research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chemo- and regioselective [3 + 2]-cyclo­additions of thio­carbonyl ylides: crystal structures of trans-8-benzoyl-1,1,3,3-tetra­methyl-7-tri­fluoro­methyl-5-thia­spiro­[3.4]octan-2-one and trans-3-benzoyl-2,2-di­phenyl-4-(tri­fluoro­meth­yl)tetra­hydro­thio­phene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, and bDepartment of Organic and Applied Chemistry, University of Łódź, Tamka 12, PL-91-403 Łódź, Poland
*Correspondence e-mail: anthony.linden@chem.uzh.ch

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 24 October 2018; accepted 30 October 2018; online 6 November 2018)

The title compounds, C19H21F3O2S and C24H19F3OS, were prepared via chemo- and regioselective [3 + 2]-cyclo­additions of the respective thio­carbonyl ylides (thio­carbonyl S-methanides), generated in situ, with (E)-4,4,4-tri­fluoro-1-phenyl­but-2-en-1-one. The thio­phene ring in the crystal structure of each compound has an envelope conformation. The largest differences between the two mol­ecular structures is in the bond lengths about the quaternary C atom of the thio­phene ring; in the spiro­cyclic structure, the C—C bonds to the spiro C atom in the cyclo­butane ring are around 1.60 Å, although this is also observed in related structures. In the same structure, weak inter­molecular C—H⋯X (X = S, O) inter­actions link the mol­ecules into extended ribbons running parallel to the [001] direction. In the other structure, weak C—H⋯π inter­actions link the mol­ecules into sheets parallel to the (010) plane.

1. Chemical context

Tetra­hydro­thio­phenes constitute a group of five-membered non-aromatic sulfur heterocycles and one of the most prominent representatives is biotin (Mistry & Dakshinamurti, 1964[Mistry, S. P. & Dakshinamurti, K. (1964). Vitam. Horm. 22, 1-55.]). In a series of our publications, we demonstrated that the [3 + 2]-cyclo­addition of in situ-generated thio­carbonyl S-methanides with activated electron-deficient ethenes is the method of choice for the preparation of differently substituted tetra­hydro­thio­phenes (Huisgen et al., 1984[Huisgen, R., Fulka, C., Kalwinsch, I., Xingya, L., Mlostoń, G., Moran, J. R. & Pröbstl, A. (1984). Bull. Soc. Chim. Belg. 93, 511-532.]; Mlostoń & Heimgartner, 2000[Mlostoń, G. & Heimgartner, H. (2000). Pol. J. Chem. 74, 1503-1533.]). Recently, alternative methods have been published in a series of reports demonstrating the ongoing inter­est in their synthesis (Zamberlan et al., 2018[Zamberlan, F., Fantinati, A. & Trapella, C. (2018). Eur. J. Org. Chem. pp. 3248-3264.]). For example, Lewis acid-catalysed reactions of thio­carbonyl compounds with `donor–acceptor cyclo­propanes' have been reported (Augustin et al., 2017[Augustin, A. U., Sensse, M., Jones, P. G. & Werz, D. B. (2017). Angew. Chem. Int. Ed. 56, 14293-14296.]; Matsumoto et al., 2018[Matsumoto, Y., Nakatake, D., Yazaki, R. & Ohshima, T. (2018). Chem. Eur. J. 24, 6062-6066.]). In addition, radical cyclizations (Ram et al., 2016[Ram, R. N., Gupta, D. K. & Soni, V. K. (2016). Eur. J. Org. Chem. pp. 3434-3440.]) and `sulfur Michael/Henry reactions' (Zhang et al., 2018[Zhang, Y., Wang, Y.-P., Ge, J., Lai, G.-W., Lu, D.-L., Liu, J.-X. & Li, X. (2018). Tetrahedron Lett. 59, 941-944.]) were elaborated as new approaches to tetra­hydro­thio­phenes. Furthermore, analogous domino reactions, i.e. `sulfa-Michael/Aldol reactions' (Duan et al., 2017[Duan, M., Liu, Y., Ao, J., Xue, L., Luo, S., Tan, Y., Qin, W., Song, C. E. & Yan, H. (2017). Org. Lett. 19, 2298-2301.]) and `double Michael reactions' (Meninno et al., 2017[Meninno, S., Overgaard, J. & Lattanzi, A. (2017). Synthesis, 49, 1509-1518.]) as well as `Michael–Henry–Cascade–Rearrangement reactions' (Wang et al., 2018[Wang, S., Guo, Z., Chen, S., Jiang, Y., Zhang, F., Liu, X., Chen, W. & Sheng, C. (2018). Chem. Eur. J. 24, 62-66.]) as asymmetric syntheses of highly substituted mono- and spiro­cyclic tetra­hydro­thio­phene derivatives have been described.

[Scheme 1]

1,4-Disubstitued α,β-unsaturated ketones are known as reactive dipolarophiles, and in the case of aryl,trifluormethyl-substituted representatives, the [3 + 2]-cyclo­additions with electron-rich thio­carbonyl ylides occur chemoselectively either on the C=C or C=O bond, depending on the location of the CF3 group. In addition, the non-symmetrically substituted C=C bond can react with a thio­carbonyl S-methanide to give two different regioisomeric tetra­hydro­thio­phenes. We recently reported that the addition of the 1,3-dipole onto the C=C bond occurs only in the case of (E)-1-aryl-4,4,4-tri­fluoro­but-2-en-1-ones. On the other hand, the isomeric (E)-4-aryl-1,1,1-tri­fluoro­but-3-en-2-ones undergo cyclo­addition with the same thio­carbonyl S-methanide to afford 1,3-oxa­thiole derivatives exclusively (Mlostoń et al., 2016[Mlostoń, G., Grzelak, P. & Heimgartner, H. (2016). J. Fluor. Chem. 190, 56-60.]). In that work, the [3 + 2]-cyclo­additions of (E)-4,4,4-tri­fluoro-1-phenyl­but-2-en-1-one with thio­benzo­phenone S-methanide as well as with 3-thioxo-2,2,4,4-tetra­methyl­cyclo­butan-3-one S-methanide led to the corresponding title tetra­hydro­thio­phene derivatives, trans-8-benzoyl-1,1,3,3-tetra­methyl-7-tri­fluoro­methyl-5-thia­spiro­[3.4]octan-2-one, 1a, and trans-3-benzoyl-2,2-diphenyl-4-(tri­fluoro­meth­yl)tetra­hydro­thio­phene, 1b, respectively, as crystalline products in high yields. Single crystals were grown from petroleum ether and used for single-crystal X-ray diffraction analyses, the results of which are reported here.

2. Structural commentary

Compounds 1a and 1b crystallized as racemates with the benzoyl and tri­fluoro­methyl substituents on the thio­phene ring in a trans configuration (Figs. 1[link] and 2[link]). The thio­phene ring in each case has an envelope conformation with the sulfur atom as the envelope flap. For 1a, the ring puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the atom sequence S1,C2–C5 are Q(2) = 0.5164 (14) Å, φ(2) = 359.73 (18)° and atom S1 is 0.853 (1) Å from the mean plane through the other four ring atoms. The corresponding puckering parameters for 1b are Q(2) = 0.5714 (16) Å, φ(2) = 349.86 (19)° with atom S1 being 0.921 (1) Å from the mean plane through the other four ring atoms. These parameters show that the thio­phene ring is slightly more distorted from an ideal envelope conformation in 1b than in 1a.

[Figure 1]
Figure 1
View of the mol­ecule of 1a showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2]
Figure 2
View of the mol­ecule of 1b showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

The most significant differences in the bond lengths within the two mol­ecules appears at the spiro C atom, C2 (Table 1[link]). The C2—C13 and C2—C14 bonds involving the cyclo­butane ring in 1a, at around 1.60 Å, are significantly longer than is usual for an alkyl C—C bond and 0.058 (3) and 0.072 (3) Å, respectively, longer than the corresponding bonds to the phenyl rings in 1b. In concert, the S1—C2 and C2—C3 bonds are around 0.034 (2) Å shorter and the C3—C4 bond 0.018 (3) Å longer in 1a than in 1b; all other related bond lengths in the two mol­ecules are comparable. Despite these variations and the acute `bite angle' of the cyclo­butane ring at C2 of the thio­phene ring [89.45 (12)° compared with 110.44 (14)° for the diphenyl-substituted 1b], the intra-ring bond angles in the thio­phene rings of the two compounds are not very different. The above-mentioned differences in ring puckering presumably allow the bond-length variations not to impinge on the intra-ring angles. The Cambridge Structural Database (CSD, Version 5.39 with August 2018 updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains one other example of a 2-cyclo­butane-substituted thio­phene ring (Seyfried et al., 2006[Seyfried, M. S., Linden, A., Mloston, G. & Heimgartner, H. (2006). Pol. J. Chem. 80, 1363-1376.]) and six examples of a 2,2-diphenyl-substituted thio­phene ring (Huisgen et al., 1986[Huisgen, R., Langhals, E. & Nöth, H. (1986). Tetrahedron Lett. 27, 5475-5478.]; Seyfried et al., 2006[Seyfried, M. S., Linden, A., Mloston, G. & Heimgartner, H. (2006). Pol. J. Chem. 80, 1363-1376.]; Augustin et al., 2017[Augustin, A. U., Sensse, M., Jones, P. G. & Werz, D. B. (2017). Angew. Chem. Int. Ed. 56, 14293-14296.]). These seven structures display exactly the same relative patterns of bond lengths as that described above.

Table 1
Comparison of selected geometric parameters (Å, °) for compounds 1a and 1b

Compound 1a 1b
S1—C2 1.8215 (14) 1.8567 (18)
S1—C5 1.7931 (17) 1.799 (2)
O1—C6 1.2187 (19) 1.215 (2)
C1—C4 1.493 (2) 1.503 (3)
C2—C3 1.556 (2) 1.590 (2)
C2—C13 1.592 (2) 1.534 (2)
C2—C14 1.609 (2) 1.537 (2)
C3—C4 1.562 (2) 1.544 (2)
C3—C6 1.529 (2) 1.532 (3)
C4—C5 1.537 (2) 1.533 (3)
C6—C7 1.495 (2) 1.495 (3)
     
C2—S1—C5 90.78 (7) 90.00 (8)
S1—C2—C3 104.75 (10) 103.16 (11)
S1—C2—C13 110.69 (10) 109.24 (12)
S1—C2—C14 112.84 (9) 107.10 (12)
C3—C2—C13 122.15 (12) 113.37 (14)
C3—C2—C14 116.78 (12) 113.04 (15)
C13—C2—C14 89.45 (12) 110.44 (14)
C2—C3—C4 108.37 (11) 108.88 (14)
C3—C4—C5 109.81 (13) 109.35 (15)
S1—C5—C4 105.22 (10) 102.77 (13)
     
C4—C3—C6—O1 −64.03 (18) −23.0 (2)
O1—C6—C7—C8 −9.1 (2) −29.5 (3)

The carbonyl group in 1b is significantly twisted out of the plane of the benzoyl ring, with the O1—C6—C7—C8 torsion angle being −9.1 (2) and −29.5 (3)° in 1a and 1b, respectively. The O1—C6—C3—C4 torsion angles also differ by about 41°, so that the carbonyl group is more slanted with respect to the mean plane of the thio­phene ring in 1b than in 1a.

3. Supra­molecular features

In 1a, there are three unique potentially significant weak supra­molecular contacts (Table 2[link]). One of the methyl­ene H atoms at C5 inter­acts with the carbonyl O atom of a neighbouring mol­ecule related by a centre of inversion, while the methine H atom at the CF3-substituted C4 of this second mol­ecule inter­acts with the S atom of the first mol­ecule, thus forming centrosymmetric mol­ecular pairs with a total of four inter­actions between them. Graph-set motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) C22(8) (two different ones), C22(9) and C22(12) can be discerned here. The third inter­action is a C—H⋯S inter­action between the para-H atom at C10 of the benzoyl ring and the S atom of a mol­ecule related by one unit-cell translation parallel to the [001] direction. This forms a chain of mol­ecules with a graph-set descriptor of C(9). The combination of these inter­actions leads to double-stranded chains of mol­ecules, or ribbons, running parallel to the [001] direction (Fig. 3[link]). Within these ribbons, there is also a potential ππ inter­action between adjacent parallel benzoyl rings, where the centroid–centroid distance is 3.8740 (10) Å and the perpendicular distance between the ring planes is 3.4342 (7) Å, although the offset of the rings is rather large at 1.79 Å, so that the separation may be a fortuitous consequence of the alignment resulting from the other inter­actions.

Table 2
Hydrogen-bond geometry (Å, °) for 1a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S1i 1.00 2.89 3.7370 (16) 142
C5—H51⋯O1i 0.99 2.41 3.3417 (19) 156
C10—H10⋯S1ii 0.95 2.86 3.7970 (17) 171
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y, z+1.
[Figure 3]
Figure 3
The ribbons formed by the weak inter­molecular C—H⋯X (X = S, O) inter­actions in 1a. Most H atoms have been omitted for clarity.

In 1b, the main supra­molecular features are two C—H⋯π inter­actions (Table 3[link]): C24—H24 of one phenyl ring inter­acts with the benzoyl ring of a neighbouring mol­ecule related by a glide plane to give chains of mol­ecules parallel to the [001] direction, while one of the methyl­ene H atoms at C5 inter­acts with one of the phenyl rings in the mol­ecule related by one unit cell translation parallel to the [100] direction. Together, these inter­actions link the mol­ecules into sheets which lie parallel to the (010) plane (Fig. 4[link]). Within these sheets, there is a potential inter­molecular C—H⋯F inter­action involving another phenyl ring H atom (C15—H15⋯F3ii), albeit with a rather sharp C—H⋯F angle of 121° [H15⋯F3ii = 2.53 Å, C15⋯F3ii = 3.132 (2) Å; symmetry code as in Table 4[link]].

Table 3
Weak C—H⋯π inter­actions (Å, °) found in 1b

Cg1 and Cg2 are the centroids of the C14,C20–C24 and C7–C12 rings, respectively.

  H⋯Cg C⋯Cg C—H⋯Cg
C5—H51⋯Cg1i 2.84 3.810 (2) 165
C24—H24—Cg2ii 2.86 3.625 (2) 139
Symmetry codes: (i) x − 1, y, z; (ii) x, −y + [{3\over 2}], z − [{1\over 2}].

Table 4
Experimental details

  1a 1b
Crystal data
Chemical formula C19H21F3O2S C24H19F3OS
Mr 370.42 412.45
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 160 160
a, b, c (Å) 10.4851 (1), 15.4106 (2), 11.4557 (1) 7.4578 (1), 17.6162 (3), 14.5634 (2)
β (°) 103.8526 (7) 92.6805 (9)
V3) 1797.19 (3) 1911.22 (5)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.22 0.21
Crystal size (mm) 0.30 × 0.27 × 0.25 0.30 × 0.15 × 0.13
 
Data collection
Diffractometer Nonius KappaCCD area-detector Nonius KappaCCD area-detector
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.895, 0.949 0.904, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 40775, 4120, 3322 43080, 4376, 3216
Rint 0.053 0.081
(sin θ/λ)max−1) 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.06 0.045, 0.118, 1.07
No. of reflections 4119 4376
No. of parameters 231 263
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.39 0.30, −0.37
Computer programs: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).
[Figure 4]
Figure 4
The sheets formed by the weak inter­molecular C—H⋯π inter­actions in 1b. The relevant centroids are shown as red spheres. Most H atoms have been omitted for clarity.

4. Database survey

The CSD contains crystal structure data with atomic coord­in­ates for 3225 monomeric organic compounds with the string thio­phene in the compound name, of which 70 are named as tetra­hydro­thio­phenes and 32 contain no substituents on the ring S atom. Recently published monocyclic crystal structures of tetra­hydro­thio­phenes include those of Duan et al. (2017[Duan, M., Liu, Y., Ao, J., Xue, L., Luo, S., Tan, Y., Qin, W., Song, C. E. & Yan, H. (2017). Org. Lett. 19, 2298-2301.]), Ram et al. (2016[Ram, R. N., Gupta, D. K. & Soni, V. K. (2016). Eur. J. Org. Chem. pp. 3434-3440.]), Zamberlan et al. (2018[Zamberlan, F., Fantinati, A. & Trapella, C. (2018). Eur. J. Org. Chem. pp. 3248-3264.]) and Zhang et al. (2018[Zhang, Y., Wang, Y.-P., Ge, J., Lai, G.-W., Lu, D.-L., Liu, J.-X. & Li, X. (2018). Tetrahedron Lett. 59, 941-944.]). Spiro­cyclic examples involving two cojoined five-membered rings have been reported by Meninno et al. (2017[Meninno, S., Overgaard, J. & Lattanzi, A. (2017). Synthesis, 49, 1509-1518.]) and Wang et al. (2018[Wang, S., Guo, Z., Chen, S., Jiang, Y., Zhang, F., Liu, X., Chen, W. & Sheng, C. (2018). Chem. Eur. J. 24, 62-66.]).

5. Synthesis and Crystallization

The title compounds were prepared according to the reaction sequence presented in Fig. 5[link] and fully described with full spectroscopic data by Mlostoń et al. (2016[Mlostoń, G., Grzelak, P. & Heimgartner, H. (2016). J. Fluor. Chem. 190, 56-60.]). Thermal decomposition of 1,3,4-thia­diazo­lines 2a and 2b in THF solution in the presence of (E)-4,4,4-tri­fluoro-1-phenyl­but-2-en-1-one (3) leads to the tetra­hydro­thio­phenes 1a and 1b, respectively, as the product of the [3 + 2]-cyclo­addition of the inter­mediate thio­carbonyl S-methanides 4 with the activated C=C bond. Whereas the more stable 2a, derived from 3-thioxo-2,2,4,4-tetra­methyl­cyclo­butanone, decomposes at 318 K, the less stable precursor 2b, derived from thio­benzo­phenone, already extrudes N2 at 228 K. The 1H NMR analysis showed that only one product was formed in each case. After chromatographic purification, the isolated products were crystallized from petroleum ether by slow evaporation of the solvent.

[Figure 5]
Figure 5
The reaction scheme leading to 1a and 1b.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C) while each group was allowed to rotate freely about its parent C—C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). For 1a, one low angle reflection was omitted from the final cycles of refinement because its observed intensity was much lower than the calculated value.

Supporting information


Computing details top

For both structures, data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015) and PLATON (Spek, 2015).

trans-8-Benzoyl-1,1,3,3-tetramethyl-7-trifluoromethyl-5-thiaspiro[3.4]octan-2-one (1a) top
Crystal data top
C19H21F3O2SDx = 1.369 Mg m3
Mr = 370.42Melting point: 387.3 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4851 (1) ÅCell parameters from 41828 reflections
b = 15.4106 (2) Åθ = 2.0–27.5°
c = 11.4557 (1) ŵ = 0.22 mm1
β = 103.8526 (7)°T = 160 K
V = 1797.19 (3) Å3Prism, colourless
Z = 40.30 × 0.27 × 0.25 mm
F(000) = 776
Data collection top
Nonius KappaCCD area-detector
diffractometer
4120 independent reflections
Radiation source: Nonius FR590 sealed tube generator3322 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.053
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scans with κ offsetsh = 1313
Absorption correction: multi-scan
(Blessing, 1995)
k = 1920
Tmin = 0.895, Tmax = 0.949l = 1414
40775 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.7139P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.32 e Å3
4119 reflectionsΔρmin = 0.39 e Å3
231 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0172 (19)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: petroleum ether Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: on a glass fibre Client: Grzegorz Mloston Sample code: MG-1226 (HG1701)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20161 (4)0.95486 (3)0.50667 (3)0.02982 (13)
F10.05271 (15)0.72049 (7)0.62746 (12)0.0645 (4)
F20.13401 (13)0.78097 (10)0.55354 (12)0.0703 (4)
F30.04964 (13)0.78355 (9)0.74481 (11)0.0620 (4)
O20.60425 (13)0.88052 (12)0.65763 (13)0.0581 (4)
O10.13585 (13)1.03713 (7)0.75063 (10)0.0382 (3)
C10.0212 (2)0.79034 (13)0.63701 (17)0.0456 (5)
C20.28653 (15)0.90617 (10)0.64896 (12)0.0250 (3)
C30.17678 (14)0.88890 (10)0.71659 (12)0.0244 (3)
H30.1991880.8357460.7674390.029*
C40.04466 (15)0.87394 (10)0.62132 (13)0.0298 (3)
H40.0163580.9219850.6303700.036*
C50.06769 (17)0.88032 (11)0.49408 (13)0.0330 (4)
H510.0118590.9022660.4366560.040*
H520.0905770.8228500.4662590.040*
C60.15834 (14)0.96546 (10)0.79587 (13)0.0258 (3)
C70.16542 (14)0.95313 (10)0.92674 (13)0.0268 (3)
C80.16453 (15)1.02830 (12)0.99516 (15)0.0340 (4)
H80.1582201.0836770.9577650.041*
C90.17284 (17)1.02194 (15)1.11734 (16)0.0453 (5)
H90.1737851.0730121.1639880.054*
C100.17976 (17)0.94132 (16)1.17150 (15)0.0492 (5)
H100.1851900.9372791.2553000.059*
C110.17884 (18)0.86679 (15)1.10481 (15)0.0450 (5)
H110.1827790.8115941.1424260.054*
C120.17211 (16)0.87256 (12)0.98213 (14)0.0344 (4)
H120.1721090.8212210.9362300.041*
C130.41591 (16)0.95942 (11)0.70821 (14)0.0325 (4)
C140.37631 (16)0.82468 (11)0.63197 (14)0.0326 (4)
C150.49199 (17)0.88639 (13)0.66570 (14)0.0378 (4)
C160.45250 (17)0.96613 (14)0.84639 (15)0.0414 (4)
H1610.4029061.0135950.8715640.062*
H1620.5468100.9776000.8745100.062*
H1630.4310500.9114550.8810070.062*
C170.4327 (2)1.04824 (13)0.65521 (17)0.0457 (5)
H1710.4206061.0430240.5679870.069*
H1720.5210161.0703640.6909900.069*
H1730.3671751.0884360.6725920.069*
C180.3887 (2)0.75333 (12)0.72822 (17)0.0448 (5)
H1810.4030450.7801430.8078790.067*
H1820.4631690.7155550.7256000.067*
H1830.3078130.7188870.7124240.067*
C190.3591 (2)0.78204 (12)0.50888 (16)0.0420 (4)
H1910.4382040.7488060.5068410.063*
H1920.3448790.8269370.4465080.063*
H1930.2831090.7430190.4942780.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0407 (2)0.0293 (2)0.01836 (19)0.00149 (16)0.00501 (15)0.00383 (14)
F10.0989 (10)0.0296 (6)0.0672 (8)0.0136 (6)0.0241 (7)0.0031 (5)
F20.0639 (8)0.0832 (10)0.0567 (8)0.0422 (7)0.0005 (6)0.0081 (7)
F30.0719 (8)0.0713 (9)0.0476 (7)0.0330 (7)0.0235 (6)0.0000 (6)
O20.0366 (7)0.0939 (12)0.0461 (8)0.0053 (7)0.0149 (6)0.0121 (8)
O10.0596 (8)0.0268 (6)0.0266 (6)0.0075 (5)0.0073 (5)0.0008 (4)
C10.0551 (11)0.0441 (11)0.0375 (9)0.0184 (9)0.0108 (8)0.0058 (8)
C20.0313 (8)0.0263 (7)0.0170 (6)0.0009 (6)0.0050 (5)0.0010 (5)
C30.0309 (7)0.0230 (7)0.0186 (6)0.0017 (6)0.0041 (5)0.0013 (5)
C40.0319 (8)0.0308 (8)0.0250 (7)0.0016 (6)0.0031 (6)0.0023 (6)
C50.0395 (9)0.0340 (9)0.0216 (7)0.0005 (7)0.0003 (6)0.0022 (6)
C60.0268 (7)0.0282 (8)0.0212 (7)0.0016 (6)0.0038 (5)0.0009 (6)
C70.0214 (7)0.0384 (9)0.0199 (7)0.0036 (6)0.0037 (5)0.0013 (6)
C80.0271 (8)0.0463 (10)0.0284 (8)0.0008 (7)0.0063 (6)0.0106 (7)
C90.0316 (9)0.0751 (14)0.0290 (9)0.0006 (9)0.0067 (7)0.0190 (9)
C100.0338 (9)0.0956 (17)0.0191 (7)0.0113 (10)0.0083 (6)0.0009 (9)
C110.0405 (10)0.0701 (13)0.0267 (8)0.0167 (9)0.0124 (7)0.0158 (8)
C120.0340 (8)0.0447 (10)0.0254 (8)0.0099 (7)0.0091 (6)0.0063 (7)
C130.0313 (8)0.0420 (10)0.0244 (7)0.0051 (7)0.0074 (6)0.0031 (6)
C140.0401 (9)0.0343 (9)0.0245 (7)0.0102 (7)0.0101 (6)0.0021 (6)
C150.0357 (9)0.0567 (11)0.0217 (7)0.0056 (8)0.0081 (6)0.0007 (7)
C160.0309 (8)0.0657 (13)0.0260 (8)0.0057 (8)0.0040 (6)0.0093 (8)
C170.0521 (11)0.0458 (11)0.0413 (10)0.0192 (9)0.0151 (8)0.0049 (8)
C180.0599 (12)0.0410 (10)0.0369 (9)0.0233 (9)0.0183 (8)0.0120 (8)
C190.0563 (11)0.0392 (10)0.0328 (9)0.0122 (8)0.0154 (8)0.0046 (7)
Geometric parameters (Å, º) top
S1—C21.8215 (14)C9—H90.9500
S1—C51.7931 (17)C10—C111.378 (3)
F1—C11.346 (3)C10—H100.9500
F2—C11.339 (2)C11—C121.393 (2)
F3—C11.342 (2)C11—H110.9500
O2—C151.206 (2)C12—H120.9500
O1—C61.2187 (19)C13—C171.525 (2)
C1—C41.493 (2)C13—C151.525 (2)
C2—C31.556 (2)C13—C161.540 (2)
C2—C131.592 (2)C14—C151.517 (3)
C2—C141.609 (2)C14—C191.527 (2)
C3—C41.562 (2)C14—C181.541 (2)
C3—C61.529 (2)C16—H1610.9800
C3—H31.0000C16—H1620.9800
C4—C51.537 (2)C16—H1630.9800
C4—H41.0000C17—H1710.9800
C5—H510.9900C17—H1720.9800
C5—H520.9900C17—H1730.9800
C6—C71.495 (2)C18—H1810.9800
C7—C121.388 (2)C18—H1820.9800
C7—C81.400 (2)C18—H1830.9800
C8—C91.385 (2)C19—H1910.9800
C8—H80.9500C19—H1920.9800
C9—C101.383 (3)C19—H1930.9800
C2—S1—C590.78 (7)C10—C11—C12119.87 (19)
F2—C1—F3107.18 (16)C10—C11—H11120.1
F2—C1—F1106.45 (16)C12—C11—H11120.1
F3—C1—F1105.77 (16)C7—C12—C11120.20 (17)
F2—C1—C4111.22 (17)C7—C12—H12119.9
F3—C1—C4112.90 (15)C11—C12—H12119.9
F1—C1—C4112.88 (16)C17—C13—C15114.60 (14)
S1—C2—C3104.75 (10)C17—C13—C16108.96 (15)
S1—C2—C13110.69 (10)C15—C13—C16110.92 (14)
S1—C2—C14112.84 (9)C17—C13—C2117.44 (14)
C3—C2—C13122.15 (12)C15—C13—C286.61 (12)
C3—C2—C14116.78 (12)C16—C13—C2116.74 (13)
C13—C2—C1489.45 (12)C15—C14—C19114.56 (14)
C6—C3—C2112.18 (12)C15—C14—C18109.87 (15)
C6—C3—C4108.16 (12)C19—C14—C18108.97 (15)
C2—C3—C4108.37 (11)C15—C14—C286.28 (12)
C6—C3—H3109.4C19—C14—C2120.29 (13)
C2—C3—H3109.4C18—C14—C2114.97 (13)
C4—C3—H3109.4O2—C15—C14132.00 (18)
C1—C4—C5110.59 (13)O2—C15—C13132.42 (18)
C1—C4—C3113.68 (14)C14—C15—C1395.54 (13)
C3—C4—C5109.81 (13)C13—C16—H161109.5
C1—C4—H4107.5C13—C16—H162109.5
C5—C4—H4107.5H161—C16—H162109.5
C3—C4—H4107.5C13—C16—H163109.5
S1—C5—C4105.22 (10)H161—C16—H163109.5
C4—C5—H51110.7H162—C16—H163109.5
S1—C5—H51110.7C13—C17—H171109.5
C4—C5—H52110.7C13—C17—H172109.5
S1—C5—H52110.7H171—C17—H172109.5
H51—C5—H52108.8C13—C17—H173109.5
O1—C6—C7119.97 (13)H171—C17—H173109.5
O1—C6—C3119.06 (13)H172—C17—H173109.5
C7—C6—C3120.96 (13)C14—C18—H181109.5
C12—C7—C8119.37 (14)C14—C18—H182109.5
C12—C7—C6123.84 (14)H181—C18—H182109.5
C8—C7—C6116.79 (14)C14—C18—H183109.5
C9—C8—C7120.00 (18)H181—C18—H183109.5
C9—C8—H8120.0H182—C18—H183109.5
C7—C8—H8120.0C14—C19—H191109.5
C10—C9—C8120.06 (18)C14—C19—H192109.5
C10—C9—H9120.0H191—C19—H192109.5
C8—C9—H9120.0C14—C19—H193109.5
C11—C10—C9120.49 (16)H191—C19—H193109.5
C11—C10—H10119.8H192—C19—H193109.5
C9—C10—H10119.8
C5—S1—C2—C340.88 (11)C9—C10—C11—C120.6 (3)
C5—S1—C2—C13174.32 (11)C8—C7—C12—C110.5 (2)
C5—S1—C2—C1487.17 (12)C6—C7—C12—C11179.82 (15)
C13—C2—C3—C635.81 (18)C10—C11—C12—C70.4 (3)
C14—C2—C3—C6143.53 (13)C3—C2—C13—C17111.55 (16)
S1—C2—C3—C690.84 (12)C14—C2—C13—C17126.71 (15)
C13—C2—C3—C4155.15 (13)S1—C2—C13—C1712.42 (18)
C14—C2—C3—C497.12 (14)C3—C2—C13—C15132.39 (14)
S1—C2—C3—C428.50 (13)C14—C2—C13—C1510.65 (11)
F2—C1—C4—C556.2 (2)S1—C2—C13—C15103.63 (11)
F3—C1—C4—C5176.76 (15)C3—C2—C13—C1620.6 (2)
F1—C1—C4—C563.34 (19)C14—C2—C13—C16101.10 (15)
F2—C1—C4—C3179.72 (15)S1—C2—C13—C16144.61 (13)
F3—C1—C4—C359.2 (2)C3—C2—C14—C15136.96 (12)
F1—C1—C4—C360.71 (19)C13—C2—C14—C1510.72 (11)
C6—C3—C4—C1113.10 (15)S1—C2—C14—C15101.58 (11)
C2—C3—C4—C1125.06 (15)C3—C2—C14—C19106.66 (17)
C6—C3—C4—C5122.43 (14)C13—C2—C14—C19127.10 (16)
C2—C3—C4—C50.59 (17)S1—C2—C14—C1914.8 (2)
C1—C4—C5—S1156.24 (13)C3—C2—C14—C1826.7 (2)
C3—C4—C5—S130.00 (15)C13—C2—C14—C1899.49 (16)
C2—S1—C5—C441.32 (11)S1—C2—C14—C18148.21 (14)
C2—C3—C6—O155.44 (18)C19—C14—C15—O244.8 (3)
C4—C3—C6—O164.03 (18)C18—C14—C15—O278.2 (2)
C2—C3—C6—C7125.53 (14)C2—C14—C15—O2166.6 (2)
C4—C3—C6—C7115.00 (14)C19—C14—C15—C13132.98 (14)
O1—C6—C7—C12170.63 (16)C18—C14—C15—C13103.99 (14)
C3—C6—C7—C128.4 (2)C2—C14—C15—C1311.24 (12)
O1—C6—C7—C89.1 (2)C17—C13—C15—O247.7 (3)
C3—C6—C7—C8171.89 (14)C16—C13—C15—O276.2 (2)
C12—C7—C8—C91.2 (2)C2—C13—C15—O2166.4 (2)
C6—C7—C8—C9179.03 (14)C17—C13—C15—C14130.09 (15)
C7—C8—C9—C101.1 (3)C16—C13—C15—C14106.02 (14)
C8—C9—C10—C110.2 (3)C2—C13—C15—C1411.36 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S1i1.002.893.7370 (16)142
C5—H51···O1i0.992.413.3417 (19)156
C10—H10···S1ii0.952.863.7970 (17)171
Symmetry codes: (i) x, y+2, z+1; (ii) x, y, z+1.
trans-3-Benzoyl-2,2-diphenyl-4-(trifluoromethyl)tetrahydrothiophene (1b) top
Crystal data top
C24H19F3OSDx = 1.433 Mg m3
Mr = 412.45Melting point: 401.4 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4578 (1) ÅCell parameters from 36099 reflections
b = 17.6162 (3) Åθ = 2.0–27.5°
c = 14.5634 (2) ŵ = 0.21 mm1
β = 92.6805 (9)°T = 160 K
V = 1911.22 (5) Å3Prism, colourless
Z = 40.30 × 0.15 × 0.13 mm
F(000) = 856
Data collection top
Nonius KappaCCD area-detector
diffractometer
4376 independent reflections
Radiation source: Nonius FR590 sealed tube generator3216 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.081
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scans with κ offsetsh = 99
Absorption correction: multi-scan
(Blessing, 1995)
k = 2222
Tmin = 0.904, Tmax = 0.975l = 1818
43080 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.053P)2 + 0.850P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.30 e Å3
4376 reflectionsΔρmin = 0.37 e Å3
263 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0046 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Experimental. Data collection and full structure determination done by Prof. Anthony Linden: anthony.linden@chem.uzh.ch

Solvent used: petroleum ether Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: on a glass fibre Client: Grzegorz Mloston Sample code: MG-1225 (HG1704)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.28849 (6)0.65984 (3)0.67818 (3)0.02909 (15)
F10.31015 (18)0.55032 (7)0.95378 (9)0.0437 (3)
F20.03380 (16)0.58579 (8)0.94518 (9)0.0483 (4)
F30.23272 (16)0.65536 (7)1.01552 (8)0.0389 (3)
O10.29001 (18)0.80937 (8)0.86995 (11)0.0357 (3)
C10.2026 (3)0.61134 (12)0.94108 (14)0.0313 (4)
C20.4966 (2)0.67383 (10)0.75124 (12)0.0240 (4)
C30.4232 (2)0.68733 (10)0.85069 (12)0.0237 (4)
H30.5027050.6591320.8961730.028*
C40.2324 (2)0.65367 (11)0.85349 (13)0.0261 (4)
H40.1458550.6970700.8502580.031*
C50.1943 (3)0.60455 (11)0.76790 (13)0.0298 (4)
H510.0637350.5968850.7560690.036*
H520.2538080.5544710.7742560.036*
C60.4260 (2)0.77143 (10)0.87760 (13)0.0261 (4)
C70.6005 (2)0.80580 (10)0.91069 (12)0.0256 (4)
C80.6280 (3)0.88269 (11)0.89188 (13)0.0304 (4)
H80.5348130.9116780.8621770.036*
C90.7914 (3)0.91680 (12)0.91654 (14)0.0349 (5)
H90.8113170.9685720.9018880.042*
C100.9249 (3)0.87515 (12)0.96249 (14)0.0351 (5)
H101.0363800.8985460.9794380.042*
C110.8971 (3)0.79961 (12)0.98390 (14)0.0327 (4)
H110.9882770.7716141.0166520.039*
C120.7359 (2)0.76487 (11)0.95745 (13)0.0284 (4)
H120.7178060.7128190.9713220.034*
C130.6006 (2)0.74187 (10)0.71509 (12)0.0236 (4)
C140.6081 (2)0.60080 (10)0.74477 (13)0.0245 (4)
C150.5139 (3)0.80438 (11)0.67449 (13)0.0288 (4)
H150.3867220.8044910.6665910.035*
C160.6108 (3)0.86634 (11)0.64552 (13)0.0311 (4)
H160.5493540.9084070.6179990.037*
C170.7956 (3)0.86759 (11)0.65621 (14)0.0319 (4)
H170.8614420.9099890.6356630.038*
C180.8842 (3)0.80624 (11)0.69729 (14)0.0313 (4)
H181.0112810.8068560.7057720.038*
C190.7879 (2)0.74429 (11)0.72587 (13)0.0276 (4)
H190.8501780.7024510.7534180.033*
C200.6661 (2)0.55616 (11)0.81886 (13)0.0286 (4)
H200.6357470.5701690.8791840.034*
C210.7683 (2)0.49105 (11)0.80606 (14)0.0305 (4)
H210.8063290.4613160.8577990.037*
C220.8150 (2)0.46917 (11)0.71956 (14)0.0294 (4)
H220.8837920.4245470.7110650.035*
C230.7591 (3)0.51386 (11)0.64507 (14)0.0334 (5)
H230.7908090.4998340.5849690.040*
C240.6579 (3)0.57844 (11)0.65723 (13)0.0296 (4)
H240.6214890.6082490.6052950.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0258 (2)0.0342 (3)0.0268 (3)0.00113 (19)0.00414 (18)0.00193 (19)
F10.0556 (8)0.0331 (7)0.0430 (7)0.0025 (6)0.0071 (6)0.0098 (5)
F20.0357 (7)0.0685 (9)0.0408 (7)0.0228 (6)0.0049 (5)0.0058 (6)
F30.0442 (7)0.0441 (7)0.0283 (6)0.0049 (5)0.0006 (5)0.0035 (5)
O10.0272 (7)0.0284 (7)0.0516 (9)0.0052 (6)0.0038 (6)0.0013 (6)
C10.0280 (10)0.0341 (11)0.0318 (11)0.0058 (8)0.0026 (8)0.0014 (8)
C20.0227 (9)0.0257 (9)0.0233 (9)0.0004 (7)0.0027 (7)0.0010 (7)
C30.0215 (9)0.0245 (9)0.0248 (9)0.0005 (7)0.0009 (7)0.0021 (7)
C40.0232 (9)0.0285 (10)0.0264 (10)0.0015 (7)0.0004 (7)0.0001 (8)
C50.0251 (9)0.0343 (11)0.0297 (10)0.0051 (8)0.0011 (8)0.0014 (8)
C60.0254 (9)0.0279 (10)0.0253 (10)0.0013 (8)0.0032 (7)0.0019 (8)
C70.0279 (9)0.0261 (10)0.0230 (9)0.0014 (7)0.0046 (7)0.0037 (7)
C80.0345 (10)0.0259 (10)0.0311 (10)0.0018 (8)0.0047 (8)0.0016 (8)
C90.0429 (12)0.0298 (10)0.0326 (11)0.0095 (9)0.0079 (9)0.0016 (8)
C100.0308 (10)0.0416 (12)0.0330 (11)0.0120 (9)0.0038 (8)0.0045 (9)
C110.0284 (10)0.0391 (11)0.0305 (11)0.0017 (8)0.0007 (8)0.0016 (9)
C120.0295 (10)0.0289 (10)0.0269 (10)0.0012 (8)0.0020 (8)0.0008 (8)
C130.0236 (9)0.0238 (9)0.0234 (9)0.0015 (7)0.0022 (7)0.0014 (7)
C140.0233 (9)0.0221 (9)0.0278 (10)0.0008 (7)0.0011 (7)0.0005 (7)
C150.0272 (9)0.0294 (10)0.0297 (10)0.0020 (8)0.0012 (8)0.0044 (8)
C160.0359 (11)0.0272 (10)0.0302 (11)0.0034 (8)0.0020 (8)0.0050 (8)
C170.0373 (11)0.0256 (10)0.0333 (11)0.0042 (8)0.0060 (8)0.0005 (8)
C180.0245 (9)0.0306 (10)0.0387 (11)0.0020 (8)0.0021 (8)0.0066 (9)
C190.0260 (9)0.0254 (9)0.0310 (10)0.0030 (7)0.0009 (8)0.0012 (8)
C200.0273 (9)0.0311 (10)0.0276 (10)0.0019 (8)0.0030 (8)0.0009 (8)
C210.0282 (10)0.0274 (10)0.0358 (11)0.0021 (8)0.0001 (8)0.0071 (8)
C220.0270 (9)0.0217 (9)0.0397 (11)0.0019 (7)0.0033 (8)0.0004 (8)
C230.0390 (11)0.0298 (11)0.0316 (11)0.0032 (8)0.0034 (8)0.0024 (8)
C240.0375 (11)0.0263 (10)0.0251 (10)0.0025 (8)0.0007 (8)0.0026 (8)
Geometric parameters (Å, º) top
S1—C21.8567 (18)C11—C121.387 (3)
S1—C51.799 (2)C11—H110.9500
F1—C11.349 (2)C12—H120.9500
F2—C11.341 (2)C13—C151.394 (3)
F3—C11.343 (2)C13—C191.399 (2)
O1—C61.215 (2)C14—C201.388 (3)
C1—C41.503 (3)C14—C241.401 (3)
C2—C31.590 (2)C15—C161.386 (3)
C2—C131.534 (2)C15—H150.9500
C2—C141.537 (2)C16—C171.380 (3)
C3—C41.544 (2)C16—H160.9500
C3—C61.532 (3)C17—C181.388 (3)
C3—H31.0000C17—H170.9500
C4—C51.533 (3)C18—C191.381 (3)
C4—H41.0000C18—H180.9500
C5—H510.9900C19—H190.9500
C5—H520.9900C20—C211.394 (3)
C6—C71.495 (3)C20—H200.9500
C7—C121.393 (3)C21—C221.378 (3)
C7—C81.399 (3)C21—H210.9500
C8—C91.391 (3)C22—C231.389 (3)
C8—H80.9500C22—H220.9500
C9—C101.384 (3)C23—C241.381 (3)
C9—H90.9500C23—H230.9500
C10—C111.385 (3)C24—H240.9500
C10—H100.9500
C2—S1—C590.00 (8)C9—C10—H10119.8
F2—C1—F3106.23 (15)C11—C10—H10119.8
F2—C1—F1106.26 (16)C10—C11—C12119.89 (19)
F3—C1—F1105.88 (16)C10—C11—H11120.1
F2—C1—C4112.36 (16)C12—C11—H11120.1
F3—C1—C4111.89 (16)C11—C12—C7120.45 (18)
F1—C1—C4113.67 (16)C11—C12—H12119.8
S1—C2—C3103.16 (11)C7—C12—H12119.8
S1—C2—C13109.24 (12)C15—C13—C19117.66 (17)
S1—C2—C14107.10 (12)C15—C13—C2122.06 (16)
C3—C2—C13113.37 (14)C19—C13—C2120.22 (16)
C3—C2—C14113.04 (15)C20—C14—C24117.52 (17)
C13—C2—C14110.44 (14)C20—C14—C2125.20 (17)
C6—C3—C4111.45 (15)C24—C14—C2117.28 (16)
C6—C3—C2112.12 (14)C16—C15—C13120.87 (18)
C2—C3—C4108.88 (14)C16—C15—H15119.6
C6—C3—H3108.1C13—C15—H15119.6
C4—C3—H3108.1C17—C16—C15120.70 (18)
C2—C3—H3108.1C17—C16—H16119.7
C1—C4—C5112.39 (16)C15—C16—H16119.7
C1—C4—C3112.68 (15)C16—C17—C18119.30 (18)
C3—C4—C5109.35 (15)C16—C17—H17120.4
C1—C4—H4107.4C18—C17—H17120.4
C5—C4—H4107.4C19—C18—C17120.09 (18)
C3—C4—H4107.4C19—C18—H18120.0
S1—C5—C4102.77 (13)C17—C18—H18120.0
C4—C5—H51111.2C18—C19—C13121.38 (18)
S1—C5—H51111.2C18—C19—H19119.3
C4—C5—H52111.2C13—C19—H19119.3
S1—C5—H52111.2C14—C20—C21120.96 (18)
H51—C5—H52109.1C14—C20—H20119.5
O1—C6—C7121.13 (17)C21—C20—H20119.5
O1—C6—C3120.47 (16)C22—C21—C20121.03 (18)
C7—C6—C3118.37 (15)C22—C21—H21119.5
C12—C7—C8119.17 (17)C20—C21—H21119.5
C12—C7—C6123.27 (17)C21—C22—C23118.44 (18)
C8—C7—C6117.56 (16)C21—C22—H22120.8
C9—C8—C7120.16 (18)C23—C22—H22120.8
C9—C8—H8119.9C24—C23—C22120.84 (19)
C7—C8—H8119.9C24—C23—H23119.6
C10—C9—C8119.86 (19)C22—C23—H23119.6
C10—C9—H9120.1C23—C24—C14121.20 (18)
C8—C9—H9120.1C23—C24—H24119.4
C9—C10—C11120.43 (18)C14—C24—H24119.4
C5—S1—C2—C13161.09 (13)C8—C9—C10—C110.2 (3)
C5—S1—C2—C1479.28 (13)C9—C10—C11—C121.4 (3)
C5—S1—C2—C340.22 (12)C10—C11—C12—C71.0 (3)
C13—C2—C3—C615.9 (2)C8—C7—C12—C110.9 (3)
C14—C2—C3—C6142.53 (15)C6—C7—C12—C11178.02 (17)
S1—C2—C3—C6102.15 (14)C14—C2—C13—C15150.47 (17)
C13—C2—C3—C4139.65 (15)C3—C2—C13—C1581.5 (2)
C14—C2—C3—C493.67 (17)S1—C2—C13—C1532.9 (2)
S1—C2—C3—C421.64 (16)C14—C2—C13—C1932.4 (2)
F2—C1—C4—C559.3 (2)C3—C2—C13—C1995.64 (19)
F3—C1—C4—C5178.69 (15)S1—C2—C13—C19149.93 (15)
F1—C1—C4—C561.4 (2)C13—C2—C14—C20118.39 (19)
F2—C1—C4—C3176.63 (15)C3—C2—C14—C209.8 (3)
F3—C1—C4—C357.2 (2)S1—C2—C14—C20122.75 (17)
F1—C1—C4—C362.7 (2)C13—C2—C14—C2460.3 (2)
C6—C3—C4—C198.19 (18)C3—C2—C14—C24171.47 (15)
C2—C3—C4—C1137.62 (16)S1—C2—C14—C2458.53 (19)
C6—C3—C4—C5136.06 (16)C19—C13—C15—C160.4 (3)
C2—C3—C4—C511.9 (2)C2—C13—C15—C16177.58 (17)
C1—C4—C5—S1167.14 (13)C13—C15—C16—C170.0 (3)
C3—C4—C5—S141.22 (17)C15—C16—C17—C180.6 (3)
C2—S1—C5—C447.49 (13)C16—C17—C18—C190.9 (3)
C4—C3—C6—O123.0 (2)C17—C18—C19—C130.5 (3)
C2—C3—C6—O199.3 (2)C15—C13—C19—C180.1 (3)
C4—C3—C6—C7158.71 (16)C2—C13—C19—C18177.36 (17)
C2—C3—C6—C778.9 (2)C24—C14—C20—C210.7 (3)
O1—C6—C7—C12151.51 (19)C2—C14—C20—C21179.45 (17)
C3—C6—C7—C1230.3 (3)C14—C20—C21—C220.1 (3)
O1—C6—C7—C829.5 (3)C20—C21—C22—C230.5 (3)
C3—C6—C7—C8148.70 (17)C21—C22—C23—C240.5 (3)
C12—C7—C8—C92.5 (3)C22—C23—C24—C140.2 (3)
C6—C7—C8—C9176.52 (17)C20—C14—C24—C230.8 (3)
C7—C8—C9—C102.1 (3)C2—C14—C24—C23179.60 (18)
Comparison of selected geometric parameters (Å, °) for compounds 1a and 1b top
Compound1a1b
S1—C21.8215 (14)1.8567 (18)
S1—C51.7931 (17)1.799 (2)
O1—C61.2187 (19)1.215 (2)
C1—C41.493 (2)1.503 (3)
C2—C31.556 (2)1.590 (2)
C2—C131.592 (2)1.534 (2)
C2—C141.609 (2)1.537 (2)
C3—C41.562 (2)1.544 (2)
C3—C61.529 (2)1.532 (3)
C4—C51.537 (2)1.533 (3)
C6—C71.495 (2)1.495 (3)
C2—S1—C590.78 (7)90.00 (8)
S1—C2—C3104.75 (10)103.16 (11)
S1—C2—C13110.69 (10)109.24 (12)
S1—C2—C14112.84 (9)107.10 (12)
C3—C2—C13122.15 (12)113.37 (14)
C3—C2—C14116.78 (12)113.04 (15)
C13—C2—C1489.45 (12)110.44 (14)
C2—C3—C4108.37 (11)108.88 (14)
C3—C4—C5109.81 (13)109.35 (15)
S1—C5—C4105.22 (10)102.77 (13)
C4—C3—C6—O1-64.03 (18)-23.0 (2)
O1—C6—C7—C8-9.1 (2)-29.5 (3)
Weak C—H···π interactions (Å, °) found in 1b top
Cg1 and Cg2 are the centroids of the C14,C20–C24 and C7–C12 rings, respectively.
H···CgC···CgC—H···Cg
C5—H51···Cg1i2.843.810 (2)165
C24—H24—Cg2ii2.863.625 (2)139
Symmetry codes: (i) x - 1, y, z; (ii) x, -y + 3/2, z - 1/2.
 

Funding information

Funding for this research was provided by: Maestro-3, National Science Center, Cracow (grant No. Dec-2012/06/A/ST5/00219 to GM).

References

First citationAugustin, A. U., Sensse, M., Jones, P. G. & Werz, D. B. (2017). Angew. Chem. Int. Ed. 56, 14293–14296.  CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuan, M., Liu, Y., Ao, J., Xue, L., Luo, S., Tan, Y., Qin, W., Song, C. E. & Yan, H. (2017). Org. Lett. 19, 2298–2301.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuisgen, R., Fulka, C., Kalwinsch, I., Xingya, L., Mlostoń, G., Moran, J. R. & Pröbstl, A. (1984). Bull. Soc. Chim. Belg. 93, 511–532.  CrossRef Google Scholar
First citationHuisgen, R., Langhals, E. & Nöth, H. (1986). Tetrahedron Lett. 27, 5475–5478.  CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMatsumoto, Y., Nakatake, D., Yazaki, R. & Ohshima, T. (2018). Chem. Eur. J. 24, 6062–6066.  CrossRef PubMed Google Scholar
First citationMeninno, S., Overgaard, J. & Lattanzi, A. (2017). Synthesis, 49, 1509–1518.  Google Scholar
First citationMistry, S. P. & Dakshinamurti, K. (1964). Vitam. Horm. 22, 1–55.  CrossRef PubMed Google Scholar
First citationMlostoń, G., Grzelak, P. & Heimgartner, H. (2016). J. Fluor. Chem. 190, 56–60.  Google Scholar
First citationMlostoń, G. & Heimgartner, H. (2000). Pol. J. Chem. 74, 1503–1533.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRam, R. N., Gupta, D. K. & Soni, V. K. (2016). Eur. J. Org. Chem. pp. 3434–3440.  CrossRef Google Scholar
First citationSeyfried, M. S., Linden, A., Mloston, G. & Heimgartner, H. (2006). Pol. J. Chem. 80, 1363–1376.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, S., Guo, Z., Chen, S., Jiang, Y., Zhang, F., Liu, X., Chen, W. & Sheng, C. (2018). Chem. Eur. J. 24, 62–66.  CrossRef PubMed Google Scholar
First citationZamberlan, F., Fantinati, A. & Trapella, C. (2018). Eur. J. Org. Chem. pp. 3248–3264.  CrossRef Google Scholar
First citationZhang, Y., Wang, Y.-P., Ge, J., Lai, G.-W., Lu, D.-L., Liu, J.-X. & Li, X. (2018). Tetrahedron Lett. 59, 941–944.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds