research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (E)-N′-[4-(piperidin-1-yl)benzyl­­idene]aryl­sulfono­hydrazides

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri-574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Str. 2, D-64287, Darmstadt, Germany, and cKarnataka State Rural Development and Panchayat Raj University, Gadag-582 101, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 16 October 2018; accepted 15 November 2018; online 22 November 2018)

The crystal structures and Hirshfeld surface analyses of three Schiff bases, namely (E)-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C18H21N3O2S, (I), (E)-4-methyl-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C19H23N3O2S, (II), and (E)-4-chloro-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C18H20ClN3O2S, (III), derived from aryl­sulfono­hydrazides and 4-(piperidin-4-yl)benzaldehyde have been analysed to investigate the effect of substituents on the structural parameters. All three structures crystallize in monoclinic crystal systems, in the space groups P21/c for (I) and (II), and C2/c for (III). Compound (III) contains two independent mol­ecules in the asymmetric unit and sixteen mol­ecules per unit cell, while (I) and (II) both have one and four mol­ecules, respectively, in their asymmetric units and unit cells. In all cases, the central part of the mol­ecule is twisted at the S atom. In the crystals, the mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains. Two-dimensional fingerprint plots of various inter­atomic contacts show that the major contributions are from H⋯H inter­actions.

1. Chemical context

Piperidine is very common in many natural and synthetic N-containing medicaments and is present in the basic skeleton of many pharmacologically active compounds (Sampath, 2017[Sampath, N. (2017). J. Struct. Chem. 58, 804-808.]). Compounds with a piperidine functional group are inter­mediates in the synthesis of various alkaloids (Wang & Wuorola, 1992[Wang, C. L. & Wuorola, M. A. (1992). Org. Prep. Proceed. Int. 24, 585-621.]; Grishina et al., 1995[Grishina, G. V., Gaidatova, F. L. & Zefirov, N. S. (1995). Chem. Heterocycl. Com. 30, 1401-1426.]). They are reported to be cholesterol-lowering (Comins et al., 2001[Comins, D. L., Brooks, C. A. & Ingalls, C. L. (2001). J. Org. Chem. 66, 2181-2182.]) and to display anti­viral (Kang et al., 2015[Kang, D., Fang, Z., Huang, B., Zhang, L., Liu, U., Pannecouque, C., Naesens, L., De Clercq, E., Zhan, P. & Liu, X. (2015). Chem. Biol. Drug Des. 86, 568-577.]), anti-inflammatory, anti­oxidant (Tharini & Sangeetha, 2015[Tharini, K. & Sangeetha, P. (2015). Int. J. Chem. Sci. 13, 1794-1804.]), anti-epileptic (Kiasalari et al., 2014[Kiasalari, Z., Khalili, M., Roghani, M., Ahmadi, A. & Mireie, M. (2014). Iran J. Pathol. 9, 138-148.]), anti­microbial, anti­tumor and anti­fungal (Sahu et al., 1979[Sahu, K., Behera, K., Pathaik, R. C., Nayak, A. & Behera, G. B. (1979). Indian J. Chem. Sect. B, 18, 557-561.]; Shah et al., 1992[Shah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590-596.]) activities. Furthermore, Schiff bases find applications in the pharmacological field and are important in designing medicines (Parekh et al., 2005[Parekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc. 70, 1155-1162.]). Thus the crystal structures of Schiff bases and piperidine derivatives have always been inter­esting, especially with regard to the stereochemistry across C=N and the conformation of the six-membered heterocyclic ring. We were inter­ested in exploring the effect of the substituents on the structural parameters of compounds containing these moieties. Thus we report herein the synthesis, characterization and crystal structures of (E)-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C18H21N3O2S, (I)[link], and its 4-methyl- and 4-chloro-derivatives, namely, (E)-4-methyl-N′-[4-(piperidin-1-yl)benzyl­idene]benz­ene­sulfono­hydrazide, C19H23N3O2S, (II)[link], and (E)-4-chloro-N′-[4-(piperidin-1-yl)benzyl­idene]benzene­sulfono­hydrazide, C18H20ClN3O2S, (III)[link].

[Scheme 1]

2. Structural commentary

All three of the title compounds (Figs. 1[link]–3[link][link]) crystallize in the monoclinic crystal system but in space group P21/c for (I)[link] and (II)[link], and space group C2/c for (III)[link]. The asymmetric units of compounds (I)[link] and (II)[link] each contain one mol­ecule whereas there are two independent mol­ecules in the asymmetric unit of (III)[link]. All the three compounds display an E-configuration about the C=N bond (Purandara et al., 2017[Purandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1946-1951.]; Gu et al., 2012[Gu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634-4650.]), and a chair conformation of the piperidine ring.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Mol­ecular structure of (II)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecular structure of (III)[link], showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In compounds (I)[link] and (II)[link] (Figs. 1[link] and 2[link]), the sulfonamide bonds are found to be synclinal and the torsion angles of the sulfonamide moieties are −66.0 (2) and 63.5 (2)°, respectively (Moss, 1996[Moss, G. P. (1996). Pure Appl. Chem. 68, 2193-2222.]). The dihedral angles between the phenyl ring (C1–C6/S1) and the mean plane of the N1/N2/C7–C9 hydrazone fragment are 85.3 (1) and 80.5 (1)° in (I)[link] and (II)[link], respectively, indicating that the hydrazone portion of the mol­ecules (C=N—N—S—C group) is not coplanar with the sulfonyl phenyl ring. The C7=N2 bond lengths of 1.271 (3) Å in (I)[link] and 1.269 (3) Å in (II)[link] are in agreement with double-bond character. In both compounds, the piperidine group is not sterically hindered. Thus the six-membered heterocyclic ring adopts the most stable chair conformation. The total puckering amplitude is 0.531 (3) Å in (I)[link] and 0.465 (4) Å in (II)[link], the puckering parameters are 173.7 (3), and 8.0 (5)° in (I)[link] and (II)[link], respectively, and the phase angles are 13.0 (3) in (I)[link] and 184.0 (4)° in (II)[link], respectively (Cremer & Pople, 1975[Cremer, D. & Pople, A. J. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Nardelli, 1983[Nardelli, M. (1983). Comput. Chem. 7, 95-98.]). The C15—C14—N3—C11 torsion angles of −172.2 (2)° and 175.2 (3)° in (I)[link] and (II)[link], respectively, signify that the phenyl ring at the N atom of the piperidine ring is in an equatorial position (Nallini et al., 2003[Nallini, A., Saraboji, K., Ponnuswamy, M. N., Venkatraj, M. & Jeyaraman, R. (2003). Mol. Cryst. Liq. Cryst. 403, 57-65.]).

The asymmetric unit of (III)[link] contains two independent mol­ecules and the unit cell contains 16 mol­ecules. The torsion angles for the sulfonamide moieties in the two mol­ecules [C1—S1–N1–N2 = 59.7 (4)° and C19—S2—N4—N5 = 67.9 (4)°] signify a synclinal conformation (Moss, 1996[Moss, G. P. (1996). Pure Appl. Chem. 68, 2193-2222.]). The hydrazone moiety (C=N—N—S—C group) and aryl­sulfonyl ring are not coplanar, with dihedral angles between the two planes of 87.3 (1) and 79.4 (1)°, respectively, in the first and second mol­ecules. The C7=N2 and C25=N5 bond lengths of 1.272 (5) and 1.269 (5) Å, respectively, are consistent with double-bond character. As in compounds (I)[link] and (II)[link], the piperidine group in (III)[link] adopts a chair conformation, with the total puckering amplitude of QT = 0.283 (7) and 0.475 (1) Å in the first and second mol­ecules, respectively, θ = 2.7 (14), 175.5 (8)° and phase angles φ = 220 (22)° and 353 (10)° in the two mol­ecules, respectively. The phenyl ring at the piperidine N atom is equatorial, as is evident from C15—C14—N3—C11 and C33—C32—N6—C29 torsion angles of 174.4 (7) and −168.9 (5)°, respectively.

3. Supra­molecular features

In all the three crystal structures, the amino H atom of the sulfono­hydrazide segment acts as a donor and the sulfonyl O atom acts as an acceptor in N—H⋯O hydrogen-bonding inter­actions that generate C4 chains propagating parallel to the b axis (Tables 1[link]–3[link][link], Figs. 4–9[link][link][link][link][link][link]). Substitution at the para position by a methyl or chloro group to produce compounds (II)[link] and (III)[link] has no remarkable effect on the hydrogen-bonding pattern.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.32 (2) 3.133 (3) 165 (2)
Symmetry code: (i) x, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.79 (3) 2.29 (3) 3.068 (3) 170 (3)
Symmetry code: (i) x, y+1, z.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (4) 2.26 (5) 3.025 (5) 153 (5)
N4—H4N⋯O4ii 0.84 (5) 2.29 (5) 3.115 (6) 169 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.
[Figure 4]
Figure 4
Hydrogen-bonding pattern in (I)[link] with hydrogen bonds shown as dashed lines. Symmetry code as in Table 1[link].
[Figure 5]
Figure 5
Hydrogen-bonding pattern in (II)[link] with hydrogen bonds shown as dashed lines. Symmetry code as in Table 2[link].
[Figure 6]
Figure 6
Hydrogen-bonding pattern in (III)[link] with hydrogen bonds shown as dashed lines.
[Figure 7]
Figure 7
Mol­ecular packing of (I)[link].
[Figure 8]
Figure 8
Mol­ecular packing of (II)[link].
[Figure 9]
Figure 9
Mol­ecular packing of (III)[link].

4. Database survey

Although there are several reports on the crystal structures of piperidine or sulfonyl­hydrazides derivatives, reports on the crystal structures of 4-(piperidin-1-yl)benzaldehyde functionalized with sulfonyl­hydrazides are very few. Comparison of the present data with those of thio­phene/phenyl-piperidine hybrid chalcones (Parvez et al., 2014[Parvez, M., Bakhtiar, M., Baqir, M. & Zia-ur-Rehman, M. (2014). J. Chem. Crystallogr. 44, 580-585.]) reveals that the compounds also adopt E configuration around the C=N bond and the piperidine rings exhibit a chair conformation. A chair conformation of the piperidine ring is also found in 5-nitro-2-(piperidin-1-yl)benzaldehyde (N'Gouan et al., 2009[N'Gouan, A. J., Mansilla-Koblavi, F., Timotou, A., Adjou, A. & Ebby, N. (2009). Acta Cryst. E65, o2880.]) and (5-nitro-2-piperidino)­benzyl­idene p-toluene­sulfonyl­hydra­zone (Yapo et al., 2008[Yapo, Y. M., Kakou Yao, R., Timotou, A., N'Gouan, A. J. & Tenon, A. J. (2008). Phys. Chem. News 40, 77-80.]).

5. Hirshfeld surface analysis

Hirshfeld surfaces (HS) and 2D fingerprint plots were generated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]; McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The terms such as dnorm, di and de are defined in the usual way (Shit et al., 2016[Shit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slov. 63, 129-137.]). The function dnorm is a ratio enclosing the distances of any surface point to the nearest inter­ior (di) and exterior (de) atom and the van der Waals radii of the atoms (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Soman et al., 2014[Soman, R., Sujatha, S. & Arunkumar, C. (2014). J. Fluor. Chem. 163, 16-22.]). The function dnorm will be equal to zero when inter­molecular distances are close to van der Waals contacts. They are indicated by a white colour on the HS, while contacts longer than the sum of van der Waals radii with positive dnorm values are coloured in blue. The surface images and plots for dnorm (Fig. 10[link]) were generated using a high standard surface resolution over a colour scale of −0.3495 to 1.3559, −0.4124 to 1.6768 and −0.3876 to 1.5649 a.u. for (I)[link], (II)[link] and (III)[link], respectively.

[Figure 10]
Figure 10
Top: Hirshfeld surface mapped over dnorm for (I)[link], (II)[link] and (III)[link]. Bottom: two-dimensional fingerprint plots for (I)[link], (II)[link] and (III)[link].

Hirshfeld fingerprint plots for various inter­actions show differences in the percentage contributions to the Hirshfeld surfaces. H⋯H contacts make the maximum contribution to the Hirshfeld surfaces in all three compounds. The contributions of significant contacts in the three compounds are in the following order: H⋯H, C⋯H/H⋯C and O⋯H/H⋯O. In compound (I)[link], these inter­actions cover a region of 52.0% (di = de = 1.5 Å), 22.5% (di + de = 3.2 Å), and 15.3% (di + de = 2.4 Å) (Fig. 11[link]), respectively. The other inter­atomic contacts and percentages of contributions to the Hirshfeld surface are N⋯H/H⋯N (6.7%), C⋯O/O⋯C (3.1%). In compound (II)[link], the contributions of the various contacts are: H⋯H 52.3% (di = de =1.5 Å), C⋯H/H⋯C 23.6% (di + de = 3.2 Å), and O⋯H/H⋯O 18.0% (di + de = 2.4 Å) (Fig. 11[link]). Among the minor contributions observed, N⋯H/H⋯N inter­action cover a region of 6.1%. In the case of compound (III)[link], the major contributions are H⋯H 41.0% (di = de = 1.0 Å), C⋯H/H⋯C 22.3% (3.2 Å) and O⋯H/H⋯O, 19.3% (di + de = 2.4 Å) along with minor contributions from Cl⋯H/H⋯Cl (9.5%) and N⋯H/H⋯N (5.1%) inter­actions (Fig. 11[link]).

[Figure 11]
Figure 11
Two-dimensional fingerprint plots for (I)[link], (II)[link] and (III)[link], showing the contributions of the different types of inter­actions.

6. Synthesis and crystallization

Synthesis of benzene­sulfono­hydrazide and 4-methyl and 4-chloro-benzene­sulfono­hydrazides

To solutions of hydrazine hydrate (99%) (0.03mol) in THF at 273 K under stirring, a solution of benzene­sulfonyl chloride, 4-methyl­benzene­sulfonyl chloride or 4-chloro­benzene­sulfonyl chloride (0.02 mol) in THF was added dropwise. Three separ­ate reaction mixtures were kept under stirring at 273 K for 1 h and stirring continued for 24 h at room temperature. The formation of the products was monitored by TLC. After completion of the reactions, the reaction mixtures were poured separately onto ice-cold water. The separated solids, benzene­sulfono­hydrazide, 4-methyl­benzene­sulfono­hydrazide or 4-chloro­benzene­sulfono­hydrazide, were filtered off and dried. The products were recrystallized from ethanol solution to get the pure products.

The purity of the compounds was checked by TLC and they were characterized by their IR spectra. They were further characterized by 1H and 13C NMR spectra. The characteristic IR absorptions and 1H and 13C NMR signals are as follows:

Benzene­sulfono­hydrazide: m.p. 374–376 K; FT–IR (ATR, νmax, cm−1): 3254.4 (s, NH2 str), 3198.3 (s, N—H str), 1325.1 (s, S=O asym str) and 1140.8 (vs, S=O sym str).

1H and 13C NMR spectra: 1H (400 MHz, DMSO-d6, δ, ppm): 7.93–7.42 (m, 5H, Ar—H), 5.85 (t, 1H), 3.43 (d, 2H). 13C NMR (100 MHz, DMSO-d6, δ, ppm); 134.57, 130.15, 129.12, 125.63.

4-Methyl­benzene­sulfono­hydrazide: m.p. 382–385 K; FT–IR (ATR, νmax, cm−1): 3245.1 (s, NH2 str), 3193.8 (s, N—H str), 1330.5 (s, S=O asym str) and 1126.5 (vs, S=O sym str).

1H and 13C NMR spectra: 1H (400 MHz, DMSO-d6, δ, ppm); 7.71–7.31 (m, 4H, Ar—H), 5.91 (t, 1H), 3.48 (d, 2H), 2.19 (s, 3H, CH3). 13C NMR (100 MHz, DMSO-d6, δ, ppm); 142.36, 136.90, 128.13, 126.71, 22.11.

4-Chloro­benzene­sulfono­hydrazide: m.p. 388–90 K; FT–IR (ATR, νmax, cm−1): 3259.4 (s, NH2 str), 3195.1 (s, N—H str), 1341.7 (s, S=O asym str) and 1138.5 (vs, S=O sym str).

1H and 13C NMR spectra: 1H (400 MHz, DMSO-d6, δ, ppm); 7.58–7.67 (m, 5H, Ar—H), 5.87 (t, 1H), 3.41 (d, 2H). 13C NMR (100 MHz, DMSO-d6, δ, ppm); 137.90, 137.29, 130.30, 128.42.

Synthesis of the title compounds (I)[link], (II)[link] and (III)[link]:

Mixtures of 4-(piperidin-1-yl)benzaldehyde (0.001 mol) and benzene­sulfono­hydrazide, 4-methyl­benzene­sulfono­hydrazide or 4-chloro­benzene­sulfono­hydrazide (0.001 mol) in ethanol (10 ml) and two drops of glacial acetic acid were stirred at room temperature for 2 h. The formation of the products was monitored by TLC. The reaction mixtures were separately poured on crushed ice and the solids that formed were washed and dried. The products were recrystallized to constant melting points from an aceto­nitrile:DMF (5:1 v:v) mixture. The purity of the compounds was checked by TLC and they were characterized by their IR spectra. They were further characterized by 1H and 13C NMR spectra. The characteristic IR absorptions and 1H and 13C NMR signals are as follows

Compound (I): m.p. 417–419 K; FT–IR (ATR, νmax, cm−1): 3219.2 (s, N—H str), 1609.3 (s, C=N str), 1363.7 (s, S=O asym str) and 1165.0 (vs, S=O sym str).

1H and 13C NMR spectra: 1H (400 MHz, DMSO-d6, δ, ppm); 9.41 (s, 1H, N—H), 8.39 (s, 1H, =C—H), 7.76–7.59 (m, 5H, Ar—H), 7.54–6.54 (m, 4H, Ar—H), 3.46–1.82 (m, 4H), 1.47–1.39 (m, 6H). 13C NMR (100 MHz, DMSO-d6, δ, ppm); 151.34, 147.31, 138.89, 133.62, 130.94, 129.91, 128.27, 124.97, 112.76, 48.54, 24.82, 23.93.

Compound (II)[link]: m.p. 439 − 441 K; FT–IR (ATR, νmax, cm−1): 3214.3 (s, N—H, str), 1606.7 (s, C=N str), 1359.82 (s, S=O asym) and 1163.08cm−1 (vs, S=O sym).

1H and 13C spectra: 1H (400 MHz, DMSO-d6, δ, ppm); 10.98 (s, 1H, N—H), 7.77–7.75 (m, 3H, Ar—H, =C—H), 7.37–7.34 (m, 4H, Ar—H), 3.29–2.36 (m, 4H), 2.37 (s, 3H, CH3), 1.56–1.47 (m, 6H); 13C NMR (100 MHz, DMSO-d6 δ, ppm); 152.28, 147.48, 142.92, 136.34, 129.28, 127.89, 127.17, 114.45, 48.51, 24.92, 23.87, 21.0.

Compound (III)[link]: m.p. 429–431 K; FT–IR (ATR, νmax, cm−1): 3213.4 (s, N—H, str), 1608.9 (s, C=N, str), 1365.6 (s, S=O asym str) and 1166.9 (vs, S=O sym str).

1H and 13C spectra: 1H (400 MHz, DMSO-d6, δ, ppm); 8.18 (s, 1H, N-H), 7.91–7.88 (m, 2H, Ar—H), 7.70 (s, 1H, =C—H), 7.45–7.40 (m, 4H), 6.82 (d, 2H, Ar—H), 3.26–3.23 (m, 4H), 1.69–1.60 (m, 6H). 13C NMR (100 MHz, DMSO-d6, δ, ppm); 153.13, 150.03, 139.68, 136.87, 129.41, 129.27, 128.88, 122.65, 114.85, 49.29, 25.41, 24.28.

Prismatic single crystals of the compounds used in X-ray diffraction studies were grown from their solutions in a aceto­nitrile–DMF (5:1 v:v) mixture by slow evaporation of the solvent.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms bonded to C were positioned with idealized geometry and refined using a riding model with the aromatic C—H = 0.93, 0.96 (meth­yl), or 0.97 Å (methyl­ene). H atoms of the NH groups were located in a difference map and their positions refined. All H atoms were refined with Uiso(H) = 1.2Ueq(C-aromatic, C-methyl­ene, N) or 1.5Ueq(C-meth­yl). In compound (III)[link], the Uij components of atoms C14, C15, C17, and C18 were restrained to approximate isotropic behaviour.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C18H21N3O2S C19H23N3O2S C18H20ClN3O2S
Mr 343.44 357.46 377.88
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 293 293 293
a, b, c (Å) 19.221 (2), 5.4270 (7), 17.143 (2) 18.442 (2), 5.3250 (4), 19.412 (2) 33.052 (6), 5.258 (1), 43.026 (8)
β (°) 105.45 (2) 101.74 (1) 94.05 (2)
V3) 1723.6 (4) 1866.5 (3) 7459 (2)
Z 4 4 16
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.20 0.19 0.33
Crystal size (mm) 0.44 × 0.32 × 0.28 0.48 × 0.24 × 0.10 0.50 × 0.26 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Oxford Diffraction Xcalibur diffractometer with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.])
Tmin, Tmax 0.916, 0.945 0.914, 0.981 0.851, 0.955
No. of measured, independent and observed [I > 2σ(I)] reflections 6052, 3164, 2475 6735, 3422, 2166 14002, 6833, 2999
Rint 0.019 0.026 0.042
(sin θ/λ)max−1) 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.06 0.051, 0.137, 1.02 0.075, 0.172, 1.01
No. of reflections 3164 3422 6833
No. of parameters 220 230 457
No. of restraints 0 0 31
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.31 0.21, −0.22 0.27, −0.30
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.]), SHELXS2013/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015).

(E)-N'-[4-(Piperidin-1-yl)benzylidene]benzenesulfonohydrazide (I) top
Crystal data top
C18H21N3O2SF(000) = 728
Mr = 343.44Dx = 1.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.221 (2) ÅCell parameters from 2039 reflections
b = 5.4270 (7) Åθ = 2.8–27.8°
c = 17.143 (2) ŵ = 0.20 mm1
β = 105.45 (2)°T = 293 K
V = 1723.6 (4) Å3Prism, colourless
Z = 40.44 × 0.32 × 0.28 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
2475 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.019
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.8°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2320
Tmin = 0.916, Tmax = 0.945k = 46
6052 measured reflectionsl = 1920
3164 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.7956P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3164 reflectionsΔρmax = 0.24 e Å3
220 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60577 (10)0.1520 (4)0.46537 (12)0.0384 (5)
C20.63592 (13)0.0066 (5)0.42141 (15)0.0553 (6)
H20.66250.14220.44600.066*
C30.62614 (16)0.0387 (6)0.33995 (17)0.0720 (8)
H30.64590.06840.30930.086*
C40.58782 (15)0.2386 (6)0.30389 (15)0.0699 (8)
H40.58210.26810.24910.084*
C50.55771 (13)0.3960 (6)0.34822 (16)0.0692 (8)
H50.53110.53090.32320.083*
C60.56663 (12)0.3554 (5)0.42987 (14)0.0551 (6)
H60.54670.46270.46030.066*
C70.79265 (11)0.4355 (4)0.63390 (11)0.0403 (5)
H70.77610.57820.65310.048*
C80.86830 (11)0.4209 (4)0.63351 (11)0.0378 (5)
C90.89690 (11)0.2255 (4)0.59921 (12)0.0434 (5)
H90.86670.09730.57490.052*
C100.96855 (11)0.2183 (4)0.60049 (12)0.0431 (5)
H100.98570.08510.57700.052*
C111.01676 (10)0.4064 (4)0.63636 (11)0.0353 (4)
C120.98802 (11)0.5993 (4)0.67192 (12)0.0428 (5)
H121.01810.72650.69720.051*
C130.91592 (12)0.6049 (4)0.67031 (12)0.0435 (5)
H130.89870.73610.69470.052*
C141.10674 (12)0.2969 (5)0.56571 (14)0.0529 (6)
H14A1.08890.41130.52140.063*
H14B1.08160.14180.55110.063*
C151.18625 (13)0.2563 (5)0.57619 (18)0.0657 (7)
H15A1.20260.12120.61370.079*
H15B1.19410.21010.52450.079*
C161.22997 (12)0.4823 (5)0.60752 (15)0.0558 (6)
H16A1.28100.44620.61740.067*
H16B1.21780.61350.56780.067*
C171.21388 (12)0.5618 (5)0.68471 (14)0.0595 (7)
H17A1.24020.71200.70400.071*
H17B1.23020.43560.72560.071*
C181.13426 (12)0.6062 (5)0.67295 (15)0.0573 (6)
H18A1.12570.64570.72480.069*
H18B1.11950.74710.63760.069*
N10.67909 (9)0.2983 (4)0.61782 (11)0.0422 (4)
H1N0.6650 (12)0.444 (4)0.6160 (14)0.051*
N20.74846 (9)0.2602 (3)0.60892 (10)0.0412 (4)
N31.09002 (9)0.3935 (3)0.63815 (9)0.0387 (4)
O10.64512 (9)0.1391 (3)0.58934 (10)0.0571 (4)
O20.55362 (8)0.1803 (3)0.59001 (9)0.0547 (4)
S10.61709 (3)0.10285 (10)0.56935 (3)0.04091 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (10)0.0418 (12)0.0442 (11)0.0031 (9)0.0075 (8)0.0030 (9)
C20.0554 (14)0.0543 (14)0.0594 (15)0.0026 (12)0.0210 (11)0.0046 (12)
C30.0813 (19)0.083 (2)0.0578 (16)0.0118 (17)0.0297 (14)0.0194 (16)
C40.0640 (16)0.102 (2)0.0386 (13)0.0277 (17)0.0046 (12)0.0034 (15)
C50.0536 (15)0.089 (2)0.0564 (16)0.0059 (15)0.0001 (12)0.0206 (15)
C60.0480 (13)0.0631 (16)0.0524 (14)0.0131 (12)0.0103 (10)0.0074 (12)
C70.0473 (12)0.0377 (12)0.0347 (11)0.0034 (10)0.0089 (9)0.0014 (9)
C80.0426 (11)0.0356 (11)0.0324 (10)0.0006 (9)0.0050 (8)0.0045 (9)
C90.0443 (12)0.0349 (11)0.0459 (12)0.0086 (10)0.0033 (9)0.0063 (10)
C100.0465 (12)0.0318 (11)0.0483 (12)0.0028 (10)0.0079 (10)0.0092 (10)
C110.0432 (11)0.0312 (10)0.0278 (9)0.0037 (9)0.0027 (8)0.0018 (8)
C120.0503 (12)0.0339 (11)0.0415 (11)0.0107 (10)0.0073 (9)0.0086 (9)
C130.0523 (12)0.0352 (11)0.0430 (11)0.0014 (10)0.0126 (9)0.0063 (10)
C140.0505 (13)0.0579 (15)0.0492 (13)0.0097 (11)0.0116 (10)0.0172 (12)
C150.0519 (14)0.0626 (17)0.0857 (19)0.0081 (13)0.0235 (13)0.0283 (15)
C160.0453 (13)0.0577 (15)0.0657 (15)0.0070 (12)0.0171 (11)0.0130 (12)
C170.0481 (13)0.0739 (18)0.0535 (14)0.0195 (13)0.0082 (11)0.0148 (13)
C180.0536 (14)0.0606 (16)0.0598 (15)0.0205 (12)0.0191 (11)0.0261 (12)
N10.0397 (10)0.0413 (10)0.0444 (10)0.0028 (8)0.0089 (8)0.0016 (9)
N20.0382 (9)0.0433 (10)0.0393 (9)0.0021 (8)0.0055 (7)0.0022 (8)
N30.0422 (9)0.0387 (10)0.0330 (9)0.0091 (8)0.0062 (7)0.0053 (7)
O10.0619 (10)0.0391 (9)0.0689 (11)0.0043 (8)0.0147 (8)0.0115 (8)
O20.0444 (9)0.0671 (11)0.0572 (9)0.0011 (8)0.0216 (7)0.0009 (8)
S10.0378 (3)0.0397 (3)0.0456 (3)0.0016 (2)0.0118 (2)0.0042 (2)
Geometric parameters (Å, º) top
C1—C21.370 (3)C12—H120.9300
C1—C61.383 (3)C13—H130.9300
C1—S11.758 (2)C14—N31.460 (3)
C2—C31.381 (4)C14—C151.507 (3)
C2—H20.9300C14—H14A0.9700
C3—C41.363 (4)C14—H14B0.9700
C3—H30.9300C15—C161.503 (3)
C4—C51.370 (4)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.382 (3)C16—C171.500 (3)
C5—H50.9300C16—H16A0.9700
C6—H60.9300C16—H16B0.9700
C7—N21.271 (3)C17—C181.509 (3)
C7—C81.458 (3)C17—H17A0.9700
C7—H70.9300C17—H17B0.9700
C8—C131.387 (3)C18—N31.463 (3)
C8—C91.395 (3)C18—H18A0.9700
C9—C101.372 (3)C18—H18B0.9700
C9—H90.9300N1—N21.397 (2)
C10—C111.406 (3)N1—S11.6458 (19)
C10—H100.9300N1—H1N0.84 (2)
C11—C121.397 (3)O1—S11.4258 (16)
C11—N31.402 (2)O2—S11.4216 (15)
C12—C131.379 (3)
C2—C1—C6121.3 (2)C15—C14—H14A108.9
C2—C1—S1120.43 (17)N3—C14—H14B108.9
C6—C1—S1118.24 (17)C15—C14—H14B108.9
C1—C2—C3118.8 (2)H14A—C14—H14B107.7
C1—C2—H2120.6C16—C15—C14112.1 (2)
C3—C2—H2120.6C16—C15—H15A109.2
C4—C3—C2120.8 (3)C14—C15—H15A109.2
C4—C3—H3119.6C16—C15—H15B109.2
C2—C3—H3119.6C14—C15—H15B109.2
C3—C4—C5120.1 (2)H15A—C15—H15B107.9
C3—C4—H4119.9C17—C16—C15108.8 (2)
C5—C4—H4119.9C17—C16—H16A109.9
C4—C5—C6120.4 (3)C15—C16—H16A109.9
C4—C5—H5119.8C17—C16—H16B109.9
C6—C5—H5119.8C15—C16—H16B109.9
C5—C6—C1118.6 (2)H16A—C16—H16B108.3
C5—C6—H6120.7C16—C17—C18111.60 (19)
C1—C6—H6120.7C16—C17—H17A109.3
N2—C7—C8122.39 (19)C18—C17—H17A109.3
N2—C7—H7118.8C16—C17—H17B109.3
C8—C7—H7118.8C18—C17—H17B109.3
C13—C8—C9116.90 (19)H17A—C17—H17B108.0
C13—C8—C7119.79 (19)N3—C18—C17112.8 (2)
C9—C8—C7123.29 (19)N3—C18—H18A109.0
C10—C9—C8121.45 (19)C17—C18—H18A109.0
C10—C9—H9119.3N3—C18—H18B109.0
C8—C9—H9119.3C17—C18—H18B109.0
C9—C10—C11121.9 (2)H18A—C18—H18B107.8
C9—C10—H10119.1N2—N1—S1115.68 (14)
C11—C10—H10119.1N2—N1—H1N116.4 (17)
C12—C11—N3122.65 (18)S1—N1—H1N114.2 (16)
C12—C11—C10116.36 (19)C7—N2—N1115.09 (18)
N3—C11—C10120.96 (18)C11—N3—C14116.53 (15)
C13—C12—C11121.31 (19)C11—N3—C18116.14 (17)
C13—C12—H12119.3C14—N3—C18113.21 (17)
C11—C12—H12119.3O2—S1—O1120.46 (10)
C12—C13—C8122.1 (2)O2—S1—N1103.75 (10)
C12—C13—H13119.0O1—S1—N1107.20 (10)
C8—C13—H13119.0O2—S1—C1108.99 (9)
N3—C14—C15113.40 (18)O1—S1—C1108.67 (10)
N3—C14—H14A108.9N1—S1—C1106.95 (9)
C6—C1—C2—C30.5 (3)C15—C16—C17—C1856.4 (3)
S1—C1—C2—C3179.69 (19)C16—C17—C18—N354.7 (3)
C1—C2—C3—C40.6 (4)C8—C7—N2—N1176.43 (17)
C2—C3—C4—C50.8 (4)S1—N1—N2—C7167.78 (14)
C3—C4—C5—C60.8 (4)C12—C11—N3—C14142.9 (2)
C4—C5—C6—C10.7 (4)C10—C11—N3—C1439.3 (3)
C2—C1—C6—C50.5 (3)C12—C11—N3—C185.6 (3)
S1—C1—C6—C5179.75 (18)C10—C11—N3—C18176.68 (19)
N2—C7—C8—C13172.29 (19)C15—C14—N3—C11172.2 (2)
N2—C7—C8—C96.1 (3)C15—C14—N3—C1849.3 (3)
C13—C8—C9—C101.2 (3)C17—C18—N3—C11170.97 (18)
C7—C8—C9—C10179.67 (19)C17—C18—N3—C1450.3 (3)
C8—C9—C10—C110.1 (3)N2—N1—S1—O2178.88 (14)
C9—C10—C11—C121.1 (3)N2—N1—S1—O150.42 (17)
C9—C10—C11—N3178.96 (18)N2—N1—S1—C165.99 (16)
N3—C11—C12—C13178.92 (18)C2—C1—S1—O2145.87 (18)
C10—C11—C12—C131.1 (3)C6—C1—S1—O234.91 (19)
C11—C12—C13—C80.1 (3)C2—C1—S1—O112.9 (2)
C9—C8—C13—C121.2 (3)C6—C1—S1—O1167.93 (16)
C7—C8—C13—C12179.73 (19)C2—C1—S1—N1102.56 (19)
N3—C14—C15—C1652.5 (3)C6—C1—S1—N176.65 (18)
C14—C15—C16—C1755.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.32 (2)3.133 (3)165 (2)
Symmetry code: (i) x, y+1, z.
(E)-4-Methyl-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (II) top
Crystal data top
C19H23N3O2SF(000) = 760
Mr = 357.46Dx = 1.272 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.442 (2) ÅCell parameters from 1748 reflections
b = 5.3250 (4) Åθ = 2.6–28.0°
c = 19.412 (2) ŵ = 0.19 mm1
β = 101.74 (1)°T = 293 K
V = 1866.5 (3) Å3Prism, light pink
Z = 40.48 × 0.24 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
2166 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.026
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 2213
Tmin = 0.914, Tmax = 0.981k = 62
6735 measured reflectionsl = 2123
3422 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.7083P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3422 reflectionsΔρmax = 0.21 e Å3
230 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.87009 (13)0.2262 (5)0.74497 (13)0.0464 (6)
C20.85130 (16)0.0568 (6)0.69097 (15)0.0610 (8)
H20.81890.07420.69440.073*
C30.88094 (18)0.0827 (6)0.63160 (16)0.0716 (9)
H30.86820.03310.59530.086*
C40.92855 (15)0.2738 (6)0.62451 (15)0.0640 (8)
C50.94574 (15)0.4437 (6)0.67864 (16)0.0635 (8)
H50.97750.57600.67460.076*
C60.91734 (15)0.4236 (5)0.73839 (15)0.0579 (7)
H60.92960.54140.77420.070*
C70.65696 (15)0.5049 (5)0.75489 (14)0.0549 (7)
H70.66480.65370.78040.066*
C80.58859 (14)0.4736 (5)0.70327 (14)0.0497 (7)
C90.57536 (16)0.2675 (5)0.65812 (16)0.0606 (8)
H90.61200.14630.66000.073*
C100.50985 (16)0.2394 (5)0.61123 (16)0.0603 (8)
H100.50320.09990.58180.072*
C110.45234 (15)0.4149 (5)0.60617 (14)0.0508 (7)
C120.46593 (15)0.6186 (5)0.65168 (15)0.0570 (7)
H120.42930.73960.65030.068*
C130.53232 (15)0.6458 (5)0.69881 (15)0.0567 (7)
H130.53920.78480.72840.068*
C140.38983 (18)0.2897 (8)0.48900 (18)0.0869 (11)
H14A0.41940.13770.49420.104*
H14B0.41560.41440.46650.104*
C150.3168 (2)0.2351 (7)0.44174 (19)0.0947 (12)
H15A0.32460.20740.39440.114*
H15B0.29700.08110.45730.114*
C160.2620 (2)0.4358 (7)0.43997 (19)0.0892 (11)
H16A0.21430.37910.41390.107*
H16B0.27670.58090.41590.107*
C170.25546 (19)0.5082 (9)0.5121 (2)0.1010 (13)
H17A0.23170.37270.53260.121*
H17B0.22390.65500.50950.121*
C180.32853 (18)0.5650 (8)0.55932 (19)0.0931 (12)
H18A0.34600.72560.54560.112*
H18B0.32100.58170.60710.112*
C190.9621 (2)0.2953 (9)0.56057 (18)0.1048 (13)
H19A1.01510.28970.57440.157*
H19B0.94740.45150.53720.157*
H19C0.94530.15850.52920.157*
N10.76763 (13)0.3858 (4)0.81973 (13)0.0564 (6)
H1N0.7786 (17)0.529 (6)0.8265 (15)0.068*
N20.70639 (12)0.3358 (4)0.76625 (12)0.0541 (6)
N30.38501 (12)0.3803 (4)0.55849 (12)0.0592 (6)
O10.89223 (11)0.2837 (4)0.87969 (10)0.0729 (6)
O20.80891 (11)0.0554 (4)0.82456 (11)0.0711 (6)
S10.83734 (4)0.19279 (14)0.82295 (4)0.0548 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (13)0.0478 (15)0.0508 (15)0.0021 (12)0.0023 (11)0.0067 (13)
C20.0635 (18)0.0558 (18)0.0625 (19)0.0139 (15)0.0102 (15)0.0011 (16)
C30.078 (2)0.075 (2)0.0595 (19)0.0078 (19)0.0097 (16)0.0107 (17)
C40.0498 (17)0.081 (2)0.0595 (19)0.0021 (17)0.0074 (14)0.0110 (17)
C50.0476 (16)0.073 (2)0.069 (2)0.0149 (15)0.0094 (15)0.0132 (17)
C60.0514 (16)0.0578 (17)0.0609 (18)0.0082 (14)0.0027 (14)0.0007 (15)
C70.0570 (17)0.0475 (16)0.0638 (18)0.0020 (15)0.0205 (14)0.0029 (14)
C80.0489 (16)0.0415 (15)0.0630 (17)0.0007 (13)0.0212 (13)0.0071 (13)
C90.0555 (18)0.0483 (18)0.081 (2)0.0126 (14)0.0214 (15)0.0012 (15)
C100.0601 (18)0.0470 (17)0.075 (2)0.0066 (14)0.0166 (15)0.0100 (14)
C110.0536 (16)0.0468 (16)0.0575 (17)0.0041 (13)0.0244 (14)0.0025 (14)
C120.0540 (17)0.0523 (17)0.0678 (18)0.0154 (14)0.0196 (15)0.0018 (14)
C130.0601 (18)0.0447 (16)0.0673 (19)0.0057 (14)0.0178 (15)0.0046 (14)
C140.075 (2)0.106 (3)0.080 (2)0.018 (2)0.0142 (18)0.019 (2)
C150.094 (3)0.100 (3)0.082 (3)0.014 (2)0.003 (2)0.026 (2)
C160.080 (2)0.087 (3)0.092 (3)0.008 (2)0.004 (2)0.012 (2)
C170.062 (2)0.146 (4)0.092 (3)0.024 (2)0.0066 (19)0.027 (3)
C180.062 (2)0.120 (3)0.091 (3)0.027 (2)0.0031 (18)0.037 (2)
C190.096 (3)0.157 (4)0.068 (2)0.011 (3)0.034 (2)0.010 (2)
N10.0554 (15)0.0502 (14)0.0646 (15)0.0005 (12)0.0141 (12)0.0008 (13)
N20.0468 (13)0.0513 (14)0.0650 (15)0.0022 (12)0.0133 (11)0.0058 (12)
N30.0522 (14)0.0670 (16)0.0603 (15)0.0086 (12)0.0161 (11)0.0056 (12)
O10.0673 (13)0.0926 (16)0.0530 (12)0.0007 (12)0.0013 (10)0.0053 (11)
O20.0852 (15)0.0493 (12)0.0840 (15)0.0002 (11)0.0293 (12)0.0194 (10)
S10.0529 (4)0.0546 (4)0.0558 (4)0.0012 (4)0.0083 (3)0.0101 (4)
Geometric parameters (Å, º) top
C1—C21.373 (4)C13—H130.9300
C1—C61.388 (4)C14—N31.452 (4)
C1—S11.749 (3)C14—C151.496 (4)
C2—C31.379 (4)C14—H14A0.9700
C2—H20.9300C14—H14B0.9700
C3—C41.369 (4)C15—C161.466 (5)
C3—H30.9300C15—H15A0.9700
C4—C51.374 (4)C15—H15B0.9700
C4—C191.499 (4)C16—C171.481 (5)
C5—C61.370 (4)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—H60.9300C17—C181.498 (4)
C7—N21.269 (3)C17—H17A0.9700
C7—C81.452 (4)C17—H17B0.9700
C7—H70.9300C18—N31.435 (4)
C8—C131.374 (4)C18—H18A0.9700
C8—C91.395 (4)C18—H18B0.9700
C9—C101.365 (4)C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C10—C111.402 (4)C19—H19C0.9600
C10—H100.9300N1—N21.395 (3)
C11—C121.389 (4)N1—S11.637 (3)
C11—N31.402 (3)N1—H1N0.79 (3)
C12—C131.379 (4)O1—S11.421 (2)
C12—H120.9300O2—S11.424 (2)
C2—C1—C6119.5 (3)H14A—C14—H14B107.6
C2—C1—S1121.1 (2)C16—C15—C14113.7 (3)
C6—C1—S1119.4 (2)C16—C15—H15A108.8
C1—C2—C3119.4 (3)C14—C15—H15A108.8
C1—C2—H2120.3C16—C15—H15B108.8
C3—C2—H2120.3C14—C15—H15B108.8
C4—C3—C2122.0 (3)H15A—C15—H15B107.7
C4—C3—H3119.0C15—C16—C17110.9 (3)
C2—C3—H3119.0C15—C16—H16A109.5
C3—C4—C5117.7 (3)C17—C16—H16A109.5
C3—C4—C19121.4 (3)C15—C16—H16B109.5
C5—C4—C19120.9 (3)C17—C16—H16B109.5
C6—C5—C4121.9 (3)H16A—C16—H16B108.1
C6—C5—H5119.1C16—C17—C18113.2 (3)
C4—C5—H5119.1C16—C17—H17A108.9
C5—C6—C1119.5 (3)C18—C17—H17A108.9
C5—C6—H6120.3C16—C17—H17B108.9
C1—C6—H6120.3C18—C17—H17B108.9
N2—C7—C8122.1 (3)H17A—C17—H17B107.7
N2—C7—H7119.0N3—C18—C17114.8 (3)
C8—C7—H7119.0N3—C18—H18A108.6
C13—C8—C9116.9 (3)C17—C18—H18A108.6
C13—C8—C7120.4 (3)N3—C18—H18B108.6
C9—C8—C7122.7 (2)C17—C18—H18B108.6
C10—C9—C8121.5 (3)H18A—C18—H18B107.5
C10—C9—H9119.2C4—C19—H19A109.5
C8—C9—H9119.2C4—C19—H19B109.5
C9—C10—C11121.9 (3)H19A—C19—H19B109.5
C9—C10—H10119.1C4—C19—H19C109.5
C11—C10—H10119.1H19A—C19—H19C109.5
C12—C11—N3122.9 (2)H19B—C19—H19C109.5
C12—C11—C10116.1 (3)N2—N1—S1114.78 (19)
N3—C11—C10121.0 (3)N2—N1—H1N117 (2)
C13—C12—C11121.7 (2)S1—N1—H1N115 (2)
C13—C12—H12119.2C7—N2—N1116.0 (2)
C11—C12—H12119.2C11—N3—C18116.7 (2)
C8—C13—C12121.9 (3)C11—N3—C14116.3 (2)
C8—C13—H13119.0C18—N3—C14114.8 (2)
C12—C13—H13119.0O1—S1—O2120.42 (13)
N3—C14—C15114.6 (3)O1—S1—N1104.23 (13)
N3—C14—H14A108.6O2—S1—N1107.07 (13)
C15—C14—H14A108.6O1—S1—C1108.61 (12)
N3—C14—H14B108.6O2—S1—C1107.88 (13)
C15—C14—H14B108.6N1—S1—C1108.05 (12)
C6—C1—C2—C31.3 (4)C14—C15—C16—C1751.1 (5)
S1—C1—C2—C3177.0 (2)C15—C16—C17—C1851.3 (5)
C1—C2—C3—C40.3 (5)C16—C17—C18—N348.4 (5)
C2—C3—C4—C50.7 (4)C8—C7—N2—N1176.9 (2)
C2—C3—C4—C19178.2 (3)S1—N1—N2—C7168.48 (19)
C3—C4—C5—C60.7 (4)C12—C11—N3—C181.2 (4)
C19—C4—C5—C6178.2 (3)C10—C11—N3—C18177.5 (3)
C4—C5—C6—C10.3 (4)C12—C11—N3—C14139.5 (3)
C2—C1—C6—C51.3 (4)C10—C11—N3—C1441.8 (4)
S1—C1—C6—C5177.1 (2)C17—C18—N3—C11174.8 (3)
N2—C7—C8—C13171.5 (3)C17—C18—N3—C1443.9 (4)
N2—C7—C8—C96.2 (4)C15—C14—N3—C11175.2 (3)
C13—C8—C9—C100.6 (4)C15—C14—N3—C1843.4 (4)
C7—C8—C9—C10178.4 (3)N2—N1—S1—O1178.95 (18)
C8—C9—C10—C110.4 (4)N2—N1—S1—O252.4 (2)
C9—C10—C11—C120.1 (4)N2—N1—S1—C163.5 (2)
C9—C10—C11—N3178.9 (3)C2—C1—S1—O1146.9 (2)
N3—C11—C12—C13179.0 (3)C6—C1—S1—O131.4 (2)
C10—C11—C12—C130.2 (4)C2—C1—S1—O214.9 (2)
C9—C8—C13—C120.5 (4)C6—C1—S1—O2163.5 (2)
C7—C8—C13—C12178.3 (3)C2—C1—S1—N1100.6 (2)
C11—C12—C13—C80.1 (4)C6—C1—S1—N181.1 (2)
N3—C14—C15—C1647.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.79 (3)2.29 (3)3.068 (3)170 (3)
Symmetry code: (i) x, y+1, z.
(E)-4-Chloro-N'-[4-(piperidin-1-yl)benzylidene]benzenesulfonohydrazide (III) top
Crystal data top
C18H20ClN3O2SF(000) = 3168
Mr = 377.88Dx = 1.346 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 33.052 (6) ÅCell parameters from 1174 reflections
b = 5.258 (1) Åθ = 2.5–27.8°
c = 43.026 (8) ŵ = 0.33 mm1
β = 94.05 (2)°T = 293 K
V = 7459 (2) Å3Prism, red
Z = 160.50 × 0.26 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD
2999 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.042
Rotation method data acquisition using ω scans.θmax = 25.4°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 3939
Tmin = 0.851, Tmax = 0.955k = 66
14002 measured reflectionsl = 4251
6833 independent reflections
Refinement top
Refinement on F231 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.172 w = 1/[σ2(Fo2) + (0.0483P)2 + 15.4136P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
6833 reflectionsΔρmax = 0.27 e Å3
457 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47550 (5)0.3259 (4)0.18187 (4)0.1273 (7)
S10.31044 (4)0.0442 (3)0.11230 (3)0.0657 (4)
O10.27796 (10)0.1162 (6)0.13046 (7)0.0779 (10)
O20.31308 (11)0.2078 (6)0.10041 (8)0.0797 (10)
N10.30660 (14)0.2366 (8)0.08245 (9)0.0636 (12)
H1N0.2999 (15)0.387 (9)0.0854 (11)0.076*
N20.33782 (12)0.2115 (8)0.06209 (9)0.0625 (11)
N30.45666 (13)0.3870 (8)0.04820 (10)0.0770 (12)
C10.35682 (15)0.1126 (9)0.13273 (10)0.0563 (13)
C20.39197 (19)0.0048 (11)0.12540 (13)0.0843 (17)
H20.39120.12760.10980.101*
C30.42848 (19)0.0587 (12)0.14107 (15)0.0940 (19)
H30.45230.02320.13650.113*
C40.42913 (17)0.2419 (12)0.16323 (12)0.0763 (16)
C50.3948 (2)0.3541 (12)0.17136 (13)0.0895 (18)
H50.39580.47270.18740.107*
C60.35822 (17)0.2929 (11)0.15586 (12)0.0813 (16)
H60.33460.37350.16100.098*
C70.34159 (15)0.3963 (10)0.04343 (11)0.0619 (13)
H70.32450.53620.04450.074*
C80.37184 (15)0.3948 (9)0.02046 (10)0.0565 (13)
C90.40063 (17)0.2080 (10)0.01923 (12)0.0733 (15)
H90.40130.07850.03400.088*
C100.42840 (16)0.2054 (10)0.00296 (12)0.0726 (15)
H100.44730.07470.00310.087*
C110.42853 (15)0.3964 (10)0.02534 (11)0.0589 (13)
C120.39956 (16)0.5837 (10)0.02398 (11)0.0686 (14)
H120.39860.71350.03870.082*
C130.37211 (16)0.5843 (9)0.00157 (11)0.0689 (14)
H130.35330.71550.00120.083*
C140.49585 (19)0.3073 (16)0.04105 (16)0.143 (3)
H14A0.49430.14520.03040.172*
H14B0.50810.42690.02600.172*
C150.5239 (2)0.2760 (15)0.06531 (18)0.139 (3)
H15A0.55120.30040.05600.166*
H15B0.52200.10170.07270.166*
C160.5182 (2)0.4427 (14)0.09203 (15)0.118 (2)
H16A0.53460.59390.08810.142*
H16B0.52820.35730.11000.142*
C170.4780 (2)0.5174 (17)0.09945 (16)0.150 (3)
H17A0.46580.39290.11390.180*
H17B0.47870.67740.11060.180*
C180.45054 (18)0.5500 (13)0.07439 (13)0.115 (2)
H18A0.45280.72430.06710.138*
H18B0.42300.52630.08320.138*
Cl20.22664 (5)0.4803 (4)0.02015 (4)0.1245 (7)
S20.13541 (5)0.7140 (3)0.13800 (3)0.0696 (4)
O30.09541 (11)0.6126 (7)0.13364 (8)0.0883 (11)
O40.14190 (11)0.9734 (6)0.14659 (7)0.0845 (11)
N40.15747 (15)0.5383 (8)0.16570 (10)0.0702 (13)
H4N0.1518 (16)0.384 (9)0.1629 (12)0.084*
N50.19715 (14)0.6102 (8)0.17526 (9)0.0654 (11)
N60.37521 (14)0.6426 (8)0.24681 (10)0.0726 (12)
C190.16088 (15)0.6564 (9)0.10444 (10)0.0576 (13)
C200.19395 (16)0.7992 (11)0.09801 (12)0.0746 (15)
H200.20280.93060.11130.090*
C210.21407 (16)0.7463 (12)0.07161 (13)0.0823 (17)
H210.23610.84460.06660.099*
C220.20116 (18)0.5481 (12)0.05306 (11)0.0748 (16)
C230.16849 (19)0.4049 (11)0.05942 (13)0.0823 (17)
H230.16000.27220.04620.099*
C240.14812 (17)0.4565 (10)0.08532 (12)0.0771 (16)
H240.12590.35830.09000.093*
C250.21791 (15)0.4430 (10)0.19052 (10)0.0606 (13)
H250.20680.28260.19320.073*
C260.25843 (15)0.4968 (9)0.20382 (10)0.0551 (12)
C270.28111 (17)0.7029 (10)0.19542 (10)0.0654 (14)
H270.27040.81060.17980.078*
C280.31893 (17)0.7547 (10)0.20933 (11)0.0692 (14)
H280.33330.89460.20280.083*
C290.33619 (16)0.5996 (10)0.23328 (11)0.0609 (13)
C300.31319 (16)0.3937 (10)0.24176 (11)0.0675 (14)
H300.32350.28790.25770.081*
C310.27607 (16)0.3414 (10)0.22745 (11)0.0665 (14)
H310.26210.19850.23350.080*
C320.39719 (19)0.8645 (12)0.23767 (15)0.104 (2)
H32A0.38441.01470.24570.125*
H32B0.39510.87590.21510.125*
C330.4411 (2)0.8653 (14)0.24890 (18)0.123 (2)
H33A0.45530.73990.23720.148*
H33B0.45251.03070.24470.148*
C340.44807 (19)0.8091 (14)0.28267 (17)0.110 (2)
H34A0.47690.78710.28790.132*
H34B0.43880.95140.29460.132*
C350.42629 (19)0.5767 (14)0.29094 (15)0.117 (2)
H35A0.42790.55910.31340.140*
H35B0.43950.43020.28240.140*
C360.38288 (17)0.5786 (13)0.27912 (12)0.099 (2)
H36A0.37160.41150.28250.119*
H36B0.36850.69900.29140.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0949 (12)0.1716 (18)0.1116 (13)0.0191 (13)0.0185 (10)0.0055 (13)
S10.0844 (10)0.0535 (9)0.0593 (8)0.0097 (8)0.0064 (7)0.0000 (7)
O10.077 (2)0.083 (3)0.076 (2)0.012 (2)0.022 (2)0.000 (2)
O20.108 (3)0.045 (2)0.086 (2)0.013 (2)0.002 (2)0.0052 (18)
N10.083 (3)0.054 (3)0.054 (2)0.005 (3)0.003 (2)0.007 (2)
N20.080 (3)0.058 (3)0.050 (2)0.004 (2)0.004 (2)0.002 (2)
N30.077 (2)0.077 (3)0.077 (3)0.010 (2)0.003 (2)0.017 (2)
C10.076 (4)0.048 (3)0.046 (3)0.007 (3)0.014 (2)0.001 (2)
C20.093 (4)0.080 (4)0.081 (4)0.011 (4)0.010 (4)0.025 (3)
C30.080 (4)0.105 (5)0.098 (5)0.019 (4)0.010 (4)0.016 (4)
C40.077 (4)0.089 (5)0.062 (3)0.009 (4)0.004 (3)0.000 (3)
C50.092 (5)0.101 (5)0.075 (4)0.002 (4)0.001 (4)0.031 (3)
C60.083 (4)0.090 (4)0.071 (4)0.006 (4)0.009 (3)0.023 (3)
C70.073 (4)0.058 (3)0.053 (3)0.001 (3)0.004 (3)0.001 (3)
C80.070 (3)0.050 (3)0.048 (3)0.005 (3)0.006 (3)0.001 (3)
C90.093 (4)0.062 (4)0.064 (3)0.011 (4)0.001 (3)0.021 (3)
C100.081 (4)0.063 (4)0.074 (4)0.021 (3)0.008 (3)0.015 (3)
C110.062 (3)0.059 (3)0.056 (3)0.000 (3)0.000 (3)0.002 (3)
C120.079 (4)0.065 (4)0.062 (3)0.014 (3)0.005 (3)0.019 (3)
C130.080 (4)0.059 (3)0.068 (3)0.017 (3)0.011 (3)0.013 (3)
C140.100 (3)0.204 (7)0.128 (5)0.073 (5)0.031 (4)0.061 (5)
C150.114 (5)0.156 (6)0.152 (6)0.052 (5)0.049 (5)0.043 (5)
C160.119 (4)0.127 (6)0.113 (5)0.031 (5)0.047 (4)0.026 (5)
C170.122 (4)0.220 (7)0.115 (4)0.048 (5)0.054 (3)0.062 (5)
C180.108 (4)0.149 (5)0.091 (4)0.041 (4)0.032 (3)0.054 (3)
Cl20.1149 (13)0.1825 (19)0.0782 (10)0.0329 (13)0.0209 (9)0.0211 (12)
S20.0840 (11)0.0686 (10)0.0560 (8)0.0118 (9)0.0033 (7)0.0047 (7)
O30.069 (2)0.107 (3)0.088 (3)0.003 (2)0.003 (2)0.009 (2)
O40.122 (3)0.062 (2)0.070 (2)0.019 (2)0.012 (2)0.0044 (19)
N40.083 (3)0.068 (3)0.058 (3)0.002 (3)0.001 (2)0.008 (2)
N50.080 (3)0.064 (3)0.051 (2)0.005 (3)0.002 (2)0.002 (2)
N60.078 (3)0.074 (3)0.067 (3)0.002 (3)0.015 (2)0.013 (2)
C190.068 (3)0.054 (3)0.049 (3)0.001 (3)0.006 (2)0.001 (3)
C200.081 (4)0.080 (4)0.062 (4)0.008 (4)0.004 (3)0.014 (3)
C210.076 (4)0.097 (5)0.074 (4)0.011 (4)0.004 (3)0.006 (4)
C220.080 (4)0.090 (4)0.053 (3)0.020 (4)0.002 (3)0.006 (3)
C230.105 (5)0.070 (4)0.070 (4)0.000 (4)0.005 (4)0.012 (3)
C240.104 (4)0.065 (4)0.063 (3)0.019 (3)0.005 (3)0.001 (3)
C250.072 (4)0.056 (3)0.056 (3)0.002 (3)0.016 (3)0.000 (3)
C260.072 (4)0.047 (3)0.048 (3)0.005 (3)0.017 (3)0.000 (2)
C270.085 (4)0.064 (4)0.047 (3)0.006 (3)0.007 (3)0.005 (3)
C280.090 (4)0.058 (3)0.062 (3)0.007 (3)0.021 (3)0.013 (3)
C290.070 (4)0.064 (4)0.049 (3)0.008 (3)0.015 (3)0.005 (3)
C300.071 (4)0.069 (4)0.064 (3)0.007 (3)0.009 (3)0.021 (3)
C310.069 (4)0.060 (3)0.073 (3)0.006 (3)0.017 (3)0.015 (3)
C320.097 (5)0.100 (5)0.114 (5)0.016 (4)0.001 (4)0.014 (4)
C330.090 (5)0.136 (6)0.143 (7)0.024 (5)0.007 (5)0.022 (5)
C340.092 (5)0.110 (6)0.127 (6)0.009 (5)0.009 (4)0.012 (5)
C350.103 (5)0.138 (6)0.107 (5)0.017 (5)0.015 (4)0.029 (5)
C360.086 (4)0.143 (6)0.068 (4)0.025 (4)0.000 (3)0.006 (4)
Geometric parameters (Å, º) top
Cl1—C41.736 (5)Cl2—C221.735 (5)
S1—O11.423 (3)S2—O41.425 (3)
S1—O21.425 (3)S2—O31.426 (4)
S1—N11.633 (4)S2—N41.638 (4)
S1—C11.750 (5)S2—C191.748 (5)
N1—N21.406 (5)N4—N51.399 (5)
N1—H1N0.83 (4)N4—H4N0.84 (5)
N2—C71.272 (5)N5—C251.269 (5)
N3—C141.375 (6)N6—C291.395 (6)
N3—C111.401 (6)N6—C361.435 (6)
N3—C181.419 (6)N6—C321.444 (6)
C1—C21.371 (6)C19—C201.371 (6)
C1—C61.373 (6)C19—C241.382 (6)
C2—C31.381 (7)C20—C211.384 (7)
C2—H20.9300C20—H200.9300
C3—C41.355 (7)C21—C221.363 (7)
C3—H30.9300C21—H210.9300
C4—C51.347 (7)C22—C231.360 (7)
C5—C61.377 (7)C23—C241.369 (7)
C5—H50.9300C23—H230.9300
C6—H60.9300C24—H240.9300
C7—C81.455 (6)C25—C261.447 (6)
C7—H70.9300C25—H250.9300
C8—C91.371 (6)C26—C271.380 (6)
C8—C131.376 (6)C26—C311.399 (6)
C9—C101.370 (6)C27—C281.374 (6)
C9—H90.9300C27—H270.9300
C10—C111.392 (6)C28—C291.403 (6)
C10—H100.9300C28—H280.9300
C11—C121.378 (6)C29—C301.386 (6)
C12—C131.370 (6)C30—C311.361 (6)
C12—H120.9300C30—H300.9300
C13—H130.9300C31—H310.9300
C14—C151.453 (7)C32—C331.497 (7)
C14—H14A0.9700C32—H32A0.9700
C14—H14B0.9700C32—H32B0.9700
C15—C161.447 (8)C33—C341.484 (8)
C15—H15A0.9700C33—H33A0.9700
C15—H15B0.9700C33—H33B0.9700
C16—C171.403 (8)C34—C351.475 (8)
C16—H16A0.9700C34—H34A0.9700
C16—H16B0.9700C34—H34B0.9700
C17—C181.467 (7)C35—C361.488 (7)
C17—H17A0.9700C35—H35A0.9700
C17—H17B0.9700C35—H35B0.9700
C18—H18A0.9700C36—H36A0.9700
C18—H18B0.9700C36—H36B0.9700
O1—S1—O2120.8 (2)O4—S2—O3120.9 (2)
O1—S1—N1104.3 (2)O4—S2—N4107.5 (2)
O2—S1—N1107.3 (2)O3—S2—N4104.2 (2)
O1—S1—C1109.7 (2)O4—S2—C19107.9 (2)
O2—S1—C1107.3 (2)O3—S2—C19108.8 (2)
N1—S1—C1106.5 (2)N4—S2—C19106.7 (2)
N2—N1—S1114.3 (3)N5—N4—S2114.9 (3)
N2—N1—H1N114 (4)N5—N4—H4N120 (4)
S1—N1—H1N118 (3)S2—N4—H4N111 (4)
C7—N2—N1115.5 (4)C25—N5—N4115.2 (4)
C14—N3—C11121.0 (5)C29—N6—C36117.4 (4)
C14—N3—C18116.2 (5)C29—N6—C32119.0 (5)
C11—N3—C18118.1 (4)C36—N6—C32113.3 (5)
C2—C1—C6119.4 (5)C20—C19—C24120.7 (5)
C2—C1—S1121.2 (4)C20—C19—S2120.6 (4)
C6—C1—S1119.3 (4)C24—C19—S2118.6 (4)
C1—C2—C3120.3 (5)C19—C20—C21119.5 (5)
C1—C2—H2119.9C19—C20—H20120.3
C3—C2—H2119.9C21—C20—H20120.3
C4—C3—C2119.0 (5)C22—C21—C20119.1 (5)
C4—C3—H3120.5C22—C21—H21120.5
C2—C3—H3120.5C20—C21—H21120.5
C5—C4—C3121.5 (5)C23—C22—C21121.7 (5)
C5—C4—Cl1120.1 (5)C23—C22—Cl2119.2 (5)
C3—C4—Cl1118.4 (5)C21—C22—Cl2119.0 (5)
C4—C5—C6119.9 (5)C22—C23—C24119.8 (5)
C4—C5—H5120.0C22—C23—H23120.1
C6—C5—H5120.0C24—C23—H23120.1
C1—C6—C5119.7 (5)C23—C24—C19119.2 (5)
C1—C6—H6120.1C23—C24—H24120.4
C5—C6—H6120.1C19—C24—H24120.4
N2—C7—C8121.8 (5)N5—C25—C26121.4 (5)
N2—C7—H7119.1N5—C25—H25119.3
C8—C7—H7119.1C26—C25—H25119.3
C9—C8—C13117.0 (5)C27—C26—C31116.3 (5)
C9—C8—C7122.8 (5)C27—C26—C25123.7 (5)
C13—C8—C7120.2 (5)C31—C26—C25120.0 (5)
C10—C9—C8122.3 (5)C28—C27—C26122.4 (5)
C10—C9—H9118.8C28—C27—H27118.8
C8—C9—H9118.8C26—C27—H27118.8
C9—C10—C11120.6 (5)C27—C28—C29121.0 (5)
C9—C10—H10119.7C27—C28—H28119.5
C11—C10—H10119.7C29—C28—H28119.5
C12—C11—C10116.8 (5)C30—C29—N6121.7 (5)
C12—C11—N3123.6 (5)C30—C29—C28116.4 (5)
C10—C11—N3119.6 (5)N6—C29—C28121.9 (5)
C13—C12—C11121.9 (5)C31—C30—C29122.2 (5)
C13—C12—H12119.1C31—C30—H30118.9
C11—C12—H12119.1C29—C30—H30118.9
C12—C13—C8121.3 (5)C30—C31—C26121.8 (5)
C12—C13—H13119.3C30—C31—H31119.1
C8—C13—H13119.3C26—C31—H31119.1
N3—C14—C15120.8 (6)N6—C32—C33114.2 (5)
N3—C14—H14A107.1N6—C32—H32A108.7
C15—C14—H14A107.1C33—C32—H32A108.7
N3—C14—H14B107.1N6—C32—H32B108.7
C15—C14—H14B107.1C33—C32—H32B108.7
H14A—C14—H14B106.8H32A—C32—H32B107.6
C16—C15—C14116.7 (6)C34—C33—C32113.3 (6)
C16—C15—H15A108.1C34—C33—H33A108.9
C14—C15—H15A108.1C32—C33—H33A108.9
C16—C15—H15B108.1C34—C33—H33B108.9
C14—C15—H15B108.1C32—C33—H33B108.9
H15A—C15—H15B107.3H33A—C33—H33B107.7
C17—C16—C15114.7 (6)C35—C34—C33110.9 (6)
C17—C16—H16A108.6C35—C34—H34A109.5
C15—C16—H16A108.6C33—C34—H34A109.5
C17—C16—H16B108.6C35—C34—H34B109.5
C15—C16—H16B108.6C33—C34—H34B109.5
H16A—C16—H16B107.6H34A—C34—H34B108.1
C16—C17—C18119.4 (6)C34—C35—C36112.8 (6)
C16—C17—H17A107.5C34—C35—H35A109.0
C18—C17—H17A107.5C36—C35—H35A109.0
C16—C17—H17B107.5C34—C35—H35B109.0
C18—C17—H17B107.5C36—C35—H35B109.0
H17A—C17—H17B107.0H35A—C35—H35B107.8
N3—C18—C17116.9 (5)N6—C36—C35115.6 (5)
N3—C18—H18A108.1N6—C36—H36A108.4
C17—C18—H18A108.1C35—C36—H36A108.4
N3—C18—H18B108.1N6—C36—H36B108.4
C17—C18—H18B108.1C35—C36—H36B108.4
H18A—C18—H18B107.3H36A—C36—H36B107.4
O1—S1—N1—N2175.8 (3)O4—S2—N4—N547.7 (4)
O2—S1—N1—N255.0 (4)O3—S2—N4—N5177.1 (3)
C1—S1—N1—N259.7 (4)C19—S2—N4—N567.8 (4)
S1—N1—N2—C7163.0 (3)S2—N4—N5—C25162.9 (3)
O1—S1—C1—C2159.7 (4)O4—S2—C19—C2026.0 (5)
O2—S1—C1—C226.7 (5)O3—S2—C19—C20158.8 (4)
N1—S1—C1—C287.9 (4)N4—S2—C19—C2089.3 (4)
O1—S1—C1—C622.4 (5)O4—S2—C19—C24156.9 (4)
O2—S1—C1—C6155.4 (4)O3—S2—C19—C2424.1 (4)
N1—S1—C1—C690.0 (4)N4—S2—C19—C2487.8 (4)
C6—C1—C2—C30.3 (8)C24—C19—C20—C211.7 (7)
S1—C1—C2—C3177.6 (4)S2—C19—C20—C21178.7 (4)
C1—C2—C3—C41.4 (9)C19—C20—C21—C221.9 (8)
C2—C3—C4—C53.3 (9)C20—C21—C22—C231.5 (8)
C2—C3—C4—Cl1178.1 (5)C20—C21—C22—Cl2179.5 (4)
C3—C4—C5—C63.5 (9)C21—C22—C23—C241.0 (8)
Cl1—C4—C5—C6177.9 (4)Cl2—C22—C23—C24180.0 (4)
C2—C1—C6—C50.1 (8)C22—C23—C24—C190.8 (8)
S1—C1—C6—C5177.9 (4)C20—C19—C24—C231.1 (7)
C4—C5—C6—C11.8 (9)S2—C19—C24—C23178.2 (4)
N1—N2—C7—C8178.4 (4)N4—N5—C25—C26175.5 (4)
N2—C7—C8—C96.3 (7)N5—C25—C26—C2715.6 (7)
N2—C7—C8—C13172.8 (4)N5—C25—C26—C31161.8 (4)
C13—C8—C9—C100.7 (7)C31—C26—C27—C280.1 (7)
C7—C8—C9—C10178.5 (5)C25—C26—C27—C28177.4 (4)
C8—C9—C10—C110.4 (8)C26—C27—C28—C290.7 (7)
C9—C10—C11—C120.3 (7)C36—N6—C29—C3035.3 (7)
C9—C10—C11—N3178.7 (5)C32—N6—C29—C30178.2 (5)
C14—N3—C11—C12142.9 (6)C36—N6—C29—C28148.0 (5)
C18—N3—C11—C1211.8 (7)C32—N6—C29—C285.1 (7)
C14—N3—C11—C1038.8 (8)C27—C28—C29—C300.3 (7)
C18—N3—C11—C10166.4 (5)C27—C28—C29—N6177.3 (4)
C10—C11—C12—C130.6 (7)N6—C29—C30—C31176.1 (4)
N3—C11—C12—C13178.9 (5)C28—C29—C30—C310.9 (7)
C11—C12—C13—C81.0 (8)C29—C30—C31—C261.7 (8)
C9—C8—C13—C121.0 (7)C27—C26—C31—C301.3 (7)
C7—C8—C13—C12178.2 (5)C25—C26—C31—C30176.3 (4)
C11—N3—C14—C15174.4 (7)C29—N6—C32—C33168.9 (5)
C18—N3—C14—C1530.4 (10)C36—N6—C32—C3346.7 (7)
N3—C14—C15—C1630.9 (12)N6—C32—C33—C3449.6 (8)
C14—C15—C16—C1730.7 (11)C32—C33—C34—C3550.7 (8)
C15—C16—C17—C1832.7 (12)C33—C34—C35—C3650.0 (8)
C14—N3—C18—C1730.2 (9)C29—N6—C36—C35168.0 (5)
C11—N3—C18—C17173.8 (6)C32—N6—C36—C3547.1 (8)
C16—C17—C18—N332.9 (11)C34—C35—C36—N649.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (4)2.26 (5)3.025 (5)153 (5)
N4—H4N···O4ii0.84 (5)2.29 (5)3.115 (6)169 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The authors thank SAIF Panjab University for extending the services of the NMR facility.

Funding information

NP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its PURSE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under a UGC-BSR one-time grant to faculty.

References

First citationComins, D. L., Brooks, C. A. & Ingalls, C. L. (2001). J. Org. Chem. 66, 2181–2182.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, A. J. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef Google Scholar
First citationGrishina, G. V., Gaidatova, F. L. & Zefirov, N. S. (1995). Chem. Heterocycl. Com. 30, 1401–1426.  CrossRef Google Scholar
First citationGu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634–4650.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKang, D., Fang, Z., Huang, B., Zhang, L., Liu, U., Pannecouque, C., Naesens, L., De Clercq, E., Zhan, P. & Liu, X. (2015). Chem. Biol. Drug Des. 86, 568–577.  CrossRef Google Scholar
First citationKiasalari, Z., Khalili, M., Roghani, M., Ahmadi, A. & Mireie, M. (2014). Iran J. Pathol. 9, 138–148.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMoss, G. P. (1996). Pure Appl. Chem. 68, 2193–2222.  CrossRef CAS Web of Science Google Scholar
First citationNallini, A., Saraboji, K., Ponnuswamy, M. N., Venkatraj, M. & Jeyaraman, R. (2003). Mol. Cryst. Liq. Cryst. 403, 57–65.  CrossRef Google Scholar
First citationNardelli, M. (1983). Comput. Chem. 7, 95–98.  CrossRef CAS Web of Science Google Scholar
First citationN'Gouan, A. J., Mansilla-Koblavi, F., Timotou, A., Adjou, A. & Ebby, N. (2009). Acta Cryst. E65, o2880.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, England.  Google Scholar
First citationParekh, J., Inamdhar, P., Nair, R., Baluja, S. & Chanda, S. (2005). J. Serb. Chem. Soc. 70, 1155–1162.  Web of Science CrossRef CAS Google Scholar
First citationParvez, M., Bakhtiar, M., Baqir, M. & Zia-ur-Rehman, M. (2014). J. Chem. Crystallogr. 44, 580–585.  CrossRef Google Scholar
First citationPurandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1946–1951.  CrossRef IUCr Journals Google Scholar
First citationSahu, K., Behera, K., Pathaik, R. C., Nayak, A. & Behera, G. B. (1979). Indian J. Chem. Sect. B, 18, 557–561.  Google Scholar
First citationSampath, N. (2017). J. Struct. Chem. 58, 804–808.  CrossRef Google Scholar
First citationShah, S., Vyas, R. & Mehta, R. H. (1992). J. Indian Chem. Soc. 69, 590–596.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShit, S., Marschner, C. & Mitra, S. (2016). Acta Chim. Slov. 63, 129–137.  Google Scholar
First citationSoman, R., Sujatha, S. & Arunkumar, C. (2014). J. Fluor. Chem. 163, 16–22.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTharini, K. & Sangeetha, P. (2015). Int. J. Chem. Sci. 13, 1794–1804.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWang, C. L. & Wuorola, M. A. (1992). Org. Prep. Proceed. Int. 24, 585–621.  Google Scholar
First citationYapo, Y. M., Kakou Yao, R., Timotou, A., N'Gouan, A. J. & Tenon, A. J. (2008). Phys. Chem. News 40, 77–80.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds