research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A one-dimensional iodido-bridged PtII/PtIV mixed-valence complex cation with a hydrogen sulfate counter-anion

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, 171-8501 Tokyo, Japan
*Correspondence e-mail: cnmatsu@rikkyo.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 October 2018; accepted 14 November 2018; online 22 November 2018)

The title compound, catena-poly[[[bis­(ethyl­enedi­amine-κ2N,N′)platinum(II)]-μ-iodido-[bis­(ethyl­enedi­amine-κ2N,N′)platinum(IV)]-μ-iodido] tetra­(hydrogen sulfate) dihydrate], {[PtII(C2H8N2)2][PtIVI2(C2H8N2)2](HSO4)4·2H2O}n, has a linear chain structure comprising alternating platinum cations with mixed-valent oxidation states of +II/IV. Square-planar [Pt(en)2]2+ cations and elongated octa­hedral trans-[PtI2(en)2]2+ cations (en is ethyl­enedi­amine) are stacked alternately parallel to the b axis, and are bridged by the I ligands. The Pt site of the [PtII/IV(en)2] units is located on a twofold rotation axis. The I site, which is located on the same twofold rotation axis, is equally disordered over two positions. The Pt and I sites form a straight ⋯I—PtIV—I⋯PtII⋯ chain, with PtIV—I bond lengths of 2.7202 (6) and 2.6917 (6) Å, and PtII⋯I contacts of 3.2249 (6) and 3.2534 (6) Å. The mixed-valence state of the Pt site is expressed by the structural parameter δ = (PtIV–I)/(PtII⋯I), with values of 0.843 and 0.827 for the two independent I atoms. In the crystal structure, the cationic columnar structure is stabilized by hydrogen bonds of the type N—H⋯O between the amine groups of the Pt complex chains and the disordered hydrogen sulfate counter anions, and between the amine groups and water mol­ecules of crystallization. In addition, O—H⋯O hydrogen bonds between the hydrogen sulfate anions and water mol­ecules of crystallization and between the hydrogen sulfate anions themselves consolidate the crystal packing.

1. Chemical context

The title mixed-valence compound, [PtII(en)2][PtIVI2(en)2](HSO4)4·2H2O (en is ethyl­enedi­amine, C2N2H8), (I)[link], is a member of the family of one-dimensional halogenido-bridged mixed-valence metal complexes, formulated as [MII(AA)2][MIVX2(AA)2]Y4 [MII/MIV = PtII/PtIV; PdII/PdIV; NiII/NiIV; PdII/PtIV; NiII/PtIV; X = Cl, Br, I; AA = NH2(CH2)2NH2, etc.; Y = ClO4, BF4, X, etc.], which are often referred to as MX-chains and are typical mixed-valence compounds belonging to class II in the classification of Robin & Day (1967[Robin, M. B. & Day, P. (1967). Advances Inorganic Chemistry and Radiochemistry, edited by H. J. Emeléus & A. G. Sharpe, Vol. 10, pp. 247-422. New York: Academic Press.]). MX-chains have attracted much inter­est because of their one-dimensional mixed-valence electron systems, as described in a previous report (Matsushita, 2006[Matsushita, N. (2006). Acta Cryst. C62, m33-m36.]).

The metal–halogen distances in crystals of MX-chains characterize their physical properties based on the mixed-valence electronic state. The X-ray structure determination of (I)[link] was performed to gain structural information for MX-chains and to compare (I)[link] with chlorido- and bromido-bridged PtII/PtIV mixed-valence complexes with a hydrogen sulfate counter-anion, i.e. [PtII(en)2][PtIVX2(en)2](HSO4)4 (X = Cl, Br) (Matsushita et al., 1992[Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936-1939.]; Matsushita, 2003[Matsushita, N. (2003). Acta Cryst. E59, m26-m28.]).

[Scheme 1]

2. Structural commentary

The structures of the mol­ecular components of (I)[link] are displayed in Fig. 1[link]. The asymmetric unit of (I)[link] comprises half of a Pt-complex moiety, [PtII(en)2]2+ or [PtIVI2(en)2]2+, one HSO4 anion, and a half-mol­ecule of water. The Pt and I atoms of the Pt-complex moiety and the O atom of the water mol­ecule are located on twofold rotation axes. The hydrogen sulfate anion lies on a general position. As shown in Fig. 2[link], the structure of (I)[link] is built up of columns extending parallel to the b axis, composed of square-planar [Pt(en)2]2+ cations and elongated octa­hedral trans-[PtI2(en)2]2+ cations stacked alternately and bridged by the I ligands. The Pt and I atoms form an infinite straight ⋯I—PtIV—I⋯PtII⋯ chain. The same straight chains are also observed in [PtII(en)2][PtIVX2(en)2](HSO4)4 (X = Cl, Br) (Matsushita et al., 1992[Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936-1939.]; Matsushita, 2003[Matsushita, N. (2003). Acta Cryst. E59, m26-m28.]). The title salt (I)[link] is, however, not isotypic with these hydrogen sulfates of the chlorido- and bromido-bridged complexes whereas the latter structures show isotypism with each other.

[Figure 1]
Figure 1
The structures of the mol­ecular components of (I)[link], showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. Light-blue dashed lines represent N—H⋯O and O—H⋯O hydrogen bonds. Each site of atoms I1 and I2 is half occupied. [Symmetry code: (i) [{1\over 2}] − x, y, [{1\over 2}] − z].
[Figure 2]
Figure 2
A view of the columnar structure of compound (I)[link], running parallel to the b axis. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. The violet hollow ellipsoids of I atoms and the violet hollow lines between Pt and I atoms represent the disordered part of the ⋯I—PtIV—I⋯PtII⋯ chain. Light-blue dashed lines represent hydrogen bonds.

The I sites in (I)[link] are not located at the exact midpoint between adjacent Pt sites and thus are equally disordered over two sites close to the midpoint. Consequently, the Pt site is occupationally disordered over the PtII and PtIV atoms. The valence ordering of the Pt site in (I)[link] belongs to one of three different classes of the order–disorder problem pointed out by Keller (1982[Keller, H. J. (1982). Extended Linear Chain Compounds, edited by J. S. Miller, pp. 357-407. New York: Plenum.]). The structure of (I)[link] can be regarded as being of a one-dimensionally ordered structure type, with the other two directions being in a disordered state. The structural order–disorder situation of the Pt site in (I)[link] has also been observed in the structures of a number of other MX-chains (Endres et al., 1980[Endres, H., Keller, H. J., Keppler, B., Martin, R., Steiger, W. & Traeger, U. (1980). Acta Cryst. B36, 760-761.]; Beauchamp et al., 1982[Beauchamp, A. L., Layek, D. & Theophanides, T. (1982). Acta Cryst. B38, 1158-1164.]; Cannas et al., 1983[Cannas, M., Bonaria Lucchesini, M. & Marongiu, G. (1983). Acta Cryst. C39, 1514-1517.]; Yamashita et al., 1985[Yamashita, M., Toriumi, K. & Ito, T. (1985). Acta Cryst. C41, 876-878.]; Matsushita et al., 1992[Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936-1939.], 2017[Matsushita, N., Taira, A. & Taoka, Y. (2017). Acta Cryst. E73, 1108-1112.]; Toriumi et al., 1993[Toriumi, K., Yamashita, M., Kurita, S., Murase, I. & Ito, T. (1993). Acta Cryst. B49, 497-506.]; Huckett et al., 1993[Huckett, S. C., Scott, B., Love, S. P., Donohoe, R. J., Burns, C. J., Garcia, E., Frankcom, T. & Swanson, B. I. (1993). Inorg. Chem. 32, 2137-2144.]; Matsushita, 2003[Matsushita, N. (2003). Acta Cryst. E59, m26-m28.], 2005a[Matsushita, N. (2005a). Acta Cryst. E61, m514-m516.],b[Matsushita, N. (2005b). Acta Cryst. E61, m1301-m1303.], 2015[Matsushita, N. (2015). Acta Cryst. E71, 1155-1158.]; Matsushita & Taira, 2015[Matsushita, N. & Taira, A. (2015). Acta Cryst. C71, 1033-1036.]).

With respect to the two sites for the disordered I atoms, the shorter Pt—I distances are assigned to PtIV—I and the longer ones to PtII⋯I contacts, as follows: I—PtIV—I; Pt—I1 = 2.7202 (6) Å, Pt—I2 = 2.6917 (6) Å; I⋯PtII⋯I; Pt⋯I1 = 3.2249 (6) Å, Pt⋯I2 = 3.2534 (6) Å. Other bond lengths and angles are collated in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Pt—N2 2.055 (2) N2—C2 1.492 (4)
Pt—N1 2.057 (2) C1—C2 1.501 (4)
Pt—I2 2.6917 (6) S—O3 1.432 (2)
Pt—I1 2.7202 (6) S—O1 1.448 (2)
Pt—I1i 3.2249 (6) S—O4 1.491 (2)
Pt—I2ii 3.2534 (6) S—O2 1.499 (2)
N1—C1 1.499 (4)    
       
N2—Pt—N1 83.23 (10) N2—C2—C1 107.3 (2)
N2—Pt—I2 90.27 (6) O3—S—O1 113.41 (15)
N1—Pt—I2 89.96 (6) O3—S—O4 111.27 (15)
N2—Pt—I1 89.73 (6) O1—S—O4 105.28 (14)
N1—Pt—I1 90.04 (6) O3—S—O2 109.72 (14)
C1—N1—Pt 108.82 (17) O1—S—O2 110.33 (16)
C2—N2—Pt 108.60 (18) O4—S—O2 106.55 (15)
N1—C1—C2 107.7 (2)    
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

The structural parameters indicating the mixed-valence state of the Pt site, expressed by δ = (PtIV–I)/(PtII⋯I), are 0.843 and 0.827 for I1 and I2, respectively. These values are smaller than those of [Pt(pn)2][PtI2(pn)2](ClO4)4 (pn is 1,2-di­amino­propane) (0.937; Breer et al., 1978[Breer, H., Endres, H., Keller, H. J. & Martin, R. (1978). Acta Cryst. B34, 2295-2297.]), [Pt(pn)2][PtI2(pn)2]I4 (0.940; Endres et al., 1980[Endres, H., Keller, H. J., Keppler, B., Martin, R., Steiger, W. & Traeger, U. (1980). Acta Cryst. B36, 760-761.]), [Pt(tn)2][PtI2(tn)2](ClO4)4 (tn is 1,3-di­amino­propane) (0.95; Cannas et al., 1984[Cannas, M., Marongiu, G., Keller, H. J., Müller, B. & Martin, R. (1984). Z. Naturforsch. Teil B, 39, 197-200.]), [Pt(en)2][PtI2(en)2](ClO4)4 (0.919; Endres et al., 1979[Endres, H., Keller, H. J., Martin, R., Hae Nam Gung & Traeger, J. (1979). Acta Cryst. B35, 1885-1887.]), but are comparable with those of [Pt(NH3)4][PtI2(NH3)4](HSO4)4·2H2O (0.834; Tanaka et al., 1986[Tanaka, M., Tsujikawa, I., Toriumi, K. & Ito, T. (1986). Acta Cryst. C42, 1105-1109.]), [Pt(en)2][PtI2(en)2](C8H17SO3)4·2H2O (0.839 and 0.858; Matsushita, 2015[Matsushita, N. (2015). Acta Cryst. E71, 1155-1158.]), and somewhat larger than those of [Pt(en)2][PtI2(en)2](HPO4)(H2PO4)I·3H2O (0.812 and 0.818; Matsushita, 2006[Matsushita, N. (2006). Acta Cryst. C62, m33-m36.]).

3. Supra­molecular features

Hydrogen bonds in (I)[link] (Table 2[link]) stabilize the columnar structure composed only of cationic complexes, as shown in Fig. 2[link]. A [PtII/IV(en)2] unit is bound to an adjacent Pt-complex unit in the column by four hydrogen-bond linkages as follows: two linkages N1—H1A⋯O1—S—O3⋯H1B—N1 and two linkages N2—H2A⋯O5—H5⋯O1⋯H2B—N2. In addition, the donor group O5—H5 is hydrogen-bonded to atom O3, and forms a three-centre hydrogen-bond. Such hydrogen-bonded linkages are common structural motifs of MX-chains (Matsushita, 2003[Matsushita, N. (2003). Acta Cryst. E59, m26-m28.], 2005a[Matsushita, N. (2005a). Acta Cryst. E61, m514-m516.],b[Matsushita, N. (2005b). Acta Cryst. E61, m1301-m1303.], 2006[Matsushita, N. (2006). Acta Cryst. C62, m33-m36.], 2015[Matsushita, N. (2015). Acta Cryst. E71, 1155-1158.]; Matsushita et al., 1992[Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936-1939.], 2017[Matsushita, N., Taira, A. & Taoka, Y. (2017). Acta Cryst. E73, 1108-1112.]; Matsushita & Taira, 2015[Matsushita, N. & Taira, A. (2015). Acta Cryst. C71, 1033-1036.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.89 2.01 2.895 (3) 173
N1—H1B⋯O3ii 0.89 2.29 3.057 (3) 145
N2—H2A⋯O5iii 0.89 2.03 2.905 (3) 169
N2—H2B⋯O1iv 0.89 2.39 3.132 (3) 141
O5—H5⋯O1v 0.82 2.28 3.032 (4) 152
O5—H5⋯O3v 0.82 2.36 2.936 (3) 128
O2—H2⋯O2vi 0.82 1.92 2.595 (5) 139
O4—H4⋯O4vii 0.82 1.83 2.560 (5) 148
Symmetry codes: (ii) x, y+1, z; (iii) x-1, y+1, z; (iv) x-1, y, z; (v) [-x+{\script{3\over 2}}, y, -z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+1; (vii) -x+2, -y+1, -z+1.

As a result of the inter­columnar hydrogen-bond linkages, N1—H1A⋯O1⋯H2B—N2 between the Pt-complex columns and hydrogen sulfate ions, and N2—H2A⋯O5⋯H2A—N2 between the Pt-complex columns and the water mol­ecule of crystallization, represented by light-blue dashed lines in Fig. 3[link], the columns are organized in layers parallel to the ab plane.

[Figure 3]
Figure 3
The crystal packing of compound (I)[link], projected on the ac plane. Magenta dashed lines represent hydrogen bonds between the hydrogen sulfate ions. Light-blue dashed lines represent the other hydrogen bonds. Solid orange lines indicate the unit cell.

The layers are connected along the direction of the c axis by two very short hydrogen bonds (Table 2[link]) between hydrogen sulfate ions as follows: O2—H2⋯O2vi and O4—H4⋯O4vii, represented by magenta dashed lines in Fig. 3[link]. Atom pairs O2 and O2vi and O4 and O4vii both are related by inversion centers. Thus, atoms H2 and H4 are equally disordered over two sites between atoms O2 and between atoms O4, respect­ively. One-dimensional hydrogen-bonded chains of hydrogen sulfate anions run along the a-axis direction. Similar hydrogen-bonded chains of hydrogen sulfate anions are observed in [PtII(en)2][PtIVX2(en)2](HSO4)4 (X = Cl, Br) (Matsushita et al., 1992[Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936-1939.]; Matsushita, 2003[Matsushita, N. (2003). Acta Cryst. E59, m26-m28.]). In the hydrogen sulfate ion, the lengths of the S—O(H) bonds [S—O2 = 1.499 (2) Å, S—O4 = 1.491 (2) Å] are longer than those of the S—O bonds [S—O1 = 1.448 (2) Å, S—O3 = 1.432 (2) Å]. This difference in the S—O bond lengths supports the fact that both O2 and O4 are bonded to a hydrogen atom, however in a disordered manner. A similar difference in the lengths of the S—O and S—O(H) bonds is also observed in [PtII(en)2][PtIVX2(en)2](HSO4)4 (X = Cl, Br) (Matsushita et al., 1992[Matsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936-1939.]; Matsushita, 2003[Matsushita, N. (2003). Acta Cryst. E59, m26-m28.]). In these hydrogen sulfates, however, the hydrogen atoms of the hydrogen sulfate anions, which also hydrogen-bond to neighbouring hydrogen sulfate anions, are not disordered. The lengths of the S—O(H) bond and the S—O bond for the acceptor O atom are 1.494 (10) and 1.420 (8) Å, respectively, for the chlorido-bridged complex and 1.45 (2) and 1.35 (3) Å for the bromido-bridged complex. These longer and shorter lengths for the S—O bonds indicate that the hydrogen atoms of the hydrogen sulfate ions are not disordered.

The intra­columnar, inter­columnar and inter­layer hydrogen-bonds, as discussed above, stabilize the crystal packing in (I)[link].

4. Synthesis and crystallization

A preparation procedure for the title salt was previously reported (Matsushita et al., 1989[Matsushita, N., Kojima, N., Ban, T. & Tsujikawa, I. (1989). Bull. Chem. Soc. Jpn, 62, 1785-1790.]). In the literature, the obtained salt was originally reported as a tetra­hydrate. The present X-ray crystallographic study, however, reveals the salt to be a dihydrate. Probably, the amount of water mol­ecules of the salt was overestimated at that time due to the hygroscopic nature of the polycrystalline sample because the salt was obtained from a concentrated sulfuric acid solution. The powder X-ray diffraction pattern simulated on the basis of the present single-crystal data is in good agreement with the experimental data reported previously for the powder sample.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Atoms I1, I2 and H2 and H4 are each disordered over two positions and were modelled with an occupancy factor of 0.5. Hydrogen atoms were placed in geometrically calculated positions and refined as riding, with C—H = 0.97 Å, N—H = 0.89 Å, and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O). Hydrogen atoms bonded to O atoms were calculated by the HFIX 147 command of SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Evaluation of the S—O2 bond length for atom H2, the S—O4 bond length for atom H4, and the O3⋯O5 and O1⋯O5 hydrogen bonds together with other hydrogen-bonding inter­actions showed the expected behaviour, and therefore the localization of these H atoms was considered to be correct. The maximum and minimum electron density peaks are located 0.67 and 0.17 Å, respectively, from atom Pt.

Table 3
Experimental details

Crystal data
Chemical formula [Pt(C2H8N2)2][PtI2(C2H8N2)2](HSO4)4·2H2O
Mr 1308.70
Crystal system, space group Monoclinic, P2/n
Temperature (K) 296
a, b, c (Å) 7.2964 (2), 5.9451 (2), 18.2253 (7)
β (°) 92.318 (1)
V3) 789.93 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 11.15
Crystal size (mm) 0.50 × 0.40 × 0.35
 
Data collection
Diffractometer Rigaku R-AXIS RAPID imaging plate
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.010, 0.020
No. of measured, independent and observed [I > 2σ(I)] reflections 16218, 2733, 2541
Rint 0.048
(sin θ/λ)max−1) 0.746
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.046, 1.21
No. of reflections 2733
No. of parameters 106
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.12, −1.69
Computer programs: RAPID-AUTO (Rigaku, 2015[Rigaku (2015). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2015); cell refinement: RAPID-AUTO (Rigaku, 2015); data reduction: RAPID-AUTO (Rigaku, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b).

catena-Poly[[[bis(ethylenediamine-κ2N,N')platinum(II)]-µ-iodido-[bis(ethylenediamine-κ2N,N')platinum(IV)]-µ-iodido] tetra(hydrogen sulfate) dihydrate] top
Crystal data top
[Pt(C2H8N2)2][PtI2(C2H8N2)2](HSO4)4·2H2OF(000) = 614
Mr = 1308.70Dx = 2.751 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71075 Å
a = 7.2964 (2) ÅCell parameters from 14539 reflections
b = 5.9451 (2) Åθ = 3.1–32.1°
c = 18.2253 (7) ŵ = 11.15 mm1
β = 92.318 (1)°T = 296 K
V = 789.93 (5) Å3Block, gold
Z = 10.50 × 0.40 × 0.35 mm
Data collection top
Rigaku R-AXIS RAPID imaging plate
diffractometer
2733 independent reflections
Radiation source: X-ray sealed tube2541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.00 pixels mm-1θmax = 32.0°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
k = 88
Tmin = 0.010, Tmax = 0.020l = 2727
16218 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + 0.4688P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max < 0.001
2733 reflectionsΔρmax = 2.12 e Å3
106 parametersΔρmin = 1.68 e Å3
0 restraintsExtinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0149 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt0.25000.98097 (2)0.25000.01577 (6)
I10.25001.43852 (10)0.25000.02522 (15)0.5
I20.25000.52821 (9)0.25000.02578 (15)0.5
N10.4066 (3)0.9807 (3)0.34641 (14)0.0247 (5)
H1A0.49460.87750.34430.030*
H1B0.45931.11450.35330.030*
N20.0356 (3)0.9826 (3)0.31975 (14)0.0254 (5)
H2A0.05011.07910.30360.030*
H2B0.01440.84630.32150.030*
C10.2853 (4)0.9293 (5)0.40872 (16)0.0317 (6)
H1C0.34280.97950.45480.038*
H1D0.26430.76850.41180.038*
C20.1070 (4)1.0503 (5)0.39440 (17)0.0313 (6)
H2C0.02011.00940.43100.038*
H2D0.12601.21170.39650.038*
S0.73971 (11)0.53489 (12)0.41680 (4)0.02863 (16)
O10.7066 (3)0.6617 (4)0.34976 (13)0.0463 (6)
O20.6291 (3)0.6293 (4)0.47713 (14)0.0474 (6)
H20.52420.57980.47340.071*0.5
O30.7028 (4)0.2994 (4)0.40865 (14)0.0431 (6)
O40.9361 (3)0.5761 (4)0.43844 (13)0.0422 (5)
H40.95040.56610.48320.063*0.5
O50.75000.2587 (5)0.25000.0321 (7)
H50.79540.34260.22000.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.01352 (8)0.01268 (8)0.02104 (8)0.0000.00028 (5)0.000
I10.0248 (3)0.0168 (3)0.0340 (3)0.0000.0010 (2)0.000
I20.0292 (3)0.0151 (3)0.0328 (3)0.0000.0006 (2)0.000
N10.0218 (12)0.0239 (11)0.0277 (12)0.0006 (8)0.0072 (10)0.0011 (8)
N20.0208 (12)0.0247 (11)0.0309 (13)0.0010 (8)0.0061 (10)0.0030 (9)
C10.0394 (18)0.0325 (15)0.0231 (14)0.0034 (13)0.0013 (13)0.0019 (11)
C20.0362 (18)0.0317 (14)0.0264 (15)0.0053 (12)0.0074 (13)0.0005 (11)
S0.0268 (4)0.0302 (4)0.0288 (4)0.0001 (3)0.0014 (3)0.0002 (3)
O10.0403 (14)0.0602 (15)0.0382 (14)0.0105 (12)0.0009 (11)0.0158 (12)
O20.0473 (15)0.0433 (14)0.0533 (16)0.0060 (11)0.0242 (12)0.0156 (11)
O30.0501 (15)0.0326 (12)0.0471 (16)0.0032 (10)0.0096 (12)0.0097 (10)
O40.0283 (12)0.0560 (14)0.0419 (14)0.0073 (10)0.0041 (10)0.0105 (12)
O50.0262 (17)0.0400 (18)0.0300 (19)0.0000.0011 (14)0.000
Geometric parameters (Å, º) top
Pt—N22.055 (2)N2—H2A0.8900
Pt—N2i2.055 (2)N2—H2B0.8900
Pt—N1i2.057 (2)C1—C21.501 (4)
Pt—N12.057 (2)C1—H1C0.9700
Pt—I22.6917 (6)C1—H1D0.9700
Pt—I12.7202 (6)C2—H2C0.9700
Pt—I1ii3.2249 (6)C2—H2D0.9700
Pt—I2iii3.2534 (6)S—O31.432 (2)
I1—I2iii0.5332 (6)S—O11.448 (2)
I1—Ptiii3.2249 (6)S—O41.491 (2)
I2—I1ii0.5332 (6)S—O21.499 (2)
I2—Ptii3.2534 (6)O2—H20.8200
N1—C11.499 (4)O4—H40.8200
N1—H1A0.8900O5—N2iv2.905 (3)
N1—H1B0.8900O5—H50.8200
N2—C21.492 (4)
N2—Pt—N2i179.45 (11)C1—N1—Pt108.82 (17)
N2—Pt—N1i96.77 (10)C1—N1—H1A109.9
N2i—Pt—N1i83.23 (10)Pt—N1—H1A109.9
N2—Pt—N183.23 (10)C1—N1—H1B109.9
N2i—Pt—N196.77 (10)Pt—N1—H1B109.9
N1i—Pt—N1179.92 (11)H1A—N1—H1B108.3
N2—Pt—I290.27 (6)C2—N2—Pt108.60 (18)
N2i—Pt—I290.27 (6)C2—N2—H2A110.0
N1i—Pt—I289.96 (6)Pt—N2—H2A110.0
N1—Pt—I289.96 (6)C2—N2—H2B110.0
N2—Pt—I189.73 (6)Pt—N2—H2B110.0
N2i—Pt—I189.73 (6)H2A—N2—H2B108.4
N1i—Pt—I190.04 (6)N1—C1—C2107.7 (2)
N1—Pt—I190.04 (6)N1—C1—H1C110.2
I2—Pt—I1180.0C2—C1—H1C110.2
N2—Pt—I1ii90.27 (6)N1—C1—H1D110.2
N2i—Pt—I1ii90.27 (6)C2—C1—H1D110.2
N1i—Pt—I1ii89.96 (6)H1C—C1—H1D108.5
N1—Pt—I1ii89.96 (6)N2—C2—C1107.3 (2)
I2—Pt—I1ii0.0N2—C2—H2C110.3
I1—Pt—I1ii180.0C1—C2—H2C110.3
N2—Pt—I2iii89.73 (6)N2—C2—H2D110.3
N2i—Pt—I2iii89.73 (6)C1—C2—H2D110.3
N1i—Pt—I2iii90.04 (6)H2C—C2—H2D108.5
N1—Pt—I2iii90.04 (6)O3—S—O1113.41 (15)
I2—Pt—I2iii180.0O3—S—O4111.27 (15)
I1—Pt—I2iii0.0O1—S—O4105.28 (14)
I1ii—Pt—I2iii180.0O3—S—O2109.72 (14)
I2iii—I1—Pt180.0O1—S—O2110.33 (16)
I2iii—I1—Ptiii0.000 (1)O4—S—O2106.55 (15)
Pt—I1—Ptiii180.0S—O2—H2109.5
I1ii—I2—Pt180.0S—O4—H4109.5
I1ii—I2—Ptii0.0N2iv—O5—H5109.5
Pt—I2—Ptii180.0
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.892.012.895 (3)173
N1—H1B···O3iii0.892.293.057 (3)145
N2—H2A···O5v0.892.032.905 (3)169
N2—H2B···O1vi0.892.393.132 (3)141
O5—H5···O1vii0.822.283.032 (4)152
O5—H5···O3vii0.822.362.936 (3)128
O2—H2···O2viii0.821.922.595 (5)139
O4—H4···O4ix0.821.832.560 (5)148
Symmetry codes: (iii) x, y+1, z; (v) x1, y+1, z; (vi) x1, y, z; (vii) x+3/2, y, z+1/2; (viii) x+1, y+1, z+1; (ix) x+2, y+1, z+1.
 

Funding information

Funding for this research was provided by: JSPS KAKENHI (Coordination Asymmetry) (Grant No. JP16H06509).

References

First citationBeauchamp, A. L., Layek, D. & Theophanides, T. (1982). Acta Cryst. B38, 1158–1164.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreer, H., Endres, H., Keller, H. J. & Martin, R. (1978). Acta Cryst. B34, 2295–2297.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCannas, M., Bonaria Lucchesini, M. & Marongiu, G. (1983). Acta Cryst. C39, 1514–1517.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCannas, M., Marongiu, G., Keller, H. J., Müller, B. & Martin, R. (1984). Z. Naturforsch. Teil B, 39, 197–200.  CrossRef Google Scholar
First citationEndres, H., Keller, H. J., Keppler, B., Martin, R., Steiger, W. & Traeger, U. (1980). Acta Cryst. B36, 760–761.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEndres, H., Keller, H. J., Martin, R., Hae Nam Gung & Traeger, J. (1979). Acta Cryst. B35, 1885–1887.  Google Scholar
First citationHuckett, S. C., Scott, B., Love, S. P., Donohoe, R. J., Burns, C. J., Garcia, E., Frankcom, T. & Swanson, B. I. (1993). Inorg. Chem. 32, 2137–2144.  CrossRef CAS Web of Science Google Scholar
First citationKeller, H. J. (1982). Extended Linear Chain Compounds, edited by J. S. Miller, pp. 357-407. New York: Plenum.  Google Scholar
First citationMatsushita, N. (2003). Acta Cryst. E59, m26–m28.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMatsushita, N. (2005a). Acta Cryst. E61, m514–m516.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMatsushita, N. (2005b). Acta Cryst. E61, m1301–m1303.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMatsushita, N. (2006). Acta Cryst. C62, m33–m36.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsushita, N. (2015). Acta Cryst. E71, 1155–1158.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMatsushita, N., Kojima, N., Ban, T. & Tsujikawa, I. (1989). Bull. Chem. Soc. Jpn, 62, 1785–1790.  CrossRef CAS Web of Science Google Scholar
First citationMatsushita, N., Taga, T. & Tsujikawa, I. (1992). Acta Cryst. C48, 1936–1939.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatsushita, N. & Taira, A. (2015). Acta Cryst. C71, 1033–1036.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMatsushita, N., Taira, A. & Taoka, Y. (2017). Acta Cryst. E73, 1108–1112.  CrossRef IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRobin, M. B. & Day, P. (1967). Advances Inorganic Chemistry and Radiochemistry, edited by H. J. Emeléus & A. G. Sharpe, Vol. 10, pp. 247-422. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanaka, M., Tsujikawa, I., Toriumi, K. & Ito, T. (1986). Acta Cryst. C42, 1105–1109.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToriumi, K., Yamashita, M., Kurita, S., Murase, I. & Ito, T. (1993). Acta Cryst. B49, 497–506.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYamashita, M., Toriumi, K. & Ito, T. (1985). Acta Cryst. C41, 876–878.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds