research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[bis­­(μ-2-bromo­pyrazine)­tetra-μ2-cyanido-dicopper(I)iron(II)]: a bimetallic metal-organic framework

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St 64, Kyiv 01601, Ukraine, and bUkrOrgSyntez Ltd, Chervonotkatska St 67, Kyiv 02094, Ukraine
*Correspondence e-mail: lesya.kucheriv@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 10 November 2018; accepted 22 November 2018; online 30 November 2018)

In the title metal-organic framework, [Fe(C4H3BrN2)2{Cu(CN)2}2]n, the FeII cation is located on an inversion center and has a slightly elongated octa­hedral coordination environment [FeN6], ligated by two pyrazine N atoms of symmetry-related bridging 2-bromo­pyrazine mol­ecules in the axial positions and by four N atoms of pairs of symmetry-related cyanido groups in the equatorial positions. The CuI center has a fourfold coordination environment [CuC3N], with an almost perfect trigonal–pyramidal geometry, formed by three cyanido C atoms and an N atom of a bridging 2-bromo­pyrazine mol­ecule. Copper(I) centers related by a twofold rotation axis are bridged by two carbon atoms from a pair of μ-CN groups, resulting in Cu2(CN)2 units. Each Cu2(CN)2 unit is linked to six FeII cations via a pair of linear CN units, the pair of μ-CN groups and two bridging 2-bromo­pyrazine ligands, resulting in the formation of a metal–organic framework, which is additionally stabilized by the short Cu⋯Cu contacts of 2.4450 (7) Å.

1. Chemical context

The rational design and synthesis of cyanide-based coordination materials is of key inter­est today. By using different approaches for their design and tunable structures, composition and porosity, various exciting properties of these compounds, such as catalytic, photoluminescent, magnetic, electrical and other can be achieved (Zhang et al., 2015[Zhang, X., Dong, G. Y., Yu, B., Van Hecke, K. & Cui, G. H. (2015). Transition Met. Chem. 40, 907-916.]; Catala & Mallah, 2017[Catala, L. & Mallah, T. (2017). Coord. Chem. Rev. 346, 32-61.]). The cyanide anion is an important ligand in coordination chemistry as it can be used for stabilization of coordination materials formed by diverse transition metals. Cyanide-containing coordination materials of very different topologies have been proposed, although attention is frequently paid to heterometallic complexes.

[Scheme 1]

The first class of cyanide-based metallic complexes emerged in the 18th century with the discovery of Prussian blue. Later its analogues containing two types of metals were synthesized. The inclusion of different metals instead of iron resulted in the occurrence of various attractive physical properties of these materials, which allowed their use as mol­ecular sieves, for nanoscale devices, for hydrogen storage, etc. (Newton et al., 2011[Newton, G. N., Nihei, M. & Oshio, H. (2011). Eur. J. Inorg. Chem. pp. 3031-3042.]). Prussian blue analogues form networks with general formula AMA[MB(CN)6] (A = alkali metal ion, MA and MB = transition metal ions) (Keggin & Miles, 1936[Keggin, J. F. & Miles, F. D. (1936). Nature, 137, 577-578.]). These complexes have a cubic structure in which the metallic centers are bridged in an MA—C≡N—MB fashion, forming three-dimensional frameworks.

Another class of heterometallic cyanide coordination compounds that has attracted much attention is represented by fd complexes composed of lanthanide(III) ions and d-block cyano­metallates. This type of materials has been shown to have exceptional photoluminescent properties (Chorazy et al., 2017[Chorazy, S., Wyczesany, M. & Sieklucka, B. (2017). Molecules, 22, 1902.]). In addition, polynuclear octa­cyanides form a different family of cyanide-based heterometallic complexes. Compounds of this class can adopt very different geometries creating 0, 1, 2 or 3D assemblies. These materials are known for photomagnetism, mol­ecular magnetism, and the ability to create chiral networks (Sieklucka et al., 2011[Sieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305-326.]).

The Hofmann clathrate analogues of the general formula [MA(L)x{MB(CN)y}] constitute another prominent example of bimetallic cyano­metallates (Hofmann & Küspert, 1897[Hofmann, K. A. & Küspert, F. (1897). Z. Anorg. Chem. 15, 204-207.]), which are famous for their switchable magnetic properties (Muñoz & Real, 2011[Muñoz, M. C. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068-2093.]). Here we describe the crystal structure of a new Hofmann clathrate analogue of general formula [Fe(Brpz)2{Cu(CN)2}2]n.

2. Structural commentary

A fragment of the structure of the title compound, illustrating the sixfold coordination environment of atom Fe1, is shown in Fig. 1[link]. Selected geometrical parameters are given in Table 1[link]. The FeII ion is located on an inversion centre and has a slightly elongated FeN6 octa­hedral coordination environment. It is ligated by two N atoms of symmetry-related 2-bromo­pyrazine mol­ecules in axial positions [Fe1—N3 = 1.980 (2) Å] and by four N atoms of symmetry related cyanido groups in the equatorial positions [Fe1—N1 = 1.958 (2) and Fe1—N2 = 1.952 (2) Å]. The Fe—N bond lengths clearly indicate that the FeII center is in the low-spin state at the temperature of the experiment, i.e. 296 K. The deviation from an ideal octa­hedron of the FeII center can be described by the octa­hedral distortion parameter Σ|90 − θ| = 23.36°, where θ is a cis-N—Fe—N angle. Notably, this sum is higher than that expected for a low-spin FeII ion. It is important to note, and should always be taken into account, that the octa­hedral distortion value cannot always be used to judge the spin state of a metallic center, it is rather a characteristic of the order level in the structure, the measurement temperature, etc.

Table 1
Selected geometric parameters (Å, °)

Cu1—Cu1i 2.4450 (7) Cu1—C2iv 2.181 (3)
Cu1—N4ii 2.152 (2) Fe1—N1 1.958 (2)
Cu1—C1 1.924 (3) Fe1—N2 1.952 (2)
Cu1—C2iii 2.049 (3) Fe1—N3 1.980 (2)
       
N4ii—Cu1—C2iv 99.77 (10) N3—Fe1—N3v 180
C2iii—Cu1—N4ii 94.29 (10) N2v—Fe1—N3 87.27 (9)
C2iii—Cu1—C2iv 104.00 (10) N2—Fe1—N3 92.73 (9)
C1—Cu1—N4ii 109.09 (10) N2v—Fe1—N1 92.19 (9)
C1—Cu1—C2iv 116.07 (11) N2—Fe1—N1 87.81 (9)
C1—Cu1—C2iii 128.08 (11) N1—Fe1—N3 90.92 (9)
N1—Fe1—N1v 180 N1v—Fe1—N3 89.08 (9)
N2—Fe1—N2v 180    
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) [x, -y, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
A fragment of the crystal structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at 50% probability level [symmetry codes: (i) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + 1, −y, −z + 1; (iii) −x + 1, y, −z + [{1\over 2}]; (iv) x, −y, z + [{1\over 2}]].

Atom Cu1 has a fourfold CuC3N coordination environment (Fig. 2[link], Table 1[link]) with a τ4 descriptor of 0.82, close to that for a perfect trigonal–pyramidal geometry (τ4 = 0.00 for square-planar, 1.00 for tetra­hedral and 0.85 for trigonal–pyramidal; Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). It is ligated by three C atoms of the cyanido groups and an N atom of a bridging 2-bromo­pyrazine mol­ecule [Cu1—C1 = 1.924 (3), Cu1—C2iv = 2.181 (3), Cu1—C2iii = 2.049 (3), Cu1—N4ii = 2.152 (2) Å]. Notably, the coord­ination to atom Fe1 occurs only via the more sterically accessible atom N3 of the pyrazine ring, while atom Cu1 binds to atom N4 of the pyrazine ring.

[Figure 2]
Figure 2
A view of the coordination environment of the Cu atoms in the title compound, with atom labelling [symmetry codes: (i) −x + 1, −y, −z + 1; (iii) x, −y, z + [{1\over 2}]; (iv) x, −y, z + [{1\over 2}]].

3. Supra­molecular features

The crystal packing of the title compound is shown in Fig. 3[link]. The coordination framework is made up of bridging 2-bromo­pyrazine ligands and Cu2(CN)2 moieties (Fig. 2[link]). The latter are formed by a pair of copper atoms, centered about a twofold rotation axis, being bridged by two carbon atoms from a pair of μ-CN groups. Each Cu2(CN)2 unit is linked to six FeII cations via a pair of linear CN units, the pair of μ-CN groups and two bridging 2-bromo­pyrazine ligands, resulting in the formation of a metal–organic framework (Fig. 3[link]). The framework is additionally stabilized by the short Cu1⋯Cu1i contact of 2.4550 (7) Å, which is significantly shorter than the sum of the corresponding van der Waals radii, viz. 2.8 Å. Additionally, within the framework there are weak Br⋯π contacts of 3.8298 (6) Å, that are of lone-pair⋯π origin.

[Figure 3]
Figure 3
A view normal to plane (110) of the crystal structure of the title compound, showing the Cu⋯Cu contacts as dashed lines. H atoms have been omitted for clarity. Colour code: Fe dark red, Cu light blue, C grey, N blue, Br orange.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 15 hits for Fe—N≡C—Cu bimetallic structures supported mainly by substituted pyridines and pyrimidines. These include a number of variable temperature measurements of certain compounds in order to study their spin-crossover behaviour; for example, the two-dimensional coordination polymer catena-[bis­[(μ3-cyano-C,C,N)(μ2-cyano-C,N)]tetra­kis­(3-cyano­pyrid­yl)dicop­per(I)iron(II)] (VEHHOG, VEHHOG01; Galet et al., 2006[Galet, A., Muñoz, M. C. & Real, J. A. (2006). Inorg. Chem. 45, 4583-4585.]), and the framework structures catena-[tetra­kis­(μ2-cyano-C,N)bis­(μ2-pyrimidine-N,N′)dicopper(I)iron(II)] (EHOQOH01, EHOQOH03; Agustí et al., 2008[Agustí, G., Thompson, A. L., Gaspar, A. B., Muñoz, M. C., Goeta, A. E., Rodríguez-Velamazán, J. A., Castro, M., Burriel, R. & Real, J. A. (2008). Dalton Trans. pp. 642-649.]) and catena-[octa­kis­(μ2-cyano)­octa­kis­(3-chloro­pyridine)­tetra­copper(I)diiron(II)] (YUBRET, YUBRET03; Agustí et al., 2009[Agustí, G., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2009). Inorg. Chem. 48, 3371-3381.]).

A search of the CSD for the bridging Cu2(CN)2 unit gave 27 hits. The majority of these are monometallic copper(I) metal–organic frameworks (MOFs). The Cu⋯Cu distances vary from ca 2.31 Å in the two-dimensional network structure catena-[bis­(μ3-cyano)­tetra­kis­(μ2-cyano)­tris­(N,N,N′,N′-tetra­methyl­ethylenedi­amine)­hexa­copper(I)] (HIWHUQ; Stocker et al., 1999[Stocker, F. B., Staeva, T. B., Rienstra, C. M. & Britton, D. (1999). Inorg. Chem. 38, 984-991.]) to ca 2.72 Å in the MOF catena-[tris­(μ-cyano)­tris­(μ-cyano)­diammine­penta­copper] (OPODAA; Grifasi et al., 2016[Grifasi, F., Priola, E., Chierotti, M. R., Diana, E., Garino, C. & Gobetto, R. (2016). Eur. J. Inorg. Chem. pp. 2975-2983.]). Two particular compounds resemble the title MOF, namely catena-[bis­(μ3-cyano-C,C,N)(μ2-cyano-C,N)(μ2-2,3-di­methyl­pyrazine-N,N′)tricopper(I)] (FERWUV; Greve & Nather, 2004[Greve, J. & Nather, C. (2004). Z. Naturforsch. Teil B, 59, 1325-1331.]), which involves a bridging 2,3-di­methyl­pyrazine ligand, and catena-[(μ3-cyano)(μ2-4,4′-bi­pyridine)­tris­(μ2-cyano)­hexa­methyl­dicopper(I)ditin(IV)] (NUMRUI; Ibrahim et al., 1998[Ibrahim, A. M. A., Siebel, E. & Fischer, R. D. (1998). Inorg. Chem. 37, 3521-3525.]), which is a bimetallic MOF with a bridging 4,4′-bi­pyridine ligand. The respective Cu⋯Cu distances are ca 2.49 and 2.62 Å, compared to 2.4550 (7) Å in the title MOF.

5. Synthesis and crystallization

Crystals of the title compound were obtained by slow diffusion within three layers in a 3 ml glass tube. The first layer was a solution of K[Cu(CN)2] (7.8 mg, 0.05 mmol) in 1 ml of water; the second layer was a water/ethanol mixture (1:1, 1 ml); the third layer was a solution of Fe(ClO4)2·6H2O (9.1 mg, 0.025 mmol) and 2-bromo­pyrazine (8.0 mg, 0.05 mmol) in 0.5 ml of ethanol. After two weeks, brown crystals were formed in the middle layer. The crystals were kept under the mother solution prior to measurement.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were placed geometrically and refined as riding: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Cu2Fe(CN)4(C4H3BrN2)2]
Mr 605.00
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 13.6143 (17), 9.3067 (11), 13.2101 (15)
β (°) 92.369 (4)
V3) 1672.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.17
Crystal size (mm) 0.2 × 0.1 × 0.05
 
Data collection
Diffractometer Bruker SMART
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.487, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8711, 2023, 1799
Rint 0.029
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.04
No. of reflections 2023
No. of parameters 115
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.08, −0.76
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

poly[bis(µ-2-bromopyrazine)tetra-µ2-cyanido-dicopper(I)iron(II)] top
Crystal data top
[Cu2Fe(CN)4(C4H3BrN2)2]F(000) = 1152
Mr = 605.00Dx = 2.403 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.6143 (17) ÅCell parameters from 3458 reflections
b = 9.3067 (11) Åθ = 2.7–28.0°
c = 13.2101 (15) ŵ = 8.17 mm1
β = 92.369 (4)°T = 296 K
V = 1672.3 (3) Å3Plate, brown
Z = 40.2 × 0.1 × 0.05 mm
Data collection top
Bruker SMART
diffractometer
1799 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 28.0°, θmin = 2.7°
Tmin = 0.487, Tmax = 0.746h = 1717
8711 measured reflectionsk = 1212
2023 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0308P)2 + 4.9236P]
where P = (Fo2 + 2Fc2)/3
2023 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.76 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.58637 (3)0.80466 (3)0.43290 (2)0.02782 (10)
Cu10.56339 (2)0.11583 (4)0.68710 (2)0.01446 (10)
Fe10.7500000.2500000.5000000.00911 (12)
N20.64165 (17)0.2082 (2)0.40313 (17)0.0125 (4)
N40.61897 (18)0.6878 (3)0.62526 (18)0.0167 (5)
N30.68414 (17)0.4233 (2)0.55166 (16)0.0131 (4)
N10.68406 (17)0.1288 (2)0.59751 (17)0.0133 (4)
C60.6791 (2)0.4482 (3)0.6517 (2)0.0179 (6)
H60.6972790.3761810.6975510.022*
C20.5807 (2)0.1643 (3)0.3484 (2)0.0144 (5)
C30.6541 (2)0.5292 (3)0.4890 (2)0.0167 (5)
H30.6545720.5150970.4193240.020*
C50.6474 (2)0.5785 (3)0.6873 (2)0.0205 (6)
H50.6454760.5919570.7569950.025*
C10.6393 (2)0.0431 (3)0.63961 (19)0.0129 (5)
C40.6224 (2)0.6594 (3)0.5265 (2)0.0164 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0441 (2)0.02245 (17)0.01682 (15)0.01597 (14)0.00049 (13)0.00483 (11)
Cu10.01237 (17)0.01466 (17)0.01645 (17)0.00143 (13)0.00172 (13)0.00342 (13)
Fe10.0097 (3)0.0095 (2)0.0081 (2)0.00185 (19)0.00025 (19)0.00029 (18)
N20.0139 (12)0.0124 (10)0.0114 (10)0.0000 (9)0.0031 (9)0.0019 (8)
N40.0199 (13)0.0148 (11)0.0154 (11)0.0042 (9)0.0019 (10)0.0007 (9)
N30.0124 (11)0.0152 (11)0.0118 (10)0.0003 (9)0.0006 (9)0.0006 (9)
N10.0133 (11)0.0142 (11)0.0122 (10)0.0002 (9)0.0011 (9)0.0018 (9)
C60.0245 (16)0.0162 (13)0.0130 (12)0.0054 (11)0.0003 (11)0.0026 (10)
C20.0162 (14)0.0109 (11)0.0158 (12)0.0015 (10)0.0011 (10)0.0019 (10)
C30.0193 (14)0.0181 (13)0.0126 (12)0.0047 (11)0.0005 (10)0.0022 (10)
C50.0302 (17)0.0198 (14)0.0115 (12)0.0071 (12)0.0019 (11)0.0004 (11)
C10.0142 (13)0.0144 (13)0.0101 (11)0.0008 (10)0.0001 (10)0.0014 (9)
C40.0166 (14)0.0173 (13)0.0151 (13)0.0054 (11)0.0003 (10)0.0041 (10)
Geometric parameters (Å, º) top
Br1—C41.884 (3)N2—C21.153 (4)
Cu1—Cu1i2.4450 (7)N4—C51.353 (4)
Cu1—N4ii2.152 (2)N4—C41.334 (4)
Cu1—C11.924 (3)N3—C61.347 (3)
Cu1—C2iii2.049 (3)N3—C31.340 (4)
Cu1—C2iv2.181 (3)N1—C11.160 (4)
Fe1—N11.958 (2)C6—H60.9300
Fe1—N2v1.952 (2)C6—C51.376 (4)
Fe1—N21.952 (2)C3—H30.9300
Fe1—N31.980 (2)C3—C41.385 (4)
Fe1—N3v1.980 (2)C5—H50.9300
Fe1—N1v1.958 (2)
N4ii—Cu1—Cu1i121.81 (7)C2—N2—Fe1170.7 (2)
N4ii—Cu1—C2iv99.77 (10)C5—N4—Cu1vi120.31 (19)
C2iii—Cu1—Cu1i57.25 (8)C4—N4—Cu1vi124.53 (19)
C2iv—Cu1—Cu1i52.20 (8)C4—N4—C5115.0 (2)
C2iii—Cu1—N4ii94.29 (10)C6—N3—Fe1121.39 (19)
C2iii—Cu1—C2iv104.00 (10)C3—N3—Fe1121.14 (18)
C1—Cu1—Cu1i128.71 (8)C3—N3—C6116.9 (2)
C1—Cu1—N4ii109.09 (10)C1—N1—Fe1167.4 (2)
C1—Cu1—C2iv116.07 (11)N3—C6—H6119.4
C1—Cu1—C2iii128.08 (11)N3—C6—C5121.1 (3)
N1—Fe1—N1v180C5—C6—H6119.4
N2—Fe1—N2v180Cu1iii—C2—Cu1vii70.56 (9)
N3—Fe1—N3v180N2—C2—Cu1iii151.5 (2)
N2v—Fe1—N387.27 (9)N2—C2—Cu1vii137.1 (2)
N2v—Fe1—N3v92.73 (9)N3—C3—H3119.5
N2—Fe1—N392.73 (9)N3—C3—C4120.9 (3)
N2—Fe1—N3v87.27 (9)C4—C3—H3119.5
N2v—Fe1—N192.19 (9)N4—C5—C6122.7 (3)
N2—Fe1—N187.81 (9)N4—C5—H5118.6
N2—Fe1—N1v92.19 (9)C6—C5—H5118.6
N2v—Fe1—N1v87.81 (9)N1—C1—Cu1170.1 (2)
N1—Fe1—N390.92 (9)N4—C4—Br1118.8 (2)
N1v—Fe1—N3v90.92 (9)N4—C4—C3123.2 (3)
N1v—Fe1—N389.08 (9)C3—C4—Br1118.0 (2)
N1—Fe1—N3v89.08 (9)
Cu1vi—N4—C5—C6176.8 (2)N3—C3—C4—N40.5 (5)
Cu1vi—N4—C4—Br15.2 (3)C6—N3—C3—C42.0 (4)
Cu1vi—N4—C4—C3176.7 (2)C3—N3—C6—C52.0 (4)
Fe1—N3—C6—C5169.6 (2)C5—N4—C4—Br1179.1 (2)
Fe1—N3—C3—C4169.7 (2)C5—N4—C4—C31.0 (4)
N3—C6—C5—N40.6 (5)C4—N4—C5—C61.0 (5)
N3—C3—C4—Br1177.6 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y, z+1/2; (v) x+3/2, y+1/2, z+1; (vi) x, y+1, z; (vii) x, y, z1/2.
 

Acknowledgements

We are grateful to the Ministry of Education and Science of Ukraine and H2020 Marie Skłodowska-Curie Actions for financial support.

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. DZ/55-2018); H2020 Marie Skłodowska-Curie Actions (grant No. 734322).

References

First citationAgustí, G., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2009). Inorg. Chem. 48, 3371–3381.  Google Scholar
First citationAgustí, G., Thompson, A. L., Gaspar, A. B., Muñoz, M. C., Goeta, A. E., Rodríguez-Velamazán, J. A., Castro, M., Burriel, R. & Real, J. A. (2008). Dalton Trans. pp. 642–649.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCatala, L. & Mallah, T. (2017). Coord. Chem. Rev. 346, 32–61.  CrossRef Google Scholar
First citationChorazy, S., Wyczesany, M. & Sieklucka, B. (2017). Molecules, 22, 1902.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalet, A., Muñoz, M. C. & Real, J. A. (2006). Inorg. Chem. 45, 4583–4585.  CrossRef Google Scholar
First citationGreve, J. & Nather, C. (2004). Z. Naturforsch. Teil B, 59, 1325–1331.  Google Scholar
First citationGrifasi, F., Priola, E., Chierotti, M. R., Diana, E., Garino, C. & Gobetto, R. (2016). Eur. J. Inorg. Chem. pp. 2975–2983.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHofmann, K. A. & Küspert, F. (1897). Z. Anorg. Chem. 15, 204–207.  CrossRef CAS Google Scholar
First citationIbrahim, A. M. A., Siebel, E. & Fischer, R. D. (1998). Inorg. Chem. 37, 3521–3525.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKeggin, J. F. & Miles, F. D. (1936). Nature, 137, 577–578.  CrossRef CAS Google Scholar
First citationMuñoz, M. C. & Real, J. A. (2011). Coord. Chem. Rev. 255, 2068–2093.  Google Scholar
First citationNewton, G. N., Nihei, M. & Oshio, H. (2011). Eur. J. Inorg. Chem. pp. 3031–3042.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSieklucka, B., Podgajny, R., Korzeniak, T., Nowicka, B., Pinkowicz, D. & Kozieł, M. (2011). Eur. J. Inorg. Chem. pp. 305–326.  Web of Science CrossRef Google Scholar
First citationStocker, F. B., Staeva, T. B., Rienstra, C. M. & Britton, D. (1999). Inorg. Chem. 38, 984–991.  CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, X., Dong, G. Y., Yu, B., Van Hecke, K. & Cui, G. H. (2015). Transition Met. Chem. 40, 907–916.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds