research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, mol­ecular structure and Hirshfeld surface analysis of (4-meth­­oxy­phen­yl)[2-(methyl­sulfan­yl)thio­phen-3-yl]methanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Physics, Manasagangothri, University of Mysore, Mysore, Karnataka, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysuru, Karnataka, India, cDepartment of Studies in Physics, Adichuchanagiri Institute of Technology, Chikkamagaluru, Karnataka, India, and dDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysuru, Karnataka, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 1 November 2018; accepted 13 November 2018; online 16 November 2018)

The title compound, C13H12O2S2, crystallizes in the triclinic space group P[\overline{1}]. The mol­ecular structure is substanti­ally twisted, with a dihedral angle of 43.70 (2)° between the 2-(methyl­sulfan­yl)thio­phene and 4-meth­oxy­phenyl rings. In the crystal, mol­ecules are linked through C—H⋯O inter­actions and form a bifurcated layer stacking along the b-axis direction and enclosing R22(10) ring motifs. The phenyl rings are involved in ππ inter­actions with a centroid–centroid separation of 3.760 (2) Å. The Hirshfeld surfaces were studied and the contributions of the various inter­molecular inter­actions were qu­anti­fied.

1. Chemical context

Thio­phenes are five-membered sulfur-containing heterocyclic compounds with important applications in areas such as agrochemistry, pharmaceuticals, mol­ecular electronics, liquid crystalline materials and corrosion inhibition. Thio­phenes are also important building blocks in organic synthesis. Their aromatic character gives enough stabilization to allow the manipulation of various substituents (Mishra et al., 2011[Mishra, R., Jha, K. K., Kumar, S. & Isha, T. (2011). Pharma Chem. 3, 38-54.]). α-Oxoketene thio­acetals are powerful building blocks for the synthesis of numerous heterocyclic scaffolds, where the carbonyl carbon generally provides hard centers and the carbon-bearing methyl­sulfanyl group acts as a soft electrophilic center (Junjappa et al., 1990[Junjappa, H., Ila, H. & Asokan, C. V. (1990). Tetrahedron, 46, 5423-5506.]). This synthetic building block was used for the synthesis of (4-meth­oxy­phen­yl) [2-(methyl­sulfan­yl)thio­phen-3-yl]methanone (Pradeepa Kumara et al., 2016[Pradeepa Kumara, C. S., Byre Gowda, G., Vinay Kumar, K. S., Ramesh, N., Sadashiva, M. P. & Junjappa, H. (2016). Tetrahedron Lett. 57, 4302-4305.]).

[Scheme 1]

2. Structural commentary

In the title compound, the 2-(methyl­sulfan­yl)thio­phene and 4-meth­oxy­phenyl aromatic rings are connected via a C(=O)—C methanone bridge (Fig. 1[link]). The compound is substanti­ally twisted about the methanone bridge as indicated by the dihedral angle of 43.70 (2)° between the thio­phene (S1/C1/C5/C7/C10) and phenyl (C2–C6/C11/C13) rings. The methyl group at S2 is in a +syn-periplanar conformation, as indicated by the C8—S2—C10—S1 torsion angle of 6.09 (16)°. However, in the related compound (4-fluoro­phen­yl)[2-(methyl­sulfan­yl)thio­phen-3-yl]methanone (Nagaraju et al., 2018[Nagaraju, S., Sridhar, M. A., Sreenatha, N. R., Pradeepa Kumara, C. S. & Sadashiva, M. P. (2018). X-ray Struct. Anal. Online, 34, 13-14.]), this group is in a -syn-periplanar conformation with a torsion angle of −1.7 (2)°. Atom C12 adopts a nearly trigonal geometry, as indicated by the bond angles C7–C12–O2 = 119.5 (2)°, O2–C12–C4 = 119.2 (2)° and C4—C12—C7 = 121.3 (2)°. The meth­oxy group attached at C11 is in a −anti-periplanar conformation [C3—C11—O1—C9 = −176.9 (2)°]. The bond lengths and angles are normal (Sreenatha et al., 2017[Sreenatha, N. R., Lakshminarayana, B. N., Madan Kumar, S., Mahadeva Prasad, T. N. K. S., Kiran, D., Vijayshankar, S. & Byrappa, K. (2017). Chem. Data Collections, 11, 131-138.]; Rajni Swamy et al., 2014[Rajni Swamy, V., Gunasekaran, P., Krishnakumar, R. V., Srinivasan, N. & Müller, P. (2014). Acta Cryst. E70, o974-o975.]; Gopinath et al., 2016[Gopinath, S., Sethusankar, K., Stoeckli-Evans, H., Rafiq, M. & Mohanakrishnan, A. K. (2016). Acta Cryst. E72, 1310-1314.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure features inter­molecular hydrogen-bonding inter­actions of the type C9—H9A⋯O2 (Fig. 2[link], Table 1[link]) and displays a bifurcated layer stacking along the b-axis direction through C6—H6⋯O2 inter­actions, which link inversion-related mol­ecules into dimers enclosing an [R_{2}^{2}](10) ring motif. ππ stacking inter­actions are also observed between the phenyl rings (centroid Cg) of adjacent mol­ecules [CgCg(2 − x, −y, 1 − z) = 3.760 (2) Å]. The packing of the title compound is illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.48 3.374 (4) 161
C9—H9A⋯O2ii 0.96 2.45 3.400 (4) 172
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y-1, z.
[Figure 2]
Figure 2
The [R_{2}^{2}](10) ring motif formed via inter­molecular C6—H6⋯O2 hydrogen bonds (Table 1[link]). The ππ inter­actions are also shown.
[Figure 3]
Figure 3
Packing for of the title compound viewed along the b axis.

4. Hirshfeld surfaces and 2D fingerprint plots

Hirshfeld surface (HS) analysis and the associated fingerprint plots (FP) (CrystalExplorer; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) are useful tools for visualizing the types of inter­molecular inter­actions present in a crystal structure and qu­antify their percentage contributions to the crystal packing. The 3D HS mapped over dnorm between −0.2106 a.u (blue) and 1.2279 a.u (red) is shown in Fig. 4[link]. The area and volume of the HS are 287.29 Å2 and 305.24 Å3, respectively. The deep-red spots on the dnorm surface are due to the presence of inter­molecular C—H⋯O inter­actions (Sreenatha et al., 2018[Sreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23-24.]). The 2D FP analysis (Fig. 5[link]) shows that the H⋯H contacts make the highest contribution (39.3%) followed by the H⋯C/C⋯H contacts (20.1%), which are seen as a pair of blunt spikes in the region 1.2 Å < (di + de) < 1.75 Å. The H⋯S/S⋯H contacts make a contribution of 16.9% and appear as butterfly wings in the region 1.2 Å < (di + de) < 1.9 Å. The pair of sharp spikes is observed in the region 1.2 Å < (di + de) < 1.32 Å is due to the presence of H⋯O/O⋯H contacts (15.6% contribution). The C⋯C contacts (3.4% contribution) are visible as wings in almost the same region, 1.7 Å < (di + de) < 1.72 Å. The relative contributions of all the contacts to the Hirshfeld surface are depicted in Fig. 6[link].

[Figure 4]
Figure 4
Hirshfeld surface for the title compound mapped over dnorm in the range −0.2106 to 1.2279 a.u. highlighting the C—H⋯O inter­molecular inter­actions.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯S/S⋯H, (e) H⋯O/O⋯H, (f) C⋯C, (g) S⋯C/C⋯S and (h) S⋯S inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 6]
Figure 6
The relative contributions (%) to the Hirshfeld surface for the various contacts.

5. Database survey

A search for thio­phene derivatives was carried out in the Cambridge Structural Database (CSD, Version 5.39, update of February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The most relevant compounds are 5-[bis­(4-eth­oxy­phen­yl)amino]­thio­phene-2-carbaldehyde (HOJCIU; Tan et al., 2014[Tan, J.-Y., Kong, M. & Wu, J.-Y. (2014). Acta Cryst. E70, o1075-o1076.]) and 2-[4-(benz­yloxy)phen­yl]-5-(3,4-di­meth­oxy­phen­yl)-3, 4-di­methyl­thio­phene (ACETEI; Shi et al., 2004[Shi, J.-X., Zheng, X.-F., Zhu, K., Lei, Y.-J. & Shi, J.-G. (2004). Acta Cryst. E60, o1977-o1978.]), which are both non-planar. In ethyl 4-acetyl-5-anilino-3-methyl­thio­phene-2-carboxyl­ate (AFIGIH; Mabkhot et al., 2013[Mabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049.]), the thio­phene and phenyl rings make a dihedral angle of 36.81 (10)°.

6. Synthesis and crystallization

To α-oxoketene di­thio­acetal (0.1 mol) and 1,4-di­thiane-2,5-diol (0.05 mol) in dry ethanol (10 mL), anhydrous potassium carbonate (0.12 mol) was added. The reaction mixture was refluxed on a water bath for 30 minutes (the condenser being protected by a calcium chloride guard tube). After completion of the reaction (monitored by TLC), the catalyst was filtered off and washed with fresh ethanol. The combined ethanol solution was removed on a rotary evaporator to obtain a viscous liquid. The crude product was purified by column chromatography using silica gel with 5% ethyl acetate and petroleum ether to yield the title compound as a yellow solid product, which was recrystallized from di­chloro­methane solution. M.p. 489–493 K. IR (KBr) νmax = 3449, 3079, 2923, 2841, 1772, 1600, 1493, 1253, 1167, 1015, 842, 694, 550 cm−1. 1H NMR (300 MHz, CDCl3): 7.79–7.77 (m, 2 H), 7.27–7.25 (m, 1H), 7.16–7.14 (m, 1H), 6.9–6.93 (m, 2H), 3.86 (s, 3H), 2.58 (s, 3H) ppm. 13 C NMR (75 MHz, CDCl3): 188.86, 162.73, 151.33, 135.36, 131.60, 131.47, 130.24, 130.59, 122.02, 113.44, 55.37, 18.06. HRMS (ESI): calculated for C13H12O2S2 [M + H]+ 265.0312; found 265.0407.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were placed at calculated positions and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic ring atoms and with C—H = 0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula C13H12O2S2
Mr 264.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.806 (4), 8.263 (3), 10.414 (6)
α, β, γ (°) 97.260 (11), 109.65 (2), 93.79 (2)
V3) 623.3 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.30 × 0.26 × 0.20
 
Data collection
Diffractometer Bruker APEX
No. of measured, independent and observed [I > 2σ(I)] reflections 2924, 2165, 1899
Rint 0.109
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.09
No. of reflections 2165
No. of parameters 157
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.33
Computer programs: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

(4-Methoxyphenyl)[2-(methylsulfanyl)thiophen-3-yl]methanone top
Crystal data top
C13H12O2S2Z = 2
Mr = 264.35F(000) = 276
Triclinic, P1Dx = 1.409 Mg m3
a = 7.806 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.263 (3) ÅCell parameters from 2924 reflections
c = 10.414 (6) Åθ = 3.5–25.0°
α = 97.260 (11)°µ = 0.41 mm1
β = 109.65 (2)°T = 293 K
γ = 93.79 (2)°Block, colourless
V = 623.3 (5) Å30.30 × 0.26 × 0.20 mm
Data collection top
Bruker APEX
diffractometer
1899 reflections with I > 2σ(I)
Radiation source: graphiteRint = 0.109
Detector resolution: 0.894 pixels mm-1θmax = 25.0°, θmin = 3.5°
SAINT (Bruker, 2006) [not correct; type of scans needed]h = 99
2924 measured reflectionsk = 99
2165 independent reflectionsl = 1211
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.072P)2 + 0.1135P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.37 e Å3
2165 reflectionsΔρmin = 0.33 e Å3
157 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.060 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.77364 (8)0.32143 (7)0.09953 (6)0.0412 (3)
S20.73606 (8)0.60555 (7)0.10012 (6)0.0422 (3)
O10.7606 (3)0.1498 (2)0.62854 (18)0.0582 (5)
O20.7950 (3)0.4642 (2)0.33504 (18)0.0601 (5)
C10.8084 (3)0.1302 (3)0.0527 (3)0.0450 (6)
H10.8209560.0398710.1105240.054*
C20.6715 (3)0.0359 (3)0.3139 (2)0.0419 (6)
H20.6074920.0113570.2193800.050*
C30.8621 (3)0.1072 (3)0.5930 (2)0.0437 (6)
H30.9273310.1310230.6873980.052*
C40.7766 (3)0.1880 (3)0.3679 (2)0.0361 (5)
C50.8153 (3)0.1275 (3)0.0773 (2)0.0402 (5)
H50.8345860.0345410.1197740.048*
C60.8701 (3)0.2215 (3)0.5107 (2)0.0407 (5)
H60.9386090.3230290.5500380.049*
C70.7900 (3)0.2813 (3)0.1446 (2)0.0352 (5)
C80.6913 (4)0.6721 (3)0.0642 (3)0.0525 (6)
H8A0.5945010.5985790.1333100.079*
H8B0.8000260.6724800.0878930.079*
H8C0.6554870.7810320.0593710.079*
C90.6614 (5)0.3123 (4)0.5746 (3)0.0726 (9)
H9A0.7045800.3654580.5058050.109*
H9B0.5330400.3034390.5339030.109*
H9C0.6810170.3758220.6483230.109*
C100.7680 (3)0.4010 (3)0.0595 (2)0.0341 (5)
C110.7571 (3)0.0450 (3)0.5371 (2)0.0426 (5)
C120.7881 (3)0.3201 (3)0.2846 (2)0.0397 (5)
C130.6597 (3)0.0792 (3)0.3964 (2)0.0459 (6)
H130.5869670.1790940.3580190.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0427 (4)0.0471 (4)0.0361 (4)0.0025 (3)0.0176 (3)0.0050 (3)
S20.0402 (4)0.0346 (4)0.0488 (4)0.0026 (2)0.0148 (3)0.0010 (2)
O10.0729 (13)0.0652 (12)0.0423 (10)0.0013 (10)0.0272 (9)0.0124 (8)
O20.0870 (15)0.0460 (10)0.0429 (10)0.0040 (9)0.0214 (9)0.0041 (8)
C10.0512 (14)0.0421 (13)0.0453 (13)0.0072 (10)0.0235 (11)0.0008 (10)
C20.0356 (12)0.0535 (14)0.0302 (10)0.0047 (10)0.0073 (9)0.0002 (9)
C30.0400 (12)0.0615 (15)0.0258 (10)0.0005 (11)0.0106 (9)0.0013 (10)
C40.0325 (11)0.0448 (12)0.0296 (10)0.0001 (9)0.0115 (8)0.0009 (9)
C50.0409 (12)0.0393 (12)0.0421 (12)0.0079 (9)0.0157 (10)0.0067 (9)
C60.0375 (12)0.0484 (13)0.0311 (11)0.0036 (10)0.0110 (9)0.0048 (9)
C70.0290 (10)0.0398 (11)0.0335 (11)0.0008 (8)0.0089 (8)0.0007 (9)
C80.0504 (15)0.0444 (13)0.0623 (16)0.0009 (11)0.0170 (12)0.0173 (12)
C90.108 (3)0.0627 (18)0.0627 (18)0.0042 (17)0.0516 (18)0.0122 (14)
C100.0243 (10)0.0389 (11)0.0356 (11)0.0033 (8)0.0096 (8)0.0005 (9)
C110.0407 (13)0.0548 (14)0.0372 (11)0.0036 (11)0.0204 (9)0.0068 (10)
C120.0351 (12)0.0443 (12)0.0336 (11)0.0001 (9)0.0080 (9)0.0026 (9)
C130.0409 (13)0.0528 (14)0.0387 (12)0.0097 (11)0.0129 (10)0.0014 (10)
Geometric parameters (Å, º) top
S1—C101.719 (2)C4—C61.400 (3)
S1—C11.724 (3)C4—C121.494 (3)
S2—C101.744 (2)C5—C71.430 (3)
S2—C81.793 (3)C5—H50.9300
O1—C111.360 (3)C6—H60.9300
O1—C91.448 (4)C7—C101.391 (3)
O2—C121.230 (3)C7—C121.458 (3)
C1—C51.340 (4)C8—H8A0.9600
C1—H10.9300C8—H8B0.9600
C2—C131.379 (3)C8—H8C0.9600
C2—C41.394 (3)C9—H9A0.9600
C2—H20.9300C9—H9B0.9600
C3—C61.365 (3)C9—H9C0.9600
C3—C111.397 (4)C11—C131.387 (3)
C3—H30.9300C13—H130.9300
C10—S1—C192.19 (11)S2—C8—H8A109.5
C10—S2—C8100.76 (12)S2—C8—H8B109.5
C11—O1—C9117.8 (2)H8A—C8—H8B109.5
C5—C1—S1111.72 (18)S2—C8—H8C109.5
C5—C1—H1124.1H8A—C8—H8C109.5
S1—C1—H1124.1H8B—C8—H8C109.5
C13—C2—C4121.9 (2)O1—C9—H9A109.5
C13—C2—H2119.0O1—C9—H9B109.5
C4—C2—H2119.0H9A—C9—H9B109.5
C6—C3—C11120.7 (2)O1—C9—H9C109.5
C6—C3—H3119.6H9A—C9—H9C109.5
C11—C3—H3119.6H9B—C9—H9C109.5
C2—C4—C6117.6 (2)C7—C10—S1110.79 (16)
C2—C4—C12124.3 (2)C7—C10—S2127.08 (17)
C6—C4—C12118.1 (2)S1—C10—S2122.13 (14)
C1—C5—C7113.6 (2)O1—C11—C13125.0 (2)
C1—C5—H5123.2O1—C11—C3115.7 (2)
C7—C5—H5123.2C13—C11—C3119.3 (2)
C3—C6—C4121.0 (2)O2—C12—C7119.5 (2)
C3—C6—H6119.5O2—C12—C4119.2 (2)
C4—C6—H6119.5C7—C12—C4121.33 (19)
C10—C7—C5111.7 (2)C2—C13—C11119.5 (2)
C10—C7—C12120.6 (2)C2—C13—H13120.3
C5—C7—C12127.7 (2)C11—C13—H13120.3
C10—S1—C1—C50.0 (2)C8—S2—C10—S16.09 (16)
C13—C2—C4—C60.5 (4)C9—O1—C11—C132.7 (4)
C13—C2—C4—C12177.3 (2)C9—O1—C11—C3176.9 (2)
S1—C1—C5—C70.8 (3)C6—C3—C11—O1179.4 (2)
C11—C3—C6—C41.4 (4)C6—C3—C11—C130.2 (4)
C2—C4—C6—C31.7 (3)C10—C7—C12—O211.1 (3)
C12—C4—C6—C3178.7 (2)C5—C7—C12—O2168.1 (2)
C1—C5—C7—C101.4 (3)C10—C7—C12—C4168.49 (19)
C1—C5—C7—C12179.4 (2)C5—C7—C12—C412.4 (4)
C5—C7—C10—S11.3 (2)C2—C4—C12—O2141.9 (3)
C12—C7—C10—S1179.42 (16)C6—C4—C12—O234.8 (3)
C5—C7—C10—S2179.26 (16)C2—C4—C12—C737.6 (3)
C12—C7—C10—S20.0 (3)C6—C4—C12—C7145.6 (2)
C1—S1—C10—C70.78 (18)C4—C2—C13—C111.1 (4)
C1—S1—C10—S2179.77 (14)O1—C11—C13—C2178.2 (2)
C8—S2—C10—C7173.3 (2)C3—C11—C13—C21.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.483.374 (4)161
C9—H9A···O2ii0.962.453.400 (4)172
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

The authors are thankful to the Department of Physics, University of Mysore, and Adichuchanagiri Institute of Technology, Chikkamagaluru, Karnataka for support

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGopinath, S., Sethusankar, K., Stoeckli-Evans, H., Rafiq, M. & Mohanakrishnan, A. K. (2016). Acta Cryst. E72, 1310–1314.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJunjappa, H., Ila, H. & Asokan, C. V. (1990). Tetrahedron, 46, 5423–5506.  CrossRef CAS Web of Science Google Scholar
First citationMabkhot, Y. N., Alatibi, F., Barakat, A., Choudhary, M. I. & Yousuf, S. (2013). Acta Cryst. E69, o1049.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMishra, R., Jha, K. K., Kumar, S. & Isha, T. (2011). Pharma Chem. 3, 38–54.  Google Scholar
First citationNagaraju, S., Sridhar, M. A., Sreenatha, N. R., Pradeepa Kumara, C. S. & Sadashiva, M. P. (2018). X-ray Struct. Anal. Online, 34, 13–14.  CrossRef Google Scholar
First citationPradeepa Kumara, C. S., Byre Gowda, G., Vinay Kumar, K. S., Ramesh, N., Sadashiva, M. P. & Junjappa, H. (2016). Tetrahedron Lett. 57, 4302–4305.  CrossRef Google Scholar
First citationRajni Swamy, V., Gunasekaran, P., Krishnakumar, R. V., Srinivasan, N. & Müller, P. (2014). Acta Cryst. E70, o974–o975.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, J.-X., Zheng, X.-F., Zhu, K., Lei, Y.-J. & Shi, J.-G. (2004). Acta Cryst. E60, o1977–o1978.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenatha, N. R., Lakshminarayana, B. N., Ganesha, D. P., Vijayshankar, S. & Nagaraju, S. (2018). X-ray Struct. Anal. Online, 34, 23–24.  CrossRef Google Scholar
First citationSreenatha, N. R., Lakshminarayana, B. N., Madan Kumar, S., Mahadeva Prasad, T. N. K. S., Kiran, D., Vijayshankar, S. & Byrappa, K. (2017). Chem. Data Collections, 11, 131–138.  Google Scholar
First citationTan, J.-Y., Kong, M. & Wu, J.-Y. (2014). Acta Cryst. E70, o1075–o1076.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds