research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new compound in the BEDT-TTF family [BEDT-TTF = bis­­(ethyl­enedi­thio)­tetra­thia­fulvalene] with a tetra­thio­cyanato­cuprate(II) anion, (BEDT-TTF)4[Cu(NCS)4]

CROSSMARK_Color_square_no_text.svg

aCNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP44099, 31077 Toulouse Cedex 4, France, Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
*Correspondence e-mail: christophe.faulmann@lcc-toulouse.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 October 2018; accepted 29 October 2018; online 9 November 2018)

A new phase combining BEDT-TTF and [Cu(NCS)4]2– as the counter-anion, namely bis­[bis(ethyl­enedi­thio)­tetra­thia­fulvalenium] tetra­thio­cyanato­cuprate(II) bis­[bis(ethyl­ene­di­thio)­tetra­thia­fulvalene], (C10H8S8)2[Cu(NCS)4]·2C10H8S8 or (BEDT-TTF)4[Cu(NCS)4] was obtained during a galvanostatic electrocrystallization process. As previously observed with BEDT-TTF-based compounds with oxalatometallate anions, the BEDT-TTF mol­ecules in (BEDT-TTF)4[Cu(NCS)4] exhibit the so-called pseudo-κ arrangement, with two BEDT-TTF mol­ecules being positively charged and two electronically neutral. The bond lengths and angles in the two unique BEDT-TTF mol­ecules differ slightly. The crystal structure consists of layers of BEDT-TTF mol­ecules extending parallel to (001). The width of this layer corresponds to the length of the a axis [16.9036 (17) Å]. The BEDT-TTF layers are separated by layers of centrosymmetric square-planar [Cu(NCS)4]2– dianions.

1. Chemical context

For several years, we have been inter­ested in synthesizing mol­ecular (super)conductors as nanoparticles (Chtioui-Gay et al., 2016[Chtioui-Gay, I., Faulmann, C., de Caro, D., Jacob, K., Valade, L., de Caro, P., Fraxedas, J., Ballesteros, B., Steven, E., Choi, E. S., Lee, M., Benjamin, S. M., Yvenou, E., Simonato, J. P. & Carella, A. (2016). J. Mater. Chem. C. 4, 7449-7454.]; Valade et al., 2016[Valade, L., de Caro, D., Faulmann, C. & Jacob, K. (2016). Coord. Chem. Rev. 308, 433-444.]; de Caro, Jacob et al., 2013[Caro, D. de, Jacob, K., Faulmann, C. & Valade, L. (2013). C. R. Chim. 16, 629-633.]; de Caro, Souque et al., 2013[Caro, D. de, Souque, M., Faulmann, C., Coppel, Y., Valade, L., Fraxedas, J., Vendier, O. & Courtade, F. (2013). Langmuir, 29, 8983-8988.]; de Caro et al., 2014[Caro, D. de, Faulmann, C., Valade, L., Jacob, K., Chtioui, I., Foulal, S., de Caro, P., Bergez-Lacoste, M., Fraxedas, J., Ballesteros, B., Brooks, J. S., Steven, E. & Winter, L. E. (2014). Eur. J. Inorg. Chem. pp. 4010-4016.]; Winter et al., 2015[Winter, L. E., Steven, E., Brooks, J. S., Benjamin, S., Park, J.-H., de Caro, D., Faulmann, C., Valade, L., Jacob, K., Chtioui, I., Ballesteros, B. & Fraxedas, J. (2015). Phys. Rev. B, 91, 035437-1-7.]) in order to study the effects of size reduction on the properties of this kind of material. As there are numerous structuring agents such as ionic liquids based, for instance, on imidazolium cations (Fig. 1[link]), and long alkyl chains in ammonium salts or neutral amines, it is possible to obtain nanoparticles of these materials, either by electrochemical oxidation or by chemical reaction. Recently, we have focused on BEDT-TTF-based compounds [BEDT-TTF is bis­(ethyl­enedi­thio)­tetra­thia­fulvalene]. The BEDT-TTF family is one of the most studied in the field of mol­ecular superconductors because it exhibits the largest number of superconductors with Tc above 10 K (Ishiguro et al., 1998[Ishiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, 2nd ed. Heidelberg: Springer.]). During the planned electrosynthesis of (BEDT-TTF)2[Cu(NCS)2] as nanoparticles from BEDT-TTF and Cu(SCN) in the presence of (EMIM)(SCN) (EMIM = 1-ethyl-3-methyl­imidazolium), a few crystals were formed as a minor product besides the desired powder as the main phase. A structure determination of these crystals revealed a new salt-like compound, based on the BEDT-TTF donor and the [Cu(NCS)4]2– dianion, namely pseudo-κ-(BEDT-TTF)4[Cu(NCS)4].

[Scheme 1]
[Figure 1]
Figure 1
Examples of ionic liquids with the imidazolium fragment. For example, R = but­yl: BMIM+; R = eth­yl: EMIM+; X = PF6, BF4, SCN.

2. Structural commentary

The asymmetric unit of the title salt contains two well-ordered BEDT-TTF mol­ecules and one Cu(NCS)2 entity with the CuII cation lying on an inversion centre (Fig. 2[link]). This results in the composition (BEDT-TTF)4[Cu(NCS)4], and thus is different from the well-known κ-phase (BEDT-TTF)2[Cu(NCS)2] (Hiramatsu et al., 2015[Hiramatsu, T., Yoshida, Y., Saito, G., Otsuka, A., Yamochi, H., Maesato, M., Shimizu, Y., Ito, H. & Kishida, H. (2015). J. Mater. Chem. C. 3, 1378-1388.]; Schultz et al. 1991[Schultz, A. J., Beno, M. A., Geiser, U., Wang, H. H., Kini, A. M., Williams, J. M. & Whangbo, M. H. (1991). J. Solid State Chem. 94, 352-361.]; Urayama et al., 1988[Urayama, H., Yamochi, H., Saito, G., Sato, S., Kawamoto, A., Tanaka, J., Mori, T., Maruyama, Y. & Inokuchi, H. (1988). Chem. Lett. 17, 463-466.]) and also from (BEDT-TTF)[Cu2(NCS)3] (Geiser et al., 1988[Geiser, U., Beno, M. A., Kini, A. M., Wang, H. H., Schultz, A. J., Gates, B. D., Cariss, C. S., Carlson, K. D. & Williams, J. M. (1988). Synth. Met. 27, A235-A241.]). One of the two BEDT-TTF mol­ecules (central bond C7—C8) forms a dimer that is related through an inversion centre, whereas the other BEDT-TTF mol­ecules (central bond C17—C18) are farther away from each other. To our knowledge, this feature has not been observed within the (BEDT-TTF)[Cu(NCS)x] family, but it has been found in BEDT-TTF compounds with tris-(oxalato)metallate anions, such as (BEDT-TTF)4[AM(C2O4)3]·solv. (A = K, NH4, H3O; M = Fe, Cr, Co, Ru; solv. = benzo­nitrile, 1,2-di­chloro­benzene, bromo­benzene) (Kurmoo et al., 1995[Kurmoo, M., Graham, A. W., Day, P., Coles, S. J., Hursthouse, M. B., Caulfield, J. L., Singleton, J., Pratt, F. L., Hayes, W., Ducasse, L. & Guionneau, P. (1995). J. Am. Chem. Soc. 117, 12209-12217.]; Martin et al., 2001[Martin, L., Turner, S. S., Day, P., Guionneau, P., Howard, J. A. K., Hibbs, D. E., Light, M. E., Hursthouse, M. B., Uruichi, M. & Yakushi, K. (2001). Inorg. Chem. 40, 1363-1371.]; Prokhorova et al., 2011[Prokhorova, T. G., Buravov, L. I., Yagubskii, E. B., Zorina, L. V., Khasanov, S. S., Simonov, S. V., Shibaeva, R. P., Korobenko, A. V. & Zverev, V. N. (2011). CrystEngComm, 13, 537-545.], 2013[Prokhorova, T. G., Zorina, L. V., Simonov, S. V., Zverev, V. N., Canadell, E., Shibaeva, R. P. & Yagubskii, E. B. (2013). CrystEngComm, 15, 7048-7055.]). The latter compounds are representatives of the pseudo κ-phase where the two independent BEDT-TTF mol­ecules show some slight structural differences. Similarly, the bond lengths within the central C2S4 core in the BEDT-TTF mol­ecules of the title salt deviate by up to 0.035 Å. The bond lengths in the TTF core are indicative of the degree of charge in this family of BEDT-TTF compounds. According to Guionneau et al. (1997[Guionneau, P., Kepert, C. J., Bravic, G., Chasseau, D., Truter, M. R., Kurmoo, M. & Day, P. (1997). Synth. Met. 86, 1973-1974.]), this allows the charge Q of the two BEDT-TTF mol­ecules in the title salt to be calculated. Whereas each BEDT-TTF mol­ecule in the dimer carries a charge of +1 (Q = 0.83), the other BEDT-TTF mol­ecule is neutral (Q = 0.18). Not only do the bond lengths of the BEDT-TTF mol­ecules in the title salt show some differences, but the overall shape of the mol­ecules also differs. The BEDT-TTF mol­ecule in the dimer deviates less from planarity [r.m.s. deviation of 0.0853 Å neglecting the outer ethyl­ene bridges, with the largest deviation being 0.1579 (19) Å for S5] than the other BEDT-TTF mol­ecule [r.m.s. deviation of 0.1431 Å; highest deviation = 0.3273 (12) Å for S12]. Moreover, the outer ethyl­ene groups tend to be more eclipsed in the mol­ecule of the dimer whereas they tend to be more staggered in the other mol­ecule (Fig. 3[link]). All these features are similar to those reported for the (BEDT-TTF)4[AM(C2O4)3]·solv. family.

[Figure 2]
Figure 2
Molecular structure of (BEDT-TTF)4[Cu(NCS)4], showing the BEDT-TTF mol­ecule involved in the formation of a dimer (top), and the other BEDT-TTF mol­ecule (bottom), as well as the centrosymmetric [Cu(NCS)4]2– dianion. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. Primed atoms are generated by the symmetry operation (−x, 1 − y, 2 − z).
[Figure 3]
Figure 3
Side view of the BEDT-TTF mol­ecules (top: in the dimer; bottom: the other mol­ecule). Displacement ellipsoids are drawn at the 50% probability level.

Contrary to what is observed in other BEDT-TTF compounds associated with [Cu(NCS)x] anions that are present as polymeric [Cu(NCS)x] entities, in the title compound discrete [Cu(NCS)4]2– units are observed. The CuII cation (which lies on a centre of inversion) of the [Cu(NCS)4]2– dianion adopts an almost regular square-planar CuN4 environment, with N—Cu—N angles close to 90 and 180°. Intra­molecular bond lengths in the anion are in agreement with other tetra­thio­cyanato­cuprates(II) (Wang et al., 2008[Wang, Y.-F., Wang, L.-Y. & Ma, L.-F. (2008). Z. Anorg. Allg. Chem. 634, 181-185.]; Chekhlov, 2009[Chekhlov, A. N. (2009). Russ. J. Gen. Chem. 79, 744-748.]). It should be noted that one Cu—NCS fragment is more bent than the other one [angle Cu—N2—C2 of 151.6 (4)° versus 175.2 (3)° for Cu—N1—C1; Fig. 2[link]].

3. Supra­molecular features

The BEDT-TTF mol­ecules in the dimer stack face-to-face. The inter­planar distance within the dimer is 3.62 (3) Å, considering the least-squares planes of the mol­ecule except for the terminal ethyl­ene groups. In addition, there are two pairs of short S⋯S contacts within the dimer [S5⋯S8 = 3.461 (1) and S6⋯S7 = 3.515 (1) Å]. Each dimer is surrounded by six adjacent BEDT-TTF mol­ecules (Fig. 4[link]). Four of them lie nearly perpendicular to the dimer [angle of 86.16 (2)°] and are connected with the dimer through short S⋯S contacts (Table 1[link]) and the two others are almost parallel to the dimer [angle of 7.09 (4)°] with short S⋯H contacts (Table 1[link]). This arrangement leads to layers of BEDT-TTF donors, extending parallel to (001). The layers have a width that corresponds to the length of the a axis and are separated from each other by layers of [Cu(NCS)4]2– dianions (Fig. 5[link]).

Table 1
Table of contacts (Å) shorter than the sum of the van der Waals radii

Atom 1⋯atom 2 Length Symmetry operation on atom 2  
S5⋯S8 3.461 (1) 1 − x, 1 − y, 1 − z  
S6⋯S7 3.515 (1) 1 − x, 1 − y, 1 − z  
S4⋯S12 3.463 (1) x, y, z  
S4⋯S14 3.586 (1) x, y, z  
S10⋯H21B 2.76 x, y, z  
H12A⋯S17 2.81 x, y, 1 + z  
S3⋯S11 3.511 (1) x, y, 1 + z  
S5⋯S11 3.508 (1) x, y, 1 + z  
S9⋯S15 3.571 (1) x, y, 1 + z  
S9⋯S17 3.574 (1) x, y, 1 + z  
S3⋯S17 3.470 (1) 1 − x, 1 − y, 1 − z  
S5⋯S17 3.533 (1) 1 − x, 1 − y, 1 − z  
S9⋯S11 3.522 (1) 1 − x, 1 − y, 1 − z  
H4B⋯S12 2.74 x, [{3\over 2}] − y, [{1\over 2}] + z  
S12⋯H14A 2.73 x, [{3\over 2}] − y, [{1\over 2}] + z  
[Figure 4]
Figure 4
View along [100] of the packing of the mol­ecular entities in the crystal structure of (BEDT-TTF)4[Cu(NCS)4]. The dimer of BEDT-TTF mol­ecules (turquoise) is surrounded by other BEDT-TTF mol­ecules (purple). Black dotted lines represent short S⋯S and S⋯H contacts shorter than the sum of the van der Waals radii (for numerical details, see: Table 1[link]).
[Figure 5]
Figure 5
View of the structural arrangement of (BEDT-TTF)4[Cu(NCS)4], showing layers of BEDT-TTF mol­ecules parallel to (001) separated by layers of [Cu(NCS)4]2– dianions.

4. Synthesis and crystallization

(BEDT-TTF)4[Cu(NCS)4] was prepared by galvanostatic electrocrystallization in an H-shaped cell, equipped with Pt electrodes and with a glass frit between the anodic and cathodic compartments. To the cathodic compartment were added EMIM(SCN) (EMIM = 1-ethyl-3-methyl­imidazolium; 60 µl, 0.4 mmol) and freshly distilled 1,1,2-TCE (TCE = trichlorethyl­ene; 10 ml). Cu(NCS) (8 mg, 0.07 mmol) and EMIM(SCN) (60 µL, 0.4 mmoL) were added to the anodic compartment, which was immediately filled with BEDT-TTF (30 mg, 0.08 mmol), previously dissolved in 10 ml of 1,1,2-TCE at 343 K. The current was set at 100 µA (current density of 318 µA cm−2). After 12 h, a black powder corresponding to the desired compound (BEDT-TTF)2[Cu(NCS)2] was harvested by filtration, together with some crystals of (BEDT-TTF)4[Cu(NCS)4], which were washed with 1,1,2-TCE and dried under vacuum.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The crystal diffracted rather weakly (2θmax = 47.42°). The hydrogen atoms of the ethyl­ene bridges were placed in idealized positions and were refined with C—H = 0.99 Å and with Uiso(H) = 1.2Ueq(C). Reflections (100) and (110) were obstructed by the beam stop and thus were excluded from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula (C10H8S8)2[Cu(CNS)4]·2C10H8S8
Mr 1834.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 16.9036 (17), 21.004 (2), 9.6205 (9)
β (°) 103.071 (3)
V3) 3327.1 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.50
Crystal size (mm) 0.18 × 0.16 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII Quazar CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.652, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 48335, 5028, 3816
Rint 0.070
θmax (°) 23.7
(sin θ/λ)max−1) 0.566
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.02
No. of reflections 5028
No. of parameters 385
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis[bis(ethylenedithio)tetrathiafulvalenium] tetrathiocyanatocuprate(II) bis[bis(ethylenedithio)tetrathiafulvalene] top
Crystal data top
(C10H8S8)2[Cu(CNS)4]·2C10H8S8F(000) = 1858
Mr = 1834.43Dx = 1.831 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.9036 (17) ÅCell parameters from 7249 reflections
b = 21.004 (2) Åθ = 2.4–23.5°
c = 9.6205 (9) ŵ = 1.50 mm1
β = 103.071 (3)°T = 100 K
V = 3327.1 (6) Å3Plate, orange
Z = 20.18 × 0.16 × 0.02 mm
Data collection top
Bruker Kappa APEXII Quazar CCD
diffractometer
5028 independent reflections
Radiation source: microfocus sealed tube3816 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.070
phi and ω scansθmax = 23.7°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1919
Tmin = 0.652, Tmax = 0.745k = 2323
48335 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0295P)2 + 4.1709P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5028 reflectionsΔρmax = 0.38 e Å3
385 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0171 (2)0.42002 (18)0.7252 (4)0.0213 (9)
C20.0246 (2)0.6302 (2)0.8878 (4)0.0253 (10)
C30.8700 (2)0.54753 (16)0.5992 (4)0.0187 (9)
H3A0.9281550.5459970.6479210.022*
H3B0.8624540.5204230.5129810.022*
C40.8478 (2)0.61543 (17)0.5535 (4)0.0209 (9)
H4A0.8900910.6328760.5078240.025*
H4B0.8478510.6413250.6394760.025*
C50.7131 (2)0.54291 (16)0.6393 (4)0.0149 (8)
C60.6896 (2)0.58496 (16)0.5308 (4)0.0160 (8)
C70.5595 (2)0.55932 (15)0.6157 (4)0.0149 (8)
C80.4827 (2)0.55887 (16)0.6416 (4)0.0154 (8)
C90.3595 (2)0.53724 (16)0.7503 (4)0.0154 (8)
C100.3323 (2)0.57822 (16)0.6408 (4)0.0160 (8)
C110.2046 (2)0.52444 (17)0.7908 (4)0.0209 (9)
H11A0.1844870.4944500.7112750.025*
H11B0.1713290.5182670.8621790.025*
C120.1924 (2)0.59208 (17)0.7337 (4)0.0209 (9)
H12A0.2177620.6218610.8107090.025*
H12B0.1334370.6013290.7083520.025*
C130.8509 (2)0.64170 (17)0.0556 (4)0.0215 (9)
H13A0.8580520.6164450.1444920.026*
H13B0.8920410.6269580.0041500.026*
C140.8670 (2)0.71118 (17)0.0950 (4)0.0203 (9)
H14A0.8523890.7373380.0073590.024*
H14B0.9257490.7169930.1360280.024*
C150.6912 (2)0.66642 (16)0.0439 (4)0.0132 (8)
C160.7133 (2)0.71147 (16)0.1441 (4)0.0156 (8)
C170.5605 (2)0.69326 (16)0.1286 (4)0.0169 (9)
C180.4857 (2)0.69108 (16)0.1551 (4)0.0165 (9)
C190.3385 (2)0.65929 (16)0.1588 (4)0.0141 (8)
C200.3569 (2)0.70712 (16)0.2528 (4)0.0149 (8)
C210.1796 (2)0.65689 (16)0.2003 (4)0.0168 (9)
H21A0.1234330.6520630.1427400.020*
H21B0.1822060.6358830.2933640.020*
C220.1970 (2)0.72687 (17)0.2261 (4)0.0229 (9)
H22A0.1525150.7463400.2631580.028*
H22B0.1979400.7477250.1342260.028*
S10.02733 (6)0.37420 (5)0.58614 (11)0.0285 (3)
S20.02204 (7)0.70695 (5)0.86453 (12)0.0331 (3)
S30.81075 (6)0.51479 (4)0.71701 (10)0.0169 (2)
S40.75024 (6)0.62342 (4)0.43121 (10)0.0210 (2)
S50.63665 (5)0.51340 (4)0.71623 (10)0.0158 (2)
S60.58730 (6)0.60578 (4)0.48575 (10)0.0173 (2)
S70.46026 (6)0.51311 (4)0.77698 (10)0.0178 (2)
S80.40302 (6)0.60313 (4)0.54464 (10)0.0167 (2)
S90.30860 (6)0.50474 (4)0.87210 (10)0.0198 (2)
S100.23390 (6)0.60719 (4)0.57979 (10)0.0198 (2)
S110.75135 (6)0.62589 (4)0.05352 (10)0.0183 (2)
S120.81090 (6)0.73927 (4)0.22123 (10)0.0178 (2)
S130.58828 (6)0.64487 (4)0.00163 (10)0.0180 (2)
S140.63616 (6)0.74608 (4)0.21522 (10)0.0183 (2)
S150.41224 (6)0.63676 (4)0.06567 (10)0.0180 (2)
S160.45292 (6)0.74247 (4)0.27426 (11)0.0212 (2)
S170.24819 (6)0.61583 (4)0.10988 (11)0.0208 (2)
S180.29242 (6)0.74148 (5)0.35111 (10)0.0232 (2)
Cu10.0000000.5000001.0000000.02233 (18)
N10.0100 (2)0.45238 (15)0.8251 (4)0.0282 (8)
N20.0279 (2)0.57616 (18)0.9071 (4)0.0379 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.015 (2)0.017 (2)0.030 (2)0.0038 (17)0.0001 (19)0.0093 (19)
C20.019 (2)0.037 (3)0.021 (2)0.0072 (19)0.0067 (19)0.005 (2)
C30.019 (2)0.017 (2)0.021 (2)0.0019 (16)0.0063 (18)0.0027 (16)
C40.016 (2)0.016 (2)0.030 (2)0.0010 (16)0.0057 (18)0.0024 (17)
C50.019 (2)0.0108 (19)0.016 (2)0.0001 (16)0.0054 (17)0.0015 (16)
C60.018 (2)0.0103 (19)0.020 (2)0.0008 (16)0.0063 (17)0.0007 (16)
C70.020 (2)0.0085 (18)0.014 (2)0.0001 (16)0.0009 (17)0.0022 (15)
C80.021 (2)0.0120 (19)0.0123 (19)0.0009 (16)0.0007 (17)0.0001 (15)
C90.018 (2)0.0137 (19)0.015 (2)0.0001 (16)0.0038 (17)0.0028 (16)
C100.022 (2)0.0123 (19)0.014 (2)0.0002 (16)0.0058 (17)0.0027 (16)
C110.018 (2)0.024 (2)0.022 (2)0.0023 (17)0.0077 (18)0.0015 (17)
C120.022 (2)0.019 (2)0.023 (2)0.0047 (17)0.0083 (18)0.0018 (17)
C130.016 (2)0.023 (2)0.026 (2)0.0008 (17)0.0075 (18)0.0040 (18)
C140.017 (2)0.024 (2)0.021 (2)0.0037 (17)0.0063 (18)0.0055 (17)
C150.014 (2)0.0102 (19)0.017 (2)0.0009 (15)0.0056 (16)0.0041 (16)
C160.016 (2)0.016 (2)0.016 (2)0.0024 (16)0.0046 (17)0.0025 (16)
C170.017 (2)0.0100 (19)0.021 (2)0.0014 (16)0.0003 (18)0.0036 (16)
C180.018 (2)0.0079 (19)0.022 (2)0.0009 (16)0.0029 (18)0.0031 (16)
C190.014 (2)0.0114 (19)0.016 (2)0.0010 (15)0.0025 (17)0.0051 (16)
C200.018 (2)0.0107 (19)0.015 (2)0.0001 (15)0.0014 (17)0.0026 (15)
C210.013 (2)0.020 (2)0.019 (2)0.0009 (16)0.0042 (17)0.0043 (16)
C220.019 (2)0.019 (2)0.031 (2)0.0010 (17)0.0078 (19)0.0043 (18)
S10.0236 (6)0.0350 (6)0.0274 (6)0.0033 (5)0.0066 (5)0.0062 (5)
S20.0253 (6)0.0306 (6)0.0430 (7)0.0026 (5)0.0070 (5)0.0175 (5)
S30.0160 (5)0.0153 (5)0.0196 (5)0.0019 (4)0.0045 (4)0.0046 (4)
S40.0236 (6)0.0184 (5)0.0222 (6)0.0021 (4)0.0079 (5)0.0087 (4)
S50.0155 (5)0.0143 (5)0.0170 (5)0.0004 (4)0.0027 (4)0.0033 (4)
S60.0195 (6)0.0141 (5)0.0183 (5)0.0024 (4)0.0041 (4)0.0033 (4)
S70.0188 (5)0.0169 (5)0.0175 (5)0.0019 (4)0.0037 (4)0.0032 (4)
S80.0173 (5)0.0146 (5)0.0180 (5)0.0018 (4)0.0034 (4)0.0031 (4)
S90.0217 (6)0.0186 (5)0.0199 (5)0.0014 (4)0.0065 (4)0.0051 (4)
S100.0189 (6)0.0222 (5)0.0185 (5)0.0052 (4)0.0046 (4)0.0044 (4)
S110.0172 (5)0.0180 (5)0.0209 (5)0.0026 (4)0.0067 (4)0.0048 (4)
S120.0160 (5)0.0194 (5)0.0180 (5)0.0045 (4)0.0041 (4)0.0033 (4)
S130.0139 (5)0.0148 (5)0.0243 (6)0.0003 (4)0.0024 (4)0.0042 (4)
S140.0151 (5)0.0135 (5)0.0259 (5)0.0006 (4)0.0038 (4)0.0049 (4)
S150.0142 (5)0.0156 (5)0.0242 (5)0.0017 (4)0.0045 (4)0.0062 (4)
S160.0163 (5)0.0179 (5)0.0300 (6)0.0027 (4)0.0066 (5)0.0093 (4)
S170.0200 (6)0.0175 (5)0.0272 (6)0.0061 (4)0.0099 (5)0.0074 (4)
S180.0221 (6)0.0239 (5)0.0260 (6)0.0060 (4)0.0102 (5)0.0116 (4)
Cu10.0214 (4)0.0135 (3)0.0321 (4)0.0006 (3)0.0061 (3)0.0034 (3)
N10.033 (2)0.0178 (18)0.032 (2)0.0032 (16)0.0023 (17)0.0016 (17)
N20.053 (3)0.026 (2)0.041 (2)0.0139 (19)0.024 (2)0.0099 (18)
Geometric parameters (Å, º) top
C1—N11.161 (5)C14—H14A0.9900
C1—S11.625 (4)C14—H14B0.9900
C2—N21.149 (5)C15—C161.342 (5)
C2—S21.627 (5)C15—S111.752 (4)
C3—C41.514 (5)C15—S131.755 (4)
C3—S31.809 (4)C16—S121.749 (4)
C3—H3A0.9900C16—S141.761 (4)
C3—H3B0.9900C17—C181.346 (5)
C4—S41.804 (4)C17—S141.755 (4)
C4—H4A0.9900C17—S131.758 (4)
C4—H4B0.9900C18—S161.753 (4)
C5—C61.357 (5)C18—S151.761 (4)
C5—S51.742 (4)C19—C201.340 (5)
C5—S31.753 (4)C19—S171.749 (4)
C6—S61.740 (4)C19—S151.757 (4)
C6—S41.751 (4)C20—S181.752 (4)
C7—C81.377 (5)C20—S161.755 (4)
C7—S51.731 (4)C21—C221.508 (5)
C7—S61.732 (4)C21—S171.817 (4)
C8—S81.726 (4)C21—H21A0.9900
C8—S71.728 (4)C21—H21B0.9900
C9—C101.358 (5)C22—S181.807 (4)
C9—S71.740 (4)C22—H22A0.9900
C9—S91.742 (4)C22—H22B0.9900
C10—S101.743 (4)S3—S17i3.4702 (13)
C10—S81.749 (4)S3—S11ii3.5113 (13)
C11—C121.520 (5)S4—S123.4627 (13)
C11—S91.803 (4)S4—S143.5862 (13)
C11—H11A0.9900S5—S11ii3.5079 (13)
C11—H11B0.9900S5—S17i3.5330 (13)
C12—S101.805 (4)S6—S7i3.5146 (13)
C12—H12A0.9900S9—S11i3.5216 (13)
C12—H12B0.9900S9—S15ii3.5707 (13)
C13—C141.517 (5)S9—S17ii3.5743 (14)
C13—S111.802 (4)Cu1—N11.932 (4)
C13—H13A0.9900Cu1—N1iii1.932 (4)
C13—H13B0.9900Cu1—N2iii1.942 (4)
C14—S121.800 (4)Cu1—N21.942 (4)
N1—C1—S1179.5 (4)C19—C20—S18126.5 (3)
N2—C2—S2178.3 (4)C19—C20—S16117.6 (3)
C4—C3—S3113.8 (3)S18—C20—S16115.7 (2)
C4—C3—H3A108.8C22—C21—S17114.8 (3)
S3—C3—H3A108.8C22—C21—H21A108.6
C4—C3—H3B108.8S17—C21—H21A108.6
S3—C3—H3B108.8C22—C21—H21B108.6
H3A—C3—H3B107.7S17—C21—H21B108.6
C3—C4—S4114.0 (3)H21A—C21—H21B107.5
C3—C4—H4A108.8C21—C22—S18112.7 (3)
S4—C4—H4A108.8C21—C22—H22A109.0
C3—C4—H4B108.8S18—C22—H22A109.0
S4—C4—H4B108.8C21—C22—H22B109.0
H4A—C4—H4B107.7S18—C22—H22B109.0
C6—C5—S5116.2 (3)H22A—C22—H22B107.8
C6—C5—S3129.2 (3)C5—S3—C3101.87 (17)
S5—C5—S3114.62 (19)C5—S3—S17i97.25 (12)
C5—C6—S6117.2 (3)C3—S3—S17i149.40 (12)
C5—C6—S4128.0 (3)C5—S3—S11ii70.65 (12)
S6—C6—S4114.8 (2)C3—S3—S11ii114.76 (12)
C8—C7—S5121.2 (3)S17i—S3—S11ii94.00 (3)
C8—C7—S6123.7 (3)C6—S4—C499.35 (18)
S5—C7—S6115.1 (2)C6—S4—S12158.54 (12)
C7—C8—S8123.5 (3)C4—S4—S1295.63 (13)
C7—C8—S7121.1 (3)C6—S4—S14110.11 (12)
S8—C8—S7115.4 (2)C4—S4—S14137.49 (12)
C10—C9—S7116.6 (3)S12—S4—S1449.34 (3)
C10—C9—S9129.6 (3)C7—S5—C595.85 (17)
S7—C9—S9113.8 (2)C7—S5—S11ii102.50 (12)
C9—C10—S10127.8 (3)C5—S5—S11ii70.81 (12)
C9—C10—S8116.6 (3)C7—S5—S17i163.25 (12)
S10—C10—S8115.6 (2)C5—S5—S17i95.28 (12)
C12—C11—S9114.3 (3)S11ii—S5—S17i92.97 (3)
C12—C11—H11A108.7C7—S6—C695.43 (17)
S9—C11—H11A108.7C7—S6—S7i93.63 (12)
C12—C11—H11B108.7C6—S6—S7i93.06 (12)
S9—C11—H11B108.7C8—S7—C995.80 (17)
H11A—C11—H11B107.6C8—S8—C1095.53 (17)
C11—C12—S10114.5 (3)C8—S8—S5i90.59 (12)
C11—C12—H12A108.6C10—S8—S5i97.38 (12)
S10—C12—H12A108.6C9—S9—C11101.52 (17)
C11—C12—H12B108.6C9—S9—S11i151.62 (12)
S10—C12—H12B108.6C11—S9—S11i91.85 (12)
H12A—C12—H12B107.6C9—S9—S15ii77.75 (12)
C14—C13—S11114.4 (3)C11—S9—S15ii111.30 (13)
C14—C13—H13A108.6S11i—S9—S15ii120.58 (3)
S11—C13—H13A108.6C9—S9—S17ii115.51 (12)
C14—C13—H13B108.6C11—S9—S17ii74.71 (13)
S11—C13—H13B108.6S11i—S9—S17ii92.03 (3)
H13A—C13—H13B107.6S15ii—S9—S17ii48.46 (3)
C13—C14—S12113.1 (3)C10—S10—C12100.41 (17)
C13—C14—H14A109.0C15—S11—C13100.20 (17)
S12—C14—H14A109.0C16—S12—C14101.22 (17)
C13—C14—H14B109.0C16—S12—S468.74 (12)
S12—C14—H14B109.0C14—S12—S4115.70 (13)
H14A—C14—H14B107.8C15—S13—C1794.73 (17)
C16—C15—S11128.8 (3)C17—S14—C1694.53 (17)
C16—C15—S13117.4 (3)C17—S14—S493.43 (12)
S11—C15—S13113.79 (19)C16—S14—S465.17 (11)
C15—C16—S12128.5 (3)C19—S15—C1894.55 (17)
C15—C16—S14117.4 (3)C18—S16—C2094.76 (17)
S12—C16—S14114.1 (2)C19—S17—C21103.65 (17)
C18—C17—S14123.1 (3)C20—S18—C2298.12 (17)
C18—C17—S13122.0 (3)N1—Cu1—N1iii180.0
S14—C17—S13114.9 (2)N1—Cu1—N2iii89.53 (14)
C17—C18—S16123.5 (3)N1iii—Cu1—N2iii90.47 (14)
C17—C18—S15121.2 (3)N1—Cu1—N290.46 (14)
S16—C18—S15115.2 (2)N1iii—Cu1—N289.53 (14)
C20—C19—S17128.9 (3)N2iii—Cu1—N2180.0
C20—C19—S15117.6 (3)C1—N1—Cu1175.2 (3)
S17—C19—S15113.5 (2)C2—N2—Cu1151.6 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+2.
Table of contacts (Å) shorter than the sum of the van der Waals radii top
Atom 1···atom 2LengthSymmetry operation on atom 2
S5···S83.461 (1)1 - x, 1 - y, 1 - z
S6···S73.515 (1)1 - x, 1 - y, 1 - z
S4···S123.463 (1)x, y, z
S4···S143.586 (1)x, y, z
S10···H21B2.76x, y, z
H12A···S172.81x, y, 1 + z
S3···S113.511 (1)x, y, 1 + z
S5···S113.508 (1)x, y, 1 + z
S9···S153.571 (1)x, y, 1 + z
S9···S173.574 (1)x, y, 1 + z
S3···S173.470 (1)1 - x, 1 - y, 1 - z
S5···S173.533 (1)1 - x, 1 - y, 1 - z
S9···S113.522 (1)1 - x, 1 - y, 1 - z
H4B···S122.74x, 3/2 -y, 1/2 + z
S12···H14A2.73x, 3/2 -y, 1/2 + z
 

Acknowledgements

Sonia Mallet-Ladeira is acknowledged for her help and discussions related with X-ray diffraction.

References

First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaro, D. de, Faulmann, C., Valade, L., Jacob, K., Chtioui, I., Foulal, S., de Caro, P., Bergez-Lacoste, M., Fraxedas, J., Ballesteros, B., Brooks, J. S., Steven, E. & Winter, L. E. (2014). Eur. J. Inorg. Chem. pp. 4010–4016.  Google Scholar
First citationCaro, D. de, Jacob, K., Faulmann, C. & Valade, L. (2013). C. R. Chim. 16, 629–633.  Google Scholar
First citationCaro, D. de, Souque, M., Faulmann, C., Coppel, Y., Valade, L., Fraxedas, J., Vendier, O. & Courtade, F. (2013). Langmuir, 29, 8983–8988.  PubMed Google Scholar
First citationChekhlov, A. N. (2009). Russ. J. Gen. Chem. 79, 744–748.  CrossRef Google Scholar
First citationChtioui-Gay, I., Faulmann, C., de Caro, D., Jacob, K., Valade, L., de Caro, P., Fraxedas, J., Ballesteros, B., Steven, E., Choi, E. S., Lee, M., Benjamin, S. M., Yvenou, E., Simonato, J. P. & Carella, A. (2016). J. Mater. Chem. C. 4, 7449–7454.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeiser, U., Beno, M. A., Kini, A. M., Wang, H. H., Schultz, A. J., Gates, B. D., Cariss, C. S., Carlson, K. D. & Williams, J. M. (1988). Synth. Met. 27, A235–A241.  CrossRef Google Scholar
First citationGuionneau, P., Kepert, C. J., Bravic, G., Chasseau, D., Truter, M. R., Kurmoo, M. & Day, P. (1997). Synth. Met. 86, 1973–1974.  CrossRef CAS Web of Science Google Scholar
First citationHiramatsu, T., Yoshida, Y., Saito, G., Otsuka, A., Yamochi, H., Maesato, M., Shimizu, Y., Ito, H. & Kishida, H. (2015). J. Mater. Chem. C. 3, 1378–1388.  CrossRef Google Scholar
First citationIshiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, 2nd ed. Heidelberg: Springer.  Google Scholar
First citationKurmoo, M., Graham, A. W., Day, P., Coles, S. J., Hursthouse, M. B., Caulfield, J. L., Singleton, J., Pratt, F. L., Hayes, W., Ducasse, L. & Guionneau, P. (1995). J. Am. Chem. Soc. 117, 12209–12217.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, L., Turner, S. S., Day, P., Guionneau, P., Howard, J. A. K., Hibbs, D. E., Light, M. E., Hursthouse, M. B., Uruichi, M. & Yakushi, K. (2001). Inorg. Chem. 40, 1363–1371.  CrossRef PubMed Google Scholar
First citationProkhorova, T. G., Buravov, L. I., Yagubskii, E. B., Zorina, L. V., Khasanov, S. S., Simonov, S. V., Shibaeva, R. P., Korobenko, A. V. & Zverev, V. N. (2011). CrystEngComm, 13, 537–545.  CrossRef Google Scholar
First citationProkhorova, T. G., Zorina, L. V., Simonov, S. V., Zverev, V. N., Canadell, E., Shibaeva, R. P. & Yagubskii, E. B. (2013). CrystEngComm, 15, 7048–7055.  CrossRef Google Scholar
First citationSchultz, A. J., Beno, M. A., Geiser, U., Wang, H. H., Kini, A. M., Williams, J. M. & Whangbo, M. H. (1991). J. Solid State Chem. 94, 352–361.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUrayama, H., Yamochi, H., Saito, G., Sato, S., Kawamoto, A., Tanaka, J., Mori, T., Maruyama, Y. & Inokuchi, H. (1988). Chem. Lett. 17, 463–466.  CrossRef Web of Science Google Scholar
First citationValade, L., de Caro, D., Faulmann, C. & Jacob, K. (2016). Coord. Chem. Rev. 308, 433–444.  CrossRef Google Scholar
First citationWang, Y.-F., Wang, L.-Y. & Ma, L.-F. (2008). Z. Anorg. Allg. Chem. 634, 181–185.  CrossRef Google Scholar
First citationWinter, L. E., Steven, E., Brooks, J. S., Benjamin, S., Park, J.-H., de Caro, D., Faulmann, C., Valade, L., Jacob, K., Chtioui, I., Ballesteros, B. & Fraxedas, J. (2015). Phys. Rev. B, 91, 035437–1–7.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds