C1—C2 | −32.1 (3) | N2—C7—C8—C9 | −158.0 (4) |
O2—S1—C1—C2 | −164.4 (3) | C13—C8—C9—C10 | 0.2 (6) |
N1—S1—C1—C2 | 83.0 (3) | C7—C8—C9—C10 | −179.6 (4) |
C6—C1—C2—C3 | 1.7 (5) | C13—C8—C9—Cl1 | −177.9 (3) |
S1—C1—C2—C3 | −175.1 (3) | C7—C8—C9—Cl1 | 2.3 (5) |
C1—C2—C3—C4 | −0.4 (5) | C8—C9—C10—C11 | −1.1 (7) |
C2—C3—C4—C5 | −0.7 (6) | Cl1—C9—C10—C11 | 177.1 (4) |
C2—C3—C4—N3 | 178.0 (3) | C9—C10—C11—C12 | −0.2 (8) |
O4—N3—C4—C3 | −170.0 (4) | C10—C11—C12—C13 | 2.3 (9) |
O3—N3—C4—C3 | 8.2 (5) | C11—C12—C13—C8 | −3.2 (9) |
O4—N3—C4—C5 | 8.7 (6) | C9—C8—C13—C12 | 2.0 (7) |
O3—N3—C4—C5 | −173.0 (4) | C7—C8—C13—C12 | −178.2 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 (2) | 2.02 (3) | 2.853 (4) | 163 (4) |
C3—H3···O2ii | 0.93 | 2.46 | 3.290 (4) | 149 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z+1. |
C14H13N3O4S | F(000) = 664 |
Mr = 319.33 | Dx = 1.432 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.190 (1) Å | Cell parameters from 2833 reflections |
b = 15.288 (2) Å | θ = 2.6–27.8° |
c = 13.596 (2) Å | µ = 0.24 mm−1 |
β = 97.68 (2)° | T = 293 K |
V = 1481.1 (4) Å3 | Rod, yellow |
Z = 4 | 0.50 × 0.48 × 0.24 mm |
Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector | 2271 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.020 |
Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −8→5 |
Tmin = 0.889, Tmax = 0.945 | k = −18→18 |
9810 measured reflections | l = −11→16 |
2719 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: mixed |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0372P)2 + 0.8005P] where P = (Fo2 + 2Fc2)/3 |
2719 reflections | (Δ/σ)max = 0.001 |
203 parameters | Δρmax = 0.28 e Å−3 |
2 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1811 (3) | 0.53913 (12) | 0.11782 (14) | 0.0392 (4) | |
C2 | 0.2549 (3) | 0.45557 (13) | 0.12179 (16) | 0.0472 (5) | |
H2 | 0.3779 | 0.4459 | 0.1104 | 0.057* | |
C3 | 0.1428 (3) | 0.38663 (13) | 0.14295 (16) | 0.0515 (5) | |
H3 | 0.1894 | 0.3298 | 0.1470 | 0.062* | |
C4 | −0.0386 (3) | 0.40354 (13) | 0.15791 (14) | 0.0458 (5) | |
C5 | −0.1143 (3) | 0.48574 (14) | 0.15301 (16) | 0.0506 (5) | |
H5 | −0.2384 | 0.4948 | 0.1628 | 0.061* | |
C6 | −0.0019 (3) | 0.55474 (13) | 0.13323 (16) | 0.0475 (5) | |
H6 | −0.0489 | 0.6115 | 0.1303 | 0.057* | |
C7 | 0.5612 (3) | 0.62282 (12) | 0.35371 (15) | 0.0414 (4) | |
H7 | 0.5251 | 0.6771 | 0.3756 | 0.050* | |
C8 | 0.6602 (3) | 0.56164 (13) | 0.42534 (15) | 0.0419 (5) | |
C9 | 0.7375 (3) | 0.58901 (15) | 0.52053 (16) | 0.0513 (5) | |
C10 | 0.8215 (3) | 0.52648 (19) | 0.58632 (19) | 0.0651 (7) | |
H10 | 0.8717 | 0.5436 | 0.6500 | 0.078* | |
C11 | 0.8321 (3) | 0.4407 (2) | 0.5599 (2) | 0.0701 (8) | |
H11 | 0.8900 | 0.4004 | 0.6053 | 0.084* | |
C12 | 0.7574 (3) | 0.41387 (16) | 0.4665 (2) | 0.0651 (7) | |
H12 | 0.7657 | 0.3555 | 0.4483 | 0.078* | |
C13 | 0.6700 (3) | 0.47378 (14) | 0.39960 (18) | 0.0513 (5) | |
H13 | 0.6172 | 0.4553 | 0.3369 | 0.062* | |
C14 | 0.7337 (4) | 0.68279 (18) | 0.5534 (2) | 0.0781 (8) | |
H14A | 0.6070 | 0.7041 | 0.5427 | 0.117* | |
H14B | 0.8104 | 0.7174 | 0.5157 | 0.117* | |
H14C | 0.7813 | 0.6868 | 0.6226 | 0.117* | |
N1 | 0.4195 (2) | 0.66562 (10) | 0.20225 (12) | 0.0431 (4) | |
H1N | 0.347 (3) | 0.6988 (13) | 0.2284 (16) | 0.052* | |
N2 | 0.5234 (2) | 0.60339 (10) | 0.26201 (12) | 0.0413 (4) | |
N3 | −0.1566 (3) | 0.32996 (13) | 0.18268 (14) | 0.0592 (5) | |
O1 | 0.2086 (2) | 0.69660 (9) | 0.05038 (11) | 0.0591 (4) | |
O2 | 0.4735 (2) | 0.59482 (10) | 0.04571 (11) | 0.0590 (4) | |
O3 | −0.3229 (3) | 0.34312 (13) | 0.18613 (15) | 0.0833 (6) | |
O4 | −0.0808 (3) | 0.25947 (12) | 0.19986 (16) | 0.0867 (6) | |
S1 | 0.32586 (7) | 0.62811 (3) | 0.09402 (4) | 0.04312 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0478 (11) | 0.0349 (10) | 0.0357 (10) | −0.0027 (8) | 0.0079 (8) | 0.0008 (8) |
C2 | 0.0516 (12) | 0.0409 (11) | 0.0520 (12) | 0.0030 (9) | 0.0168 (10) | −0.0018 (9) |
C3 | 0.0726 (14) | 0.0318 (10) | 0.0524 (13) | −0.0001 (10) | 0.0170 (11) | −0.0017 (9) |
C4 | 0.0584 (12) | 0.0446 (11) | 0.0351 (10) | −0.0133 (9) | 0.0086 (9) | −0.0002 (8) |
C5 | 0.0455 (11) | 0.0544 (13) | 0.0526 (13) | −0.0045 (9) | 0.0095 (9) | 0.0029 (10) |
C6 | 0.0487 (12) | 0.0400 (11) | 0.0542 (13) | 0.0035 (9) | 0.0088 (10) | 0.0048 (9) |
C7 | 0.0414 (10) | 0.0371 (10) | 0.0472 (11) | 0.0000 (8) | 0.0116 (8) | −0.0037 (9) |
C8 | 0.0340 (10) | 0.0463 (11) | 0.0473 (12) | 0.0009 (8) | 0.0121 (8) | 0.0023 (9) |
C9 | 0.0409 (11) | 0.0646 (14) | 0.0494 (13) | −0.0001 (10) | 0.0097 (9) | 0.0019 (11) |
C10 | 0.0462 (13) | 0.096 (2) | 0.0527 (14) | 0.0022 (13) | 0.0074 (10) | 0.0156 (14) |
C11 | 0.0456 (13) | 0.085 (2) | 0.0818 (19) | 0.0105 (12) | 0.0173 (13) | 0.0388 (16) |
C12 | 0.0535 (13) | 0.0495 (13) | 0.097 (2) | 0.0086 (11) | 0.0280 (13) | 0.0170 (13) |
C13 | 0.0481 (12) | 0.0456 (12) | 0.0628 (14) | 0.0025 (9) | 0.0172 (10) | 0.0021 (10) |
C14 | 0.0869 (19) | 0.0817 (19) | 0.0621 (17) | −0.0032 (15) | −0.0039 (14) | −0.0177 (14) |
N1 | 0.0500 (10) | 0.0349 (9) | 0.0449 (10) | 0.0041 (7) | 0.0077 (8) | −0.0020 (7) |
N2 | 0.0413 (9) | 0.0383 (9) | 0.0457 (10) | 0.0024 (7) | 0.0103 (7) | −0.0003 (7) |
N3 | 0.0799 (11) | 0.0527 (12) | 0.0460 (10) | −0.0222 (10) | 0.0126 (10) | −0.0024 (9) |
O1 | 0.0738 (10) | 0.0416 (8) | 0.0592 (10) | −0.0047 (7) | −0.0012 (8) | 0.0139 (7) |
O2 | 0.0715 (10) | 0.0577 (9) | 0.0545 (9) | −0.0116 (8) | 0.0326 (8) | −0.0072 (7) |
O3 | 0.0790 (10) | 0.0840 (13) | 0.0928 (14) | −0.0339 (10) | 0.0331 (11) | −0.0027 (11) |
O4 | 0.1088 (16) | 0.0507 (11) | 0.1012 (15) | −0.0198 (10) | 0.0163 (12) | 0.0168 (10) |
S1 | 0.0545 (3) | 0.0361 (3) | 0.0402 (3) | −0.0054 (2) | 0.0117 (2) | 0.0023 (2) |
C1—C6 | 1.381 (3) | C9—C14 | 1.503 (3) |
C1—C2 | 1.381 (3) | C10—C11 | 1.364 (4) |
C1—S1 | 1.7687 (19) | C10—H10 | 0.9300 |
C2—C3 | 1.380 (3) | C11—C12 | 1.375 (4) |
C2—H2 | 0.9300 | C11—H11 | 0.9300 |
C3—C4 | 1.371 (3) | C12—C13 | 1.381 (3) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
C4—C5 | 1.368 (3) | C13—H13 | 0.9300 |
C4—N3 | 1.475 (3) | C14—H14A | 0.9600 |
C5—C6 | 1.377 (3) | C14—H14B | 0.9600 |
C5—H5 | 0.9300 | C14—H14C | 0.9600 |
C6—H6 | 0.9300 | N1—N2 | 1.400 (2) |
C7—N2 | 1.275 (2) | N1—S1 | 1.6380 (17) |
C7—C8 | 1.465 (3) | N1—H1N | 0.839 (15) |
C7—H7 | 0.9300 | N3—O4 | 1.216 (3) |
C8—C13 | 1.392 (3) | N3—O3 | 1.220 (3) |
C8—C9 | 1.402 (3) | O1—S1 | 1.4233 (15) |
C9—C10 | 1.391 (3) | O2—S1 | 1.4157 (15) |
C6—C1—C2 | 121.50 (18) | C9—C10—H10 | 119.1 |
C6—C1—S1 | 119.39 (15) | C10—C11—C12 | 120.1 (2) |
C2—C1—S1 | 119.10 (15) | C10—C11—H11 | 120.0 |
C3—C2—C1 | 118.86 (19) | C12—C11—H11 | 120.0 |
C3—C2—H2 | 120.6 | C11—C12—C13 | 119.8 (2) |
C1—C2—H2 | 120.6 | C11—C12—H12 | 120.1 |
C4—C3—C2 | 118.70 (19) | C13—C12—H12 | 120.1 |
C4—C3—H3 | 120.6 | C12—C13—C8 | 120.5 (2) |
C2—C3—H3 | 120.6 | C12—C13—H13 | 119.7 |
C5—C4—C3 | 123.12 (19) | C8—C13—H13 | 119.7 |
C5—C4—N3 | 118.3 (2) | C9—C14—H14A | 109.5 |
C3—C4—N3 | 118.5 (2) | C9—C14—H14B | 109.5 |
C4—C5—C6 | 118.25 (19) | H14A—C14—H14B | 109.5 |
C4—C5—H5 | 120.9 | C9—C14—H14C | 109.5 |
C6—C5—H5 | 120.9 | H14A—C14—H14C | 109.5 |
C5—C6—C1 | 119.56 (19) | H14B—C14—H14C | 109.5 |
C5—C6—H6 | 120.2 | N2—N1—S1 | 114.00 (12) |
C1—C6—H6 | 120.2 | N2—N1—H1N | 118.6 (15) |
N2—C7—C8 | 121.51 (18) | S1—N1—H1N | 112.8 (15) |
N2—C7—H7 | 119.2 | C7—N2—N1 | 115.88 (16) |
C8—C7—H7 | 119.2 | O4—N3—O3 | 123.7 (2) |
C13—C8—C9 | 119.5 (2) | O4—N3—C4 | 117.6 (2) |
C13—C8—C7 | 119.03 (19) | O3—N3—C4 | 118.7 (2) |
C9—C8—C7 | 121.37 (19) | O2—S1—O1 | 120.69 (10) |
C10—C9—C8 | 118.2 (2) | O2—S1—N1 | 107.39 (9) |
C10—C9—C14 | 119.2 (2) | O1—S1—N1 | 105.46 (9) |
C8—C9—C14 | 122.5 (2) | O2—S1—C1 | 107.72 (9) |
C11—C10—C9 | 121.8 (2) | O1—S1—C1 | 108.17 (9) |
C11—C10—H10 | 119.1 | N1—S1—C1 | 106.63 (9) |
C6—C1—C2—C3 | −0.9 (3) | C10—C11—C12—C13 | −0.6 (3) |
S1—C1—C2—C3 | 178.33 (16) | C11—C12—C13—C8 | 1.3 (3) |
C1—C2—C3—C4 | 0.9 (3) | C9—C8—C13—C12 | −1.0 (3) |
C2—C3—C4—C5 | −0.1 (3) | C7—C8—C13—C12 | −178.05 (19) |
C2—C3—C4—N3 | −178.67 (19) | C8—C7—N2—N1 | 176.70 (15) |
C3—C4—C5—C6 | −0.8 (3) | S1—N1—N2—C7 | −164.16 (14) |
N3—C4—C5—C6 | 177.81 (19) | C5—C4—N3—O4 | −170.4 (2) |
C4—C5—C6—C1 | 0.8 (3) | C3—C4—N3—O4 | 8.3 (3) |
C2—C1—C6—C5 | 0.0 (3) | C5—C4—N3—O3 | 8.7 (3) |
S1—C1—C6—C5 | −179.19 (16) | C3—C4—N3—O3 | −172.7 (2) |
N2—C7—C8—C13 | −17.0 (3) | N2—N1—S1—O2 | −57.23 (15) |
N2—C7—C8—C9 | 165.96 (18) | N2—N1—S1—O1 | 172.86 (13) |
C13—C8—C9—C10 | −0.1 (3) | N2—N1—S1—C1 | 58.01 (15) |
C7—C8—C9—C10 | 176.89 (18) | C6—C1—S1—O2 | −158.52 (16) |
C13—C8—C9—C14 | 179.5 (2) | C2—C1—S1—O2 | 22.28 (19) |
C7—C8—C9—C14 | −3.5 (3) | C6—C1—S1—O1 | −26.54 (19) |
C8—C9—C10—C11 | 0.9 (3) | C2—C1—S1—O1 | 154.26 (16) |
C14—C9—C10—C11 | −178.7 (2) | C6—C1—S1—N1 | 86.46 (17) |
C9—C10—C11—C12 | −0.5 (4) | C2—C1—S1—N1 | −92.74 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3i | 0.84 (2) | 2.51 (2) | 3.230 (2) | 144 (2) |
N1—H1N···O4i | 0.84 (2) | 2.44 (2) | 3.260 (3) | 164 (2) |
C2—H2···O2ii | 0.93 | 2.58 | 3.284 (2) | 133 |
C12—H12···O1iii | 0.93 | 2.44 | 3.341 (3) | 164 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z; (iii) −x+1, y−1/2, −z+1/2. |
C14H13N3O4S·H2O | F(000) = 704 |
Mr = 337.35 | Dx = 1.434 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 22.589 (2) Å | Cell parameters from 3331 reflections |
b = 5.4424 (4) Å | θ = 3.1–27.8° |
c = 12.7180 (9) Å | µ = 0.24 mm−1 |
β = 92.146 (6)° | T = 293 K |
V = 1562.4 (2) Å3 | Prism, yellow |
Z = 4 | 0.40 × 0.36 × 0.16 mm |
Oxford Diffraction Xcalibur single crystal X-ray diffractometer with Sapphire CCD detector | 2178 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.021 |
Rotation method data acquisition using ω scans. | θmax = 25.4°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) | h = −19→27 |
Tmin = 0.911, Tmax = 0.963 | k = −6→6 |
9384 measured reflections | l = −14→15 |
2870 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: mixed |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0464P)2 + 0.3615P] where P = (Fo2 + 2Fc2)/3 |
2870 reflections | (Δ/σ)max < 0.001 |
218 parameters | Δρmax = 0.19 e Å−3 |
6 restraints | Δρmin = −0.28 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.29814 (2) | −0.41337 (9) | 0.00460 (3) | 0.04151 (15) | |
O1 | 0.31514 (6) | −0.4922 (3) | −0.09707 (10) | 0.0540 (4) | |
O2 | 0.28665 (6) | −0.5896 (2) | 0.08395 (10) | 0.0533 (4) | |
O3 | 0.50400 (7) | 0.4229 (3) | 0.11440 (12) | 0.0697 (5) | |
O4 | 0.45497 (7) | 0.4367 (3) | 0.25661 (11) | 0.0619 (4) | |
N1 | 0.23739 (7) | −0.2563 (3) | −0.01813 (12) | 0.0465 (4) | |
H1N | 0.2396 (9) | −0.153 (3) | −0.0681 (14) | 0.056* | |
N2 | 0.21027 (7) | −0.1771 (3) | 0.07293 (12) | 0.0470 (4) | |
N3 | 0.46427 (7) | 0.3533 (3) | 0.16974 (13) | 0.0463 (4) | |
C1 | 0.35122 (7) | −0.2010 (3) | 0.05425 (13) | 0.0367 (4) | |
C2 | 0.38690 (8) | −0.0791 (4) | −0.01472 (14) | 0.0439 (4) | |
H2 | 0.3852 | −0.1181 | −0.0860 | 0.053* | |
C3 | 0.42513 (8) | 0.1012 (4) | 0.02325 (14) | 0.0440 (4) | |
H3 | 0.4500 | 0.1839 | −0.0215 | 0.053* | |
C4 | 0.42543 (7) | 0.1550 (3) | 0.12892 (14) | 0.0383 (4) | |
C5 | 0.39051 (8) | 0.0344 (4) | 0.19866 (14) | 0.0431 (4) | |
H5 | 0.3923 | 0.0746 | 0.2698 | 0.052* | |
C6 | 0.35286 (8) | −0.1470 (3) | 0.16104 (13) | 0.0424 (4) | |
H6 | 0.3289 | −0.2321 | 0.2065 | 0.051* | |
C7 | 0.17972 (8) | 0.0167 (4) | 0.06417 (16) | 0.0505 (5) | |
H7 | 0.1791 | 0.1035 | 0.0012 | 0.061* | |
C8 | 0.14529 (8) | 0.1070 (4) | 0.15155 (16) | 0.0501 (5) | |
C9 | 0.11387 (10) | 0.3238 (4) | 0.14097 (19) | 0.0669 (6) | |
H9 | 0.1164 | 0.4165 | 0.0799 | 0.080* | |
C10 | 0.07863 (11) | 0.4042 (5) | 0.2206 (2) | 0.0754 (7) | |
H10 | 0.0578 | 0.5505 | 0.2118 | 0.090* | |
C11 | 0.07354 (10) | 0.2750 (5) | 0.31180 (19) | 0.0670 (6) | |
C12 | 0.10618 (11) | 0.0627 (5) | 0.32272 (19) | 0.0725 (7) | |
H12 | 0.1044 | −0.0267 | 0.3848 | 0.087* | |
C13 | 0.14130 (10) | −0.0210 (4) | 0.24460 (17) | 0.0626 (6) | |
H13 | 0.1627 | −0.1658 | 0.2545 | 0.075* | |
C14 | 0.03449 (12) | 0.3685 (6) | 0.3974 (2) | 0.0970 (10) | |
H14A | 0.0205 | 0.2322 | 0.4374 | 0.146* | |
H14B | 0.0013 | 0.4553 | 0.3660 | 0.146* | |
H14C | 0.0569 | 0.4774 | 0.4430 | 0.146* | |
O5 | 0.25535 (9) | 0.4283 (3) | 0.31149 (13) | 0.0753 (5) | |
H51 | 0.2502 (12) | 0.445 (5) | 0.2487 (14) | 0.090* | |
H52 | 0.2685 (12) | 0.296 (4) | 0.328 (2) | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0456 (3) | 0.0425 (3) | 0.0370 (3) | −0.0023 (2) | 0.00972 (18) | −0.0038 (2) |
O1 | 0.0622 (9) | 0.0571 (8) | 0.0437 (7) | −0.0028 (7) | 0.0164 (6) | −0.0144 (7) |
O2 | 0.0653 (9) | 0.0448 (7) | 0.0506 (8) | −0.0067 (7) | 0.0131 (7) | 0.0041 (6) |
O3 | 0.0700 (10) | 0.0800 (11) | 0.0592 (9) | −0.0336 (9) | 0.0065 (8) | 0.0081 (8) |
O4 | 0.0664 (9) | 0.0616 (9) | 0.0579 (8) | −0.0062 (8) | 0.0040 (7) | −0.0154 (7) |
N1 | 0.0452 (9) | 0.0583 (10) | 0.0363 (9) | −0.0017 (8) | 0.0052 (7) | −0.0027 (7) |
N2 | 0.0416 (9) | 0.0569 (10) | 0.0430 (9) | −0.0024 (8) | 0.0087 (7) | −0.0077 (8) |
N3 | 0.0474 (9) | 0.0467 (9) | 0.0444 (8) | −0.0028 (7) | −0.0023 (7) | 0.0059 (7) |
C1 | 0.0349 (9) | 0.0406 (9) | 0.0350 (9) | 0.0037 (8) | 0.0060 (7) | 0.0004 (8) |
C2 | 0.0456 (10) | 0.0545 (11) | 0.0323 (9) | −0.0030 (9) | 0.0102 (8) | −0.0018 (9) |
C3 | 0.0415 (10) | 0.0532 (11) | 0.0380 (10) | −0.0026 (9) | 0.0117 (8) | 0.0063 (9) |
C4 | 0.0356 (9) | 0.0402 (9) | 0.0393 (9) | 0.0028 (7) | 0.0023 (7) | 0.0036 (7) |
C5 | 0.0458 (10) | 0.0536 (12) | 0.0303 (9) | −0.0018 (9) | 0.0045 (8) | 0.0007 (8) |
C6 | 0.0417 (10) | 0.0518 (11) | 0.0341 (9) | −0.0030 (9) | 0.0084 (8) | 0.0057 (8) |
C7 | 0.0420 (11) | 0.0591 (12) | 0.0505 (12) | −0.0031 (10) | 0.0043 (9) | −0.0030 (10) |
C8 | 0.0425 (11) | 0.0548 (12) | 0.0533 (12) | −0.0013 (9) | 0.0039 (9) | −0.0123 (10) |
C9 | 0.0678 (15) | 0.0632 (14) | 0.0700 (15) | 0.0114 (12) | 0.0066 (12) | −0.0006 (12) |
C10 | 0.0706 (16) | 0.0697 (15) | 0.0857 (19) | 0.0242 (13) | 0.0016 (14) | −0.0173 (14) |
C11 | 0.0539 (13) | 0.0848 (17) | 0.0624 (15) | 0.0074 (13) | 0.0029 (11) | −0.0267 (13) |
C12 | 0.0834 (17) | 0.0808 (17) | 0.0542 (14) | 0.0141 (15) | 0.0159 (12) | −0.0067 (13) |
C13 | 0.0661 (14) | 0.0672 (14) | 0.0548 (13) | 0.0171 (12) | 0.0086 (11) | −0.0087 (11) |
C14 | 0.0808 (18) | 0.127 (3) | 0.0847 (19) | 0.0258 (18) | 0.0152 (15) | −0.0400 (18) |
O5 | 0.1131 (15) | 0.0646 (10) | 0.0485 (9) | 0.0000 (10) | 0.0078 (10) | −0.0005 (9) |
S1—O2 | 1.4230 (13) | C6—H6 | 0.9300 |
S1—O1 | 1.4284 (13) | C7—C8 | 1.465 (3) |
S1—N1 | 1.6335 (17) | C7—H7 | 0.9300 |
S1—C1 | 1.7652 (18) | C8—C13 | 1.379 (3) |
O3—N3 | 1.221 (2) | C8—C9 | 1.381 (3) |
O4—N3 | 1.220 (2) | C9—C10 | 1.383 (3) |
N1—N2 | 1.398 (2) | C9—H9 | 0.9300 |
N1—H1N | 0.850 (15) | C10—C11 | 1.365 (3) |
N2—C7 | 1.263 (3) | C10—H10 | 0.9300 |
N3—C4 | 1.473 (2) | C11—C12 | 1.375 (3) |
C1—C2 | 1.383 (2) | C11—C14 | 1.514 (3) |
C1—C6 | 1.389 (2) | C12—C13 | 1.372 (3) |
C2—C3 | 1.382 (3) | C12—H12 | 0.9300 |
C2—H2 | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.375 (2) | C14—H14A | 0.9600 |
C3—H3 | 0.9300 | C14—H14B | 0.9600 |
C4—C5 | 1.375 (2) | C14—H14C | 0.9600 |
C5—C6 | 1.377 (3) | O5—H51 | 0.808 (16) |
C5—H5 | 0.9300 | O5—H52 | 0.802 (17) |
O2—S1—O1 | 120.13 (8) | C1—C6—H6 | 120.5 |
O2—S1—N1 | 107.70 (8) | N2—C7—C8 | 121.14 (19) |
O1—S1—N1 | 104.45 (8) | N2—C7—H7 | 119.4 |
O2—S1—C1 | 109.10 (8) | C8—C7—H7 | 119.4 |
O1—S1—C1 | 108.56 (8) | C13—C8—C9 | 117.7 (2) |
N1—S1—C1 | 105.98 (8) | C13—C8—C7 | 122.4 (2) |
N2—N1—S1 | 113.94 (12) | C9—C8—C7 | 119.9 (2) |
N2—N1—H1N | 117.2 (14) | C8—C9—C10 | 120.4 (2) |
S1—N1—H1N | 113.8 (15) | C8—C9—H9 | 119.8 |
C7—N2—N1 | 116.04 (17) | C10—C9—H9 | 119.8 |
O4—N3—O3 | 124.16 (17) | C11—C10—C9 | 121.9 (2) |
O4—N3—C4 | 118.13 (15) | C11—C10—H10 | 119.0 |
O3—N3—C4 | 117.71 (16) | C9—C10—H10 | 119.0 |
C2—C1—C6 | 121.61 (17) | C10—C11—C12 | 117.2 (2) |
C2—C1—S1 | 119.44 (13) | C10—C11—C14 | 120.5 (2) |
C6—C1—S1 | 118.77 (13) | C12—C11—C14 | 122.3 (3) |
C3—C2—C1 | 119.35 (16) | C13—C12—C11 | 121.9 (2) |
C3—C2—H2 | 120.3 | C13—C12—H12 | 119.1 |
C1—C2—H2 | 120.3 | C11—C12—H12 | 119.1 |
C4—C3—C2 | 118.22 (16) | C12—C13—C8 | 120.8 (2) |
C4—C3—H3 | 120.9 | C12—C13—H13 | 119.6 |
C2—C3—H3 | 120.9 | C8—C13—H13 | 119.6 |
C3—C4—C5 | 123.13 (17) | C11—C14—H14A | 109.5 |
C3—C4—N3 | 118.79 (15) | C11—C14—H14B | 109.5 |
C5—C4—N3 | 118.07 (16) | H14A—C14—H14B | 109.5 |
C4—C5—C6 | 118.66 (16) | C11—C14—H14C | 109.5 |
C4—C5—H5 | 120.7 | H14A—C14—H14C | 109.5 |
C6—C5—H5 | 120.7 | H14B—C14—H14C | 109.5 |
C5—C6—C1 | 119.01 (16) | H51—O5—H52 | 113 (3) |
C5—C6—H6 | 120.5 | ||
O2—S1—N1—N2 | 46.42 (15) | C3—C4—C5—C6 | −0.8 (3) |
O1—S1—N1—N2 | 175.19 (13) | N3—C4—C5—C6 | 178.33 (16) |
C1—S1—N1—N2 | −70.24 (14) | C4—C5—C6—C1 | −0.3 (3) |
S1—N1—N2—C7 | 152.32 (14) | C2—C1—C6—C5 | 0.8 (3) |
O2—S1—C1—C2 | 153.79 (14) | S1—C1—C6—C5 | −174.26 (14) |
O1—S1—C1—C2 | 21.22 (17) | N1—N2—C7—C8 | 175.00 (16) |
N1—S1—C1—C2 | −90.50 (15) | N2—C7—C8—C13 | −4.2 (3) |
O2—S1—C1—C6 | −31.06 (16) | N2—C7—C8—C9 | 177.82 (19) |
O1—S1—C1—C6 | −163.64 (14) | C13—C8—C9—C10 | −1.6 (3) |
N1—S1—C1—C6 | 84.65 (15) | C7—C8—C9—C10 | 176.5 (2) |
C6—C1—C2—C3 | −0.1 (3) | C8—C9—C10—C11 | 0.2 (4) |
S1—C1—C2—C3 | 174.89 (14) | C9—C10—C11—C12 | 1.5 (4) |
C1—C2—C3—C4 | −1.0 (3) | C9—C10—C11—C14 | −180.0 (2) |
C2—C3—C4—C5 | 1.4 (3) | C10—C11—C12—C13 | −1.7 (4) |
C2—C3—C4—N3 | −177.66 (16) | C14—C11—C12—C13 | 179.8 (2) |
O4—N3—C4—C3 | 163.87 (17) | C11—C12—C13—C8 | 0.3 (4) |
O3—N3—C4—C3 | −16.5 (2) | C9—C8—C13—C12 | 1.4 (3) |
O4—N3—C4—C5 | −15.3 (2) | C7—C8—C13—C12 | −176.6 (2) |
O3—N3—C4—C5 | 164.39 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O5i | 0.85 (2) | 2.00 (2) | 2.848 (2) | 173 (2) |
O5—H51···O2ii | 0.81 (2) | 2.29 (2) | 3.006 (2) | 148 (3) |
O5—H52···O1iii | 0.80 (2) | 2.17 (2) | 2.949 (2) | 166 (3) |
C5—H5···O1iii | 0.93 | 2.52 | 3.167 (2) | 127 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, y+1, z; (iii) x, −y−1/2, z+1/2. |
Contact type | (I) | (II) | (III) |
O···H/H···O | 35.0 | 37.3 | 32.0 |
H···H | 17.5 | 28.4 | 37.2 |
C···H/H···C | 17.3 | 13.4 | 11.0 |
O···C/C···O | 4.3 | 1.8 | 9.4 |
C···C | 1.0 | 7.8 | 0.3 |
N···H/H···N | 4.3 | 7.3 | 5.0 |
N···C/C···N | 2.2 | 0.1 | 1.2 |
O···N/N···O | 1.1 | 1.4 | 1.4 |
O···O | 1.9 | 2.4 | 0.0 |
S···C/C···S | 0.0 | 0.1 | 0.1 |
Cl···C/C···Cl | 4.7 | - | - |
Cl···H/H···Cl | 6.1 | - | - |
Cl···O/O···Cl | 3.1 | - | - |
Cl···N/N···Cl | 1.4 | - | - |
Acknowledgements
The authors thank SAIF Panjab University for extending the services of their NMR facility and Mangalore University for providing all the facilities required.
Funding information
ARS thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its DST-PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC–BSR one-time grant to faculty.
References
Balaji, J., John Francis Xavier, J., Prabu, S. & Srinivasan, P. (2014). Acta Cryst. E70, o1250–o1251. CrossRef IUCr Journals Google Scholar
Catanescu, O., Grigoras, M., Colotin, G., Dobreanu, A., Hurduc, N. & Simionescu, C. I. (2001). Eur. Polym. J. 37, 2213–2216. CrossRef Google Scholar
Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017a). ACS Omega, 2, 420–431. CrossRef Google Scholar
Hussain, M. M., Rahman, M. M., Arshad, M. N. & Asiri, A. M. (2017b). Sci. Rep. 7, 5832. CrossRef PubMed Google Scholar
Kia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o821–o822. CrossRef IUCr Journals Google Scholar
Kia, R., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o1119–o1120. CrossRef IUCr Journals Google Scholar
Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359. Web of Science PubMed Google Scholar
Manivannan, S. & Dhanuskodi, S. (2004). J. Cryst. Growth, 262, 473–478. CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Morgan, P. W., Kwolek, S. L. & Pletcher, T. C. (1987). Macromolecules, 20, 729–739. CrossRef CAS Web of Science Google Scholar
Murtaza, S., Shamim, S., Kousar, N., Tahir, M. N., Sirajuddin, M. & Rana, U. A. (2016). J. Mol. Struct. 1107, 99–108. CrossRef Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Salian, A. R., Foro, S. & Gowda, B. T. (2018). Acta Cryst. E74, 1613–1618. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tabatabaee, M., Anari-Abbasnejad, M., Nozari, N., Sadegheian, S. & Ghasemzadeh, M. (2007). Acta Cryst. E63, o2099–o2100. Web of Science CrossRef IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer3.1. University of Western Australia. Google Scholar
Xavier, A. J., Thakur, M. & Marie, J. M. (2012). J. Chem. Pharm. Res. 4, 986–990. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.