research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-Methylenedi­phosphonato-κ4O,O′:O′′,O′′′)bis­[(ethyl­ene­di­amine-κ2N,N′)palladium(II)] tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauki Ave 60, Kharkiv 61001, Ukraine, bV.I. Vernadsky Institute of General and Inorganic Chemistry of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, and cNational University of Life and Environmental Science of Ukraine, Kyiv, Ukraine
*Correspondence e-mail: vika@xray.isc.kharkov.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 5 November 2018; accepted 19 November 2018; online 22 November 2018)

The title compound, [Pd2(C2H8N2)2(CH2O6P2)]·4H2O, comprises of a binuclear mol­ecule (point group symmetry 2), with a twofold rotation axis running through the central C atom of the methyl­enedi­phospho­nate (MDP) anion. The PdII atom has a square-planar coordination environment defined by the N atoms of a bidentate ethyl­enedi­amine (en) ligand and two O atoms of the bridging MDP anion. In the crystal structure, metal complexes are arranged in layers parallel (001) and are sandwiched between layers containing disordered water mol­ecules of crystallization. Extensive intra­layer hydrogen bonds of the type N—H⋯O in the metal complex layer and O—H⋯O in the water layer, as well as O—H⋯O hydrogen bonds between the two types of layers, lead to the formation a three-dimensional network structure. The two lattice water mol­ecules are each equally disordered over two positions.

1. Chemical context

Platinum drugs are some of the most important and clinically applied anti-cancer agents. Di­phospho­nic acids are therapeutic agents for treating osteoporosis and metastatic bone diseases. Therefore new complexes designed with a combin­ation of platinum group metals with di­phospho­nic acid (or derivatives thereof) as bone-targeting groups can improve the chemotherapeutic efficacy in the treatment of bone cancer and can reduce adverse effects. Methyl­enedi­phospho­nic acid (medronic acid, MDP, H4L) is the smallest bis­phospho­nate, which accumulates on the sites of osteoid mineralization and can be used in combination with platinum metals to treat cancer and metastatic bone diseases. Platinum–bis­phospho­nate complexes, including bis­{ethyl­enedi­amine)­platinum(II)}medronate, as novel Pt-prodrugs in the local treatment of bone tumors have been reported (Wani et al., 2016[Wani, W. A., Prashar, S., Shreaz, S. & Gómez-Ruiz, S. (2016). Coord. Chem. Rev. 312, 67-98.]; Iafisco et al., 2009[Iafisco, M., Palazzo, B., Marchetti, M., Margiotta, N., Ostuni, R., Natile, G., Morpurgo, M., Gandin, V., Marzano, C. & Roveri, N. (2009). J. Mater. Chem. 19, 8385-8392.]; Palazzo et al., 2007[Palazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C. L., Walsh, D., Mann, S. & Roveri, N. (2007). Adv. Funct. Mater. 17, 2180-2188.]; Iafisco & Margiotta, 2012[Iafisco, M. & Margiotta, N. (2012). J. Inorg. Biochem. 117, 237-247.]; Margiotta et al., 2009[Margiotta, N., Ostuni, R., Gandin, V., Marzano, C., Piccinonna, S. & Natile, G. (2009). Dalton Trans. 48, 10904-10913.]). The preparation and structure determination of [Pt2(cis-di­amino­hexa­ne)2(methyl­enedi­phospho­n­ate)] was reported by Bau et al. (1988[Bau, R., Huang, S. K. S., Feng, J. & McKenna, C. E. (1988). J. Am. Chem. Soc. 110, 7546-7547.]).

[Scheme 1]

In this work, we synthesized a new platinum metal complex, viz. [Pd2(C2H8N2)2(CH2O6P2)]·4H2O or [Pd2(en)2(MDP)]·4H2O, and report here its mol­ecular and crystal structures.

2. Structural commentary

The binuclear [Pd2(en)2(MDP)] complex mol­ecule is uncharged and exhibits point group symmetry 2, with the twofold rotation axis passing through the central C atom of the MDP ligand (Fig. 1[link]). The PdII atom has a square-planar environment defined by two nitro­gen atoms (N1 and N2) of the chelating en ligand and two oxygen atoms (O2 and O3) of the bis-bidentately coordinating MDP ligand that bridges two symmetry-related PdII atoms into the binuclear complex. The deviation of the Pd1 site from the least-squares plane involving the ligand atoms N1, N2, O2 and O3 is 0.06 Å. The Pd—N and Pd—O bond lengths are in typical ranges whereby the Pd—N bonds are about 0.02 Å shorter than the Pd—O bonds (Table 1[link]). The O—Pd—O, N—Pd—N and O—Pd—N bond angles vary within 84.5 (2)°–93.3 (2)° (Table 1[link]) and indicate a slight distortion from a square-planar coordination. In general, the structural features of the [Pd2(en)2(MDP)] complex are similar to those of the related complex [Pd2(en)2EDP] where EDP is 1-hy­droxy­ethane 1,1-di­phospho­nate or etidronate (Kozachkova et al., 2018[Kozachkova, O. M., Tsaryk, N. V., Pekhnyo, V. I., Trachevskyi, V. V., Rozhenko, A. B. & Dyakonenko, V. V. (2018). Inorg. Chim. Acta, 474, 96-103.]).

Table 1
Selected geometric parameters (Å, °)

Pd1—O1 2.033 (5) Pd1—N2 2.009 (6)
Pd1—O2i 2.046 (5) Pd1—N1 2.021 (5)
       
O1—Pd1—O2i 93.32 (19) N2—Pd1—N1 84.5 (2)
N2—Pd1—O2i 91.2 (2) N1—Pd1—O1 90.8 (2)
Symmetry code: (i) [-x+{\script{3\over 4}}, -y+{\script{3\over 4}}, z].
[Figure 1]
Figure 1
Mol­ecular structure of the title complex and surrounding water mol­ecules with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + [{3\over 4}], −y + [{3\over 4}], z.]

The Pd1—O1—P1—C3—P1i—O1i [symmetry code: (i) [{3\over 4}] − x, [{3\over 4}] − y, z] six-membered metallacycle adopts a chair conformation; the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) are S = 1.19, ψ = 16.52°, θ = 3.02°. The Pd1 and C3 atoms deviate by −0.95 and 0.82 Å, respectively, from the least-squares plane of the remaining atoms of this metallacycle with an s.u. of 0.01 Å. The Pd1—N1—C2—C1—N2 five-membered metallacycle involving the en ligand adopts an envelope conformation. The N1 atom deviates by 0.27 Å from the mean plane of the remaining atoms (the s.u. of this plane is 0.005 Å).

3. Supra­molecular features

In the crystal, [Pd2(en)2(MDP)] mol­ecules are linked via (en)N1—H1A⋯O1ii(MDP) hydrogen bonds (Fig. 2[link], Table 2[link]), forming chains parallel to [010]. Neighboring chains are connected to each other through (en)N2—H2A⋯O3iii(MDP) and (en)N1—H1B⋯O3iv(MDP) hydrogen bonds, forming layers parallel to (001). The disordered water mol­ecules O4 and O5 are located between these layers and are connected to each other by O—H⋯O hydrogen bonds (Table 2[link]), forming a sandwich-type structure. The structural disorder of the water mol­ecules is probably caused by different possibilities of possible positions favourable for hydrogen bonding with neighbouring mol­ecules. Alternating layers containing [Pd2(en)2(MDP)] complexes and water mol­ecules are stacked along [001] and are linked to each other by a series of O—H⋯O hydrogen bonds (O5A—H5AB⋯O3 and O4B—H4BB⋯O3; Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3ii 0.89 2.07 2.932 (8) 163
N1—H1A⋯O1iii 0.89 2.21 3.006 (8) 149
N1—H1B⋯O3iv 0.89 2.06 2.906 (8) 159
O4A—H4AA⋯O5A 0.86 2.05 2.79 (3) 145
O5B—H5BA⋯O5Bv 0.85 1.56 2.17 (4) 127
O5B—H5BA⋯O4Bv 0.85 2.29 2.97 (3) 136
O5B—H5BB⋯O5Bvi 0.85 1.97 2.73 (4) 148
O5B—H5BB⋯O4Bvii 0.85 2.24 2.78 (2) 121
O5A—H5AA⋯O4Avii 0.85 1.98 2.786 (19) 158
O5A—H5AB⋯O3 0.85 1.83 2.675 (16) 176
O4B—H4BB⋯O3 0.85 1.93 2.761 (18) 165
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 4}}, -z+{\script{5\over 4}}]; (iii) [x, -y+{\script{1\over 4}}, -z+{\script{5\over 4}}]; (iv) [-x+{\script{1\over 4}}, y, -z+{\script{5\over 4}}]; (v) [-x+{\script{1\over 2}}, -y+1, -z+{\script{3\over 2}}]; (vi) [-x+{\script{1\over 4}}, -y+{\script{5\over 4}}, z]; (vii) [x-{\script{1\over 4}}, y+{\script{1\over 4}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound in a view along [010] with hydrogen bonds shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.39, update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes containing the Pd(en) moiety yielded 226 hits with a mean Pd—N bond lengths of 2.028 Å. A search for Pd complexes with MPD as a ligand revealed only one entry (Kutsenko et al., 2014[Kutsenko, I. P., Kozachkova, A. N., Tsaryk, N. V., Pekhnyo, V. I. & Rusanova, J. A. (2014). Acta Cryst. E70, m291-m292.]) with Pd—O bond lengths of 1.999 and 2.004 Å.

5. Synthesis and crystallization

[Pd2(C2H8N2)2(CH2O6P2)]·4H2O was prepared as previously reported in the literature (Kozachkova et al., 2018[Kozachkova, O. M., Tsaryk, N. V., Pekhnyo, V. I., Trachevskyi, V. V., Rozhenko, A. B. & Dyakonenko, V. V. (2018). Inorg. Chim. Acta, 474, 96-103.]). A solution of AgNO3 (0.4 mmol, 0.0679 g) in water (3 ml) was added to a suspension of [Pd(en)Cl2] (0.2 mmol, 0.0474 g) in water (6 ml) under constant stirring and heating at 333 K for 30 min. The resulting suspension was refrigerated to facilitate the precipitation of AgCl. The solid material was removed by suction filtration. MDP (0.1 mmol, 0.0176 g) was added to the filtrate, and the pH was adjusted to 6 by addition of KOH (0.1 mol l−1). The obtained slightly yellow solution was heated at 333 K for 20 min and then left to evaporate at room temperature. Yellow rectangular crystals of the title compound suitable for crystallographic studies were grown by slow evaporation of an aqueous solution at room temperature.

Compound [Pd2(en)2(MDP)]·4H2O: yield 86%. Analysis found: C, 11.5; H, 3.6; N, 10.9; P, 11.8; Pd, 40.8. Calculated for C5H26N4O6P2Pd2: C, 11.9; H, 3.9; N, 11.1; P, 12.3; Pd, 41.9%. The 31P-{H} NMR spectrum of an aqueous solutions of the synthesized compound exhibited a singlet with δP 35.0 ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms of the metal complex were located from difference-Fourier syntheses. The H atom of the central CH2 bridge of the MDP ligand was refined freely, and the methyl­ene and NH2 hydrogen atoms of the en ligand were treated in the riding-model approximation with C—H = 0.97 Å (N—H = 0.89 Å) and Uiso(H) = 1.2Ueq(C,N). The two lattice water mol­ecules (O4 and O5) are each disordered over two positions and were refined with occupancies 0.5:0.5 each. Their hydrogen atoms were calculated, taking into account the direction of expected hydrogen bonds. The positions of these hydrogen atoms were fixed at the last steps of refinement with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Pd2(C2H8N2)2(CH2O6P2)]·4H2O
Mr 577.04
Crystal system, space group Orthorhombic, Fddd
Temperature (K) 294
a, b, c (Å) 11.8871 (6), 12.5405 (6), 48.052 (2)
V3) 7163.2 (6)
Z 16
Radiation type Mo Kα
μ (mm−1) 2.24
Crystal size (mm) 0.6 × 0.4 × 0.2
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.418, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14597, 2065, 1746
Rint 0.075
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.175, 1.14
No. of reflections 2065
No. of parameters 126
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.69, −2.06
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(µ-Methylenediphosphonato-κ4O,O':O'',O''')bis[(ethylenediamine-κ2N,N')palladium(II)] tetrahydrate top
Crystal data top
[Pd2(C2H8N2)2(CH2O6P2)]·4H2ODx = 2.140 Mg m3
Mr = 577.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, FdddCell parameters from 2899 reflections
a = 11.8871 (6) Åθ = 3.2–30.1°
b = 12.5405 (6) ŵ = 2.24 mm1
c = 48.052 (2) ÅT = 294 K
V = 7163.2 (6) Å3Block, colourless
Z = 160.6 × 0.4 × 0.2 mm
F(000) = 4576
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
2065 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1746 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 16.1827 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 158
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1616
Tmin = 0.418, Tmax = 1.000l = 5862
14597 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0908P)2 + 141.6934P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.002
2065 reflectionsΔρmax = 1.69 e Å3
126 parametersΔρmin = 2.06 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.37981 (4)0.24678 (4)0.61611 (2)0.0284 (2)
P10.24784 (12)0.37098 (12)0.66205 (3)0.0273 (4)
O10.2537 (4)0.2699 (4)0.64405 (11)0.0346 (10)
O20.2468 (4)0.4739 (4)0.64479 (10)0.0322 (10)
O30.1464 (4)0.3667 (4)0.68076 (9)0.0362 (10)
N20.4951 (5)0.2116 (5)0.58694 (13)0.0387 (13)
H2A0.5429350.2657560.5852500.046*
H2B0.5339490.1544050.5922300.046*
N10.2672 (5)0.2073 (5)0.58635 (12)0.0355 (12)
H1A0.2359150.1447350.5903880.043*
H1B0.2129090.2561800.5856600.043*
C30.3750000.3750000.68243 (19)0.0299 (17)
H30.373 (6)0.437 (6)0.6938 (17)0.036*
C10.3239 (8)0.2011 (11)0.55937 (18)0.073 (3)
H1C0.2931760.1407530.5492660.087*
H1D0.3054870.2648160.5488830.087*
C20.4418 (8)0.1906 (13)0.5599 (2)0.089 (4)
H2C0.4736100.2390970.5463190.107*
H2D0.4610700.1186720.5542080.107*
O4A0.1779 (11)0.1374 (12)0.7512 (3)0.072 (4)0.5
H4AA0.1629330.2035160.7541980.108*0.5
H4AB0.1159530.1050160.7475490.108*0.5
O5B0.1617 (16)0.5219 (16)0.7487 (5)0.108 (7)0.5
H5BA0.2266070.5420970.7539220.163*0.5
H5BB0.1189270.5742970.7523620.163*0.5
O5A0.1535 (13)0.3512 (16)0.7363 (3)0.064 (4)0.5
H5AA0.0844220.3441400.7403620.096*0.5
H5AB0.1540920.3580200.7186320.096*0.5
O4B0.1903 (15)0.2992 (16)0.7344 (4)0.069 (5)0.5
H4BA0.2286980.2422060.7330090.104*0.5
H4BB0.1649280.3162060.7184390.104*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0273 (3)0.0295 (4)0.0285 (4)0.00014 (16)0.00047 (18)0.00197 (17)
P10.0229 (7)0.0320 (8)0.0270 (8)0.0004 (5)0.0012 (6)0.0012 (6)
O10.028 (2)0.041 (3)0.035 (3)0.0021 (18)0.0028 (19)0.005 (2)
O20.028 (2)0.035 (2)0.034 (2)0.0019 (17)0.0010 (18)0.0029 (19)
O30.026 (2)0.051 (3)0.031 (2)0.0004 (18)0.0045 (18)0.001 (2)
N20.032 (3)0.047 (3)0.036 (3)0.000 (2)0.002 (2)0.000 (3)
N10.031 (3)0.040 (3)0.035 (3)0.003 (2)0.006 (2)0.005 (2)
C30.028 (4)0.036 (5)0.025 (4)0.001 (3)0.0000.000
C10.061 (6)0.126 (10)0.031 (4)0.010 (6)0.010 (4)0.013 (5)
C20.047 (5)0.176 (13)0.045 (5)0.020 (7)0.009 (4)0.028 (7)
O4A0.058 (7)0.081 (10)0.077 (10)0.006 (7)0.006 (7)0.007 (8)
O5B0.074 (11)0.117 (15)0.134 (17)0.013 (10)0.010 (11)0.061 (13)
O5A0.046 (8)0.114 (16)0.032 (6)0.000 (8)0.002 (5)0.002 (8)
O4B0.064 (11)0.097 (14)0.047 (8)0.001 (9)0.009 (7)0.002 (9)
Geometric parameters (Å, º) top
Pd1—Pd1i3.2180 (9)C3—H30.95 (8)
Pd1—Pd1ii3.1715 (9)C3—H3i0.95 (8)
Pd1—O12.033 (5)C1—H1C0.9700
Pd1—O2i2.046 (5)C1—H1D0.9700
Pd1—N22.009 (6)C1—C21.408 (14)
Pd1—N12.021 (5)C2—H2C0.9700
P1—O11.536 (5)C2—H2D0.9700
P1—O21.534 (5)O4A—H4AA0.8600
P1—O31.506 (4)O4A—H4AB0.8590
P1—C31.802 (5)O4A—H4ABiii0.56 (2)
N2—H2A0.8900O5B—H5BA0.8503
N2—H2B0.8900O5B—H5BB0.8504
N2—C21.468 (11)O5A—H5AA0.8495
N1—H1A0.8900O5A—H5AB0.8515
N1—H1B0.8900O4B—H4BA0.8502
N1—C11.464 (11)O4B—H4BB0.8500
Pd1ii—Pd1—Pd1i164.246 (17)Pd1—N1—H1B109.8
O1—Pd1—Pd1i80.27 (14)H1A—N1—H1B108.2
O1—Pd1—Pd1ii87.69 (14)C1—N1—Pd1109.6 (5)
O1—Pd1—O2i93.32 (19)C1—N1—H1A109.8
O2i—Pd1—Pd1i81.11 (13)C1—N1—H1B109.8
O2i—Pd1—Pd1ii89.54 (13)P1—C3—P1i114.2 (5)
N2—Pd1—Pd1i104.11 (19)P1—C3—H3108 (4)
N2—Pd1—Pd1ii88.64 (19)P1—C3—H3i108 (4)
N2—Pd1—O1174.2 (2)P1i—C3—H3i108 (4)
N2—Pd1—O2i91.2 (2)P1i—C3—H3108 (4)
N2—Pd1—N184.5 (2)H3—C3—H3i110 (10)
N1—Pd1—Pd1ii87.42 (18)N1—C1—H1C108.2
N1—Pd1—Pd1i102.77 (18)N1—C1—H1D108.2
N1—Pd1—O190.8 (2)H1C—C1—H1D107.3
N1—Pd1—O2i174.8 (2)C2—C1—N1116.5 (8)
O1—P1—C3106.9 (2)C2—C1—H1C108.2
O2—P1—O1113.0 (3)C2—C1—H1D108.2
O2—P1—C3106.1 (2)N2—C2—H2C108.4
O3—P1—O1110.1 (3)N2—C2—H2D108.4
O3—P1—O2110.3 (3)C1—C2—N2115.4 (8)
O3—P1—C3110.4 (3)C1—C2—H2C108.4
P1—O1—Pd1121.6 (3)C1—C2—H2D108.4
P1—O2—Pd1i120.7 (3)H2C—C2—H2D107.5
Pd1—N2—H2A109.4H4AA—O4A—H4AB108.2
Pd1—N2—H2B109.4H4AA—O4A—H4ABiii72.3
H2A—N2—H2B108.0H4AB—O4A—H4ABiii38.4
C2—N2—Pd1111.2 (5)H5BA—O5B—H5BB104.5
C2—N2—H2A109.4H5AA—O5A—H5AB104.4
C2—N2—H2B109.4H4BA—O4B—H4BB109.4
Pd1—N1—H1A109.8
Pd1—N2—C2—C11.3 (14)O3—P1—O1—Pd1179.9 (3)
Pd1—N1—C1—C218.4 (13)O3—P1—O2—Pd1i177.9 (3)
O1—P1—O2—Pd1i54.3 (4)O3—P1—C3—P1i179.4 (2)
O1—P1—C3—P1i59.7 (2)N1—C1—C2—N213.4 (17)
O2—P1—O1—Pd156.3 (4)C3—P1—O1—Pd160.0 (4)
O2—P1—C3—P1i61.1 (2)C3—P1—O2—Pd1i62.5 (4)
Symmetry codes: (i) x+3/4, y+3/4, z; (ii) x, y+1/4, z+5/4; (iii) x+1/4, y+1/4, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3iv0.892.072.932 (8)163
N1—H1A···O1ii0.892.213.006 (8)149
N1—H1B···O3v0.892.062.906 (8)159
O4A—H4AA···O5A0.862.052.79 (3)145
O5B—H5BA···O5Bvi0.851.562.17 (4)127
O5B—H5BA···O4Bvi0.852.292.97 (3)136
O5B—H5BB···O5Bvii0.851.972.73 (4)148
O5B—H5BB···O4Bviii0.852.242.78 (2)121
O5A—H5AA···O4Aviii0.851.982.786 (19)158
O5A—H5AB···O30.851.832.675 (16)176
O4B—H4BB···O30.851.932.761 (18)165
Symmetry codes: (ii) x, y+1/4, z+5/4; (iv) x+1/2, y+3/4, z+5/4; (v) x+1/4, y, z+5/4; (vi) x+1/2, y+1, z+3/2; (vii) x+1/4, y+5/4, z; (viii) x1/4, y+1/4, z+3/2.
 

References

First citationBau, R., Huang, S. K. S., Feng, J. & McKenna, C. E. (1988). J. Am. Chem. Soc. 110, 7546–7547.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIafisco, M. & Margiotta, N. (2012). J. Inorg. Biochem. 117, 237–247.  CrossRef Google Scholar
First citationIafisco, M., Palazzo, B., Marchetti, M., Margiotta, N., Ostuni, R., Natile, G., Morpurgo, M., Gandin, V., Marzano, C. & Roveri, N. (2009). J. Mater. Chem. 19, 8385–8392.  CrossRef Google Scholar
First citationKozachkova, O. M., Tsaryk, N. V., Pekhnyo, V. I., Trachevskyi, V. V., Rozhenko, A. B. & Dyakonenko, V. V. (2018). Inorg. Chim. Acta, 474, 96–103.  CrossRef Google Scholar
First citationKutsenko, I. P., Kozachkova, A. N., Tsaryk, N. V., Pekhnyo, V. I. & Rusanova, J. A. (2014). Acta Cryst. E70, m291–m292.  CrossRef IUCr Journals Google Scholar
First citationMargiotta, N., Ostuni, R., Gandin, V., Marzano, C., Piccinonna, S. & Natile, G. (2009). Dalton Trans. 48, 10904–10913.  CrossRef Google Scholar
First citationPalazzo, B., Iafisco, M., Laforgia, M., Margiotta, N., Natile, G., Bianchi, C. L., Walsh, D., Mann, S. & Roveri, N. (2007). Adv. Funct. Mater. 17, 2180–2188.  CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWani, W. A., Prashar, S., Shreaz, S. & Gómez-Ruiz, S. (2016). Coord. Chem. Rev. 312, 67–98.  CrossRef Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds