research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(4-benzoyl­pyridine-κN)bis­­(iso­thio­cyanato-κN)manganese(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Kiel, Max-Eyth. Str. 2, 241128 Kiel
*Correspondence e-mail: cwellm@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 November 2018; accepted 19 November 2018; online 30 November 2018)

The asymmetric unit of the title compound, [Mn(NCS)2(C12H9NO)4], consists of one MnII cation located on a centre of inversion, one thio­cyanate anion and two 4-benzoyl­pyridine co-ligands. The MnII cation is octa­hedrally coordinated by two terminally N-bonded anionic ligands and four N-bonded 4-benzoyl­pyridine co-ligands within a slightly distorted octa­hedron. Individual complexes are linked by inter­molecular C—H⋯O hydrogen-bonding inter­actions into chains running along the c-axis direction. Simultaneous thermogravimetry and differential scanning calorimetry measurements reveal a decomposition in two separate steps, in each of which two co-ligands are removed. The compound obtained after the first step has the composition [Mn(NCS)2(C12H9NO)2] and is of unknown structure, before in the second step decomposition into [Mn(NCS)2] is observed. Magnetic susceptibility measurements show the MnII cations to be in the high-spin state, and that weak anti­ferromagnetic inter­actions between the complexes are present.

1. Chemical context

Thio­cyanate anions are versatile ligands that, in combination with neutral organic co-ligands, can form coordination compounds and polymers of different dimensionality. The most common coordination modes include N-terminal and μ-1,3-bridging (Buckingham, 1994[Buckingham, D. A. (1994). Coord. Chem. Rev. 135-136, 587-621.]; Palion-Gazda et al., 2017[Palion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109-120.]; Mautner et al., 2017[Mautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. & Massoud, S. (2017). Polyhedron, 124, 237-242.]). The bridging mode is of special inter­est because magnetic exchange can be mediated by the anionic ligands (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Mekuimemba et al., 2018[Mekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184-2192.]; González et al., 2012[González, R., Acosta, A., Chiozzone, R., Kremer, C., Armentano, D., De Munno, G., Julve, M., Lloret, F. & Faus, J. C. (2012). Inorg. Chem. 51, 5737-5747.]; Guillet et al., 2016[Guillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099-8109.]). In this context, we have reported the syntheses, structures and magnetic properties of a number of compounds, in which transition metal cations such as MnII, FeII, CoII and NiII are octa­hedrally coordinated by two neutral N-donor co-ligands and four thio­cyanate anions and are linked into linear or corrugated chains by pairs of anionic ligands (Suckert et al., 2017a[Suckert, S., Rams, M., Rams, M. R. & Näther, C. (2017a). Inorg. Chem. 56, 8007-8017.]; Werner et al., 2015[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893-2901.]; Wöhlert et al., 2013[Wöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061-1068.], 2014a[Wöhlert, S., Runčevski, T., Dinnebier, R., Ebbinghaus, S. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902-1913.],b[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298-8310.]). In the course of our project, we have also used 4-benzoyl­pyridine as co-ligand, leading to the formation of two isotypic chain compounds with general composition [M(NCS)2(4-benzoyl­pyridine)2] (M = Co, Ni). In both compounds, dominating ferromagnetic inter­actions are observed but the CoII compound additionally shows a slow relaxation of the magnetization, indicating single-chain magnetism (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Jochim et al., 2018[Jochim, A., Rams, M., Wellm, C., Reinsch, H. M., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. https://doi.org/10.1002ejic.201800939.]). In contrast to most other compounds, in which all ligands are in the trans-position, in the 4-benzoyl­pyridine coordination polymers with CoII and NiII, the central metal cation shows a ciscistrans coordination. However, the corresponding Cd compound [Cd(NCS)2(4-benzoyl­pyridine)2] shows an all-trans coordination of the CdII cation (Neumann et al., 2018a[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018a). Inorg. Chim. Acta, 478, 15-24.]).

[Scheme 1]

In this context, the question arose about which kind of metal coordination is observed for the corresponding MnII compound, which is less chalcophilic compared to CoII and NiII. Therefore, [Mn(NCS)2] was reacted with 4-benzoyl­pyridine in different ratios and only crystals of a compound with composition [Mn(NCS)2(4-benzoyl­pyridine)4] were obtained, as determined by single crystal X-ray diffraction. If the experimental X-ray powder pattern is compared with that calculated from single crystal data, it is obvious that a pure crystalline phase has been obtained (see Fig. S1 in the supporting information). In the IR spectrum, the asymmetric C≡N-stretching vibration is observed at 2054 cm−1, which is in agreement with the presence of terminal N-bonded thio­cyanate anions (Fig. S2). Magnetic susceptibility measurements in a field of 1 kOe show paramagnetic behaviour. From the temperature-independent susceptibility curve, it is obvious that dominating anti­ferromagnetic inter­actions are present, which is frequently observed for similar discrete complexes based on [Mn(NCS)2]. The susceptibility curve was analysed using the Curie–Weiss law, leading to a magnetic moment of 6.0 µB, which is in good agreement with that expected for an MnII cation in a high-spin configuration (Fig. S3). As previously shown, co-ligand-rich precursor complexes can be transformed into co-ligand-deficient compounds with more condensed thio­cyanate networks by thermal decomposition (Neumann et al., 2018b[Neumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018b). Inorg. Chem. 57, 3305-3314.]). Therefore, the title compound was investigated by simultaneous thermogravimetry and differential thermoanalysis (TG–DTA). Upon heating, two mass loss steps are observed in the TG curve, accompanied by two endothermic events in the DTA curve (Fig. S4). The experimental mass loss in each step of 40.4 and 40.5% is in good agreement with that calculated for the removal of two 4-benzoyl­pyridine ligands in each step. When in a second TG measurement the residue formed after the first mass loss was isolated and investigated by X-ray powder diffraction, it became clear that the powder pattern was not related to those for [Co(NCS)2(4-benzoyl­pyridine)2] and [Cd(NCS)2(4-benz­oyl­pyridine)2], indicating that a new crystalline phase had formed (Fig. S5). Indexing of the powder pattern failed, and therefore the structure of this compound remains unknown. However, the C≡N stretch observed in the IR spectrum of this residue is found at 2078 cm−1, which is close to that in [Cd(NCS)2(4-benzoyl­pyridine)2] (2088 cm−1), indicating the presence of μ-1,3-bridging anionic ligands (Fig. S6).

2. Structural commentary

In the crystal structure of the title compound, the MnII cations are located on centers of inversion, whereas the unique thio­cyanate anion and the two crystallographically independent 4-benzoyl­pyridine co-ligands occupy general positions. The MnII cation is ocahedrally coordinated by two N-bonded terminal thio­cyanate anions and four neutral N-bonded 4-benzoyl­pyridine ligands. The Mn—N bond lengths are considerably shorter for the anionic ligand [2.1658 (15) Å] than those for the neutral co-ligands [2.3200 (14) and 2.3232 (14) Å; Fig. 1[link] and Table 1[link]]. The bond lengths and angles reveal a slight distortion of the MnN6 octa­hedron (Table 1[link]), which is also obvious from the angle variance of 4.8 and the quadratic elongation of 1.022 (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]). Neither the pyridine nor the phenyl rings of the two 4-benzoyl­pyridine ligands are coplanar with the carbonyl planes. In the first ligand, the phenyl plane (C17–C22) is inclined at an angle of 23.08 (11)° to the plane of the carbonyl group (O11,C13,C16,C17) and to the pyridine plane (N11,C11–C15) by 37.33 (10)°. Corresponding values for the second co-ligand are 24.07 (11)° between the carbonyl plane (O21,C33,C36,C37) and the phenyl ring (C37–C42) and 36.58 (10)° for the pyridine ring (N31,C31–C35). There are weak intra­molecular C—H⋯N inter­actions between some of the aromatic hydrogen atoms and the thio­cyanate N atoms, which might contribute to the stabilization of the conformation of the complex (Table 2[link]).

Table 1
Selected geometric parameters (Å, °)

Mn1—N1 2.1658 (15) Mn1—N11 2.3232 (14)
Mn1—N31 2.3200 (14)    
       
N1—Mn1—N31i 90.09 (5) N1i—Mn1—N11 88.65 (5)
N1—Mn1—N31 89.91 (5) N31i—Mn1—N11 92.63 (5)
N1—Mn1—N11 91.35 (5) N31—Mn1—N11 87.37 (5)
Symmetry code: (i) -x, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1 0.95 2.57 3.215 (2) 126
C15—H15⋯N1i 0.95 2.61 3.195 (2) 120
C15—H15⋯O21ii 0.95 2.54 3.263 (2) 133
C31—H31⋯N1 0.95 2.66 3.251 (2) 120
C35—H35⋯N1i 0.95 2.56 3.181 (2) 124
C35—H35⋯O21ii 0.95 2.63 3.350 (2) 133
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y+1, -z+2.
[Figure 1]
Figure 1
View of a discrete complex with the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x, −y + 1, −z + 1.]

3. Supra­molecular features

In the crystal structure of the title compound, discrete complexes are linked by inter­molecular C—H⋯O hydrogen-bonding inter­actions between the carbonyl O atom and the two hydrogen atoms H15 and H35. Each complex forms four such hydrogen bonds to neighbouring complexes, leading to the formation of chains that elongate in the direction of the c axis (Figs. 2[link] and 3[link], Table 2[link]). Between the chains no distinct inter­molecular inter­actions apart from van der Waals inter­actions are observed (Fig. 3[link]).

[Figure 2]
Figure 2
Crystal structure of the title compound showing a chain formed by inter­molecular C—H⋯O hydrogen bonding (dashed lines).
[Figure 3]
Figure 3
Crystal structure of the title compound in a view along the c axis. Inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

4. Database survey

In the Cambridge Structure Database (Version 5.39, last update Aug 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are ten structures of coordination compounds reported that are comprised of 4-benzoyl­pyridine ligands, thio­cyanate anions and different transition metal cations. Firstly, there are two complexes in which the cations are coordinated each by two terminal N-bonded thio­cyanate anions and two 4-benzoyl­pyridine ligands to form a square-planar complex with CuII (Bai et al., 2011[Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338-1344.]) and a tetra­hedral complex with ZnII (Neumann et al., 2018a[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018a). Inorg. Chim. Acta, 478, 15-24.]). There are also two complexes with coordinating solvate ligands, in which the CoII cation is octa­hedrally coordinated by two terminal N-bonded thio­cyanate anions, two 4-benzoyl­pyridine ligands and either two methanol (Suckert et al., 2017a[Suckert, S., Rams, M., Rams, M. R. & Näther, C. (2017a). Inorg. Chem. 56, 8007-8017.]), or two aceto­nitrile mol­ecules (Suckert et al., 2017b[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Acta Cryst. E73, 365-368.]). As mentioned above, there is also a chain compound with composition [Co(NCS)2(4-benzoyl­pyridine)2] in which the CoII cations are linked by pairs of μ-1,3-coordinating thio­cyanate anions (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]). It is also noted that two additional chain compounds with CdII and NiII are reported in literature (Jochim et al., 2018[Jochim, A., Rams, M., Wellm, C., Reinsch, H. M., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. https://doi.org/10.1002ejic.201800939.]; Neumann et al., 2018a[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018a). Inorg. Chim. Acta, 478, 15-24.]). Finally, there are one NiII (Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]), one CoII (Drew et al.,1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434-1437.]), one Zn and one Cd compound (Neumann et al., 2018a[Neumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018a). Inorg. Chim. Acta, 478, 15-24.]) that are isotypic with the title complex.

5. Synthesis and crystallization

Ba(SCN)2·3H2O and 4-benzoyl­pyridine were purchased from Alfa Aesar. Mn(SO4)·4H2O was purchased from Merck. All solvents and reactants were used without further purification. Mn(NCS)2 was prepared by the reaction of equimolar amounts of MnSO4·4H2O and Ba(NCS)2·3H2O in water. The resulting white precipitate of BaSO4 was filtered off, and the solvent was evaporated from the filtrate. The product was finally dried at room-temperature.

Crystals of the title compound suitable for single crystal X-ray diffraction were obtained by the reaction of 51.3 mg Mn(NCS)2 (0.30 mmol) with 27.5 mg 4-benzoyl­pyridine (0.15 mmol) in methanol (1.5 mL) within three days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were positioned with idealized geometry (C—H = 0.95 Å) and were refined with Uiso(H) = 1.2 Ueq(C) using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Mn(NCS)2(C12H9NO)4]
Mr 903.91
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 9.1463 (6), 20.9990 (11), 11.2177 (7)
β (°) 90.493 (7)
V3) 2154.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.12 × 0.03 × 0.03
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.836, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 22833, 4717, 3912
Rint 0.037
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.04
No. of reflections 4717
No. of parameters 287
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.42
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(4-benzoylpyridine-κN)bis(isothiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(C12H9NO)4]F(000) = 934
Mr = 903.91Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1463 (6) ÅCell parameters from 22833 reflections
b = 20.9990 (11) Åθ = 2.4–27.0°
c = 11.2177 (7) ŵ = 0.46 mm1
β = 90.493 (7)°T = 200 K
V = 2154.4 (2) Å3Needle, colorless
Z = 20.12 × 0.03 × 0.03 mm
Data collection top
Stoe IPDS-1
diffractometer
3912 reflections with I > 2σ(I)
Phi scansRint = 0.037
Absorption correction: numerical
(X-Shape and X-RED32; Stoe, 2008)
θmax = 27.0°, θmin = 2.4°
Tmin = 0.836, Tmax = 0.989h = 1111
22833 measured reflectionsk = 2626
4717 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.645P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.48 e Å3
4717 reflectionsΔρmin = 0.42 e Å3
287 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0166 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.50000.01849 (12)
N10.21622 (16)0.51148 (7)0.42577 (14)0.0257 (3)
C10.33230 (18)0.52654 (8)0.39340 (14)0.0212 (3)
S10.49322 (5)0.54834 (3)0.34865 (5)0.03905 (16)
N110.06243 (16)0.40128 (7)0.57884 (13)0.0222 (3)
C110.18424 (19)0.37239 (8)0.54236 (16)0.0245 (4)
H110.24720.39480.49010.029*
C120.2235 (2)0.31115 (9)0.57705 (17)0.0276 (4)
H120.31010.29200.54750.033*
C130.1348 (2)0.27844 (8)0.65524 (15)0.0240 (4)
C140.0115 (2)0.30940 (9)0.69848 (16)0.0267 (4)
H140.04920.28920.75540.032*
C150.0217 (2)0.36995 (9)0.65760 (16)0.0262 (4)
H150.10730.39030.68620.031*
C160.1712 (2)0.21249 (9)0.69836 (17)0.0301 (4)
C170.2360 (2)0.16528 (8)0.61533 (17)0.0262 (4)
C180.3095 (2)0.11280 (9)0.66421 (19)0.0323 (4)
H180.32390.11000.74800.039*
C190.3611 (2)0.06508 (10)0.5909 (2)0.0396 (5)
H190.41180.02980.62430.047*
C200.3392 (2)0.06865 (10)0.4687 (2)0.0397 (5)
H200.37420.03560.41860.048*
C210.2664 (2)0.12032 (10)0.41936 (19)0.0368 (5)
H210.25170.12260.33550.044*
C220.2148 (2)0.16883 (9)0.49211 (17)0.0298 (4)
H220.16520.20430.45810.036*
O110.1455 (2)0.19888 (8)0.80158 (13)0.0540 (5)
N310.08153 (16)0.54430 (7)0.67799 (12)0.0225 (3)
C310.2075 (2)0.57669 (9)0.68841 (16)0.0291 (4)
H310.26600.58190.61950.035*
C320.2566 (2)0.60297 (10)0.79556 (16)0.0292 (4)
H320.34550.62640.79890.035*
C330.17349 (19)0.59438 (8)0.89755 (15)0.0230 (3)
C340.0450 (2)0.55967 (9)0.88747 (15)0.0254 (4)
H340.01360.55220.95560.030*
C350.00293 (19)0.53596 (9)0.77729 (16)0.0256 (4)
H350.08590.51270.77170.031*
C360.2209 (2)0.61668 (9)1.01957 (15)0.0266 (4)
C370.2974 (2)0.67860 (9)1.03561 (15)0.0258 (4)
C380.2813 (2)0.72874 (10)0.95543 (18)0.0349 (4)
H380.22430.72310.88500.042*
C390.3481 (3)0.78705 (10)0.9779 (2)0.0403 (5)
H390.33530.82140.92360.048*
C400.4330 (2)0.79497 (11)1.0789 (2)0.0376 (5)
H400.47990.83461.09370.045*
C410.4501 (2)0.74516 (11)1.15904 (19)0.0387 (5)
H410.50860.75081.22860.046*
C420.3826 (2)0.68749 (10)1.13822 (17)0.0325 (4)
H420.39410.65371.19380.039*
O210.19390 (18)0.58258 (8)1.10490 (12)0.0414 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01830 (19)0.01812 (19)0.01906 (19)0.00066 (12)0.00066 (13)0.00002 (13)
N10.0184 (7)0.0311 (8)0.0276 (8)0.0008 (6)0.0024 (6)0.0024 (6)
C10.0247 (8)0.0201 (8)0.0188 (7)0.0036 (6)0.0038 (6)0.0001 (6)
S10.0221 (2)0.0553 (3)0.0398 (3)0.0059 (2)0.00310 (19)0.0146 (2)
N110.0260 (7)0.0180 (7)0.0226 (7)0.0007 (5)0.0002 (5)0.0015 (5)
C110.0269 (9)0.0198 (8)0.0269 (8)0.0004 (6)0.0044 (7)0.0003 (7)
C120.0277 (9)0.0218 (9)0.0333 (9)0.0029 (7)0.0045 (7)0.0003 (7)
C130.0308 (9)0.0197 (8)0.0214 (8)0.0013 (6)0.0036 (7)0.0007 (6)
C140.0318 (9)0.0251 (9)0.0231 (8)0.0024 (7)0.0032 (7)0.0030 (7)
C150.0277 (9)0.0246 (9)0.0263 (8)0.0022 (7)0.0033 (7)0.0013 (7)
C160.0411 (11)0.0234 (9)0.0259 (9)0.0002 (7)0.0043 (8)0.0024 (7)
C170.0284 (9)0.0191 (8)0.0312 (9)0.0009 (6)0.0020 (7)0.0025 (7)
C180.0320 (10)0.0262 (9)0.0385 (10)0.0010 (7)0.0067 (8)0.0070 (8)
C190.0320 (10)0.0263 (10)0.0604 (14)0.0095 (8)0.0012 (9)0.0071 (9)
C200.0407 (11)0.0270 (10)0.0516 (13)0.0072 (8)0.0128 (10)0.0026 (9)
C210.0480 (12)0.0283 (10)0.0343 (10)0.0037 (8)0.0079 (9)0.0010 (8)
C220.0377 (10)0.0216 (9)0.0302 (9)0.0044 (7)0.0008 (8)0.0032 (7)
O110.1033 (15)0.0334 (8)0.0253 (7)0.0149 (9)0.0048 (8)0.0063 (6)
N310.0257 (7)0.0212 (7)0.0206 (7)0.0026 (5)0.0019 (5)0.0021 (5)
C310.0318 (9)0.0354 (10)0.0201 (8)0.0108 (8)0.0050 (7)0.0030 (7)
C320.0293 (9)0.0354 (10)0.0231 (8)0.0102 (7)0.0025 (7)0.0048 (7)
C330.0276 (8)0.0209 (8)0.0205 (8)0.0010 (6)0.0002 (6)0.0002 (6)
C340.0284 (9)0.0270 (9)0.0209 (8)0.0007 (7)0.0051 (7)0.0004 (7)
C350.0245 (8)0.0278 (9)0.0244 (8)0.0047 (7)0.0017 (7)0.0020 (7)
C360.0285 (9)0.0315 (9)0.0197 (8)0.0028 (7)0.0012 (7)0.0003 (7)
C370.0261 (9)0.0310 (9)0.0204 (8)0.0022 (7)0.0009 (7)0.0035 (7)
C380.0445 (12)0.0312 (10)0.0287 (10)0.0012 (8)0.0082 (8)0.0006 (8)
C390.0524 (13)0.0292 (10)0.0393 (11)0.0004 (9)0.0001 (10)0.0017 (9)
C400.0341 (10)0.0375 (11)0.0415 (11)0.0050 (8)0.0075 (9)0.0157 (9)
C410.0327 (10)0.0515 (13)0.0317 (10)0.0031 (9)0.0046 (8)0.0113 (9)
C420.0340 (10)0.0410 (11)0.0224 (9)0.0018 (8)0.0041 (7)0.0028 (8)
O210.0565 (10)0.0459 (9)0.0218 (7)0.0123 (7)0.0017 (6)0.0055 (6)
Geometric parameters (Å, º) top
Mn1—N12.1658 (15)C20—H200.9500
Mn1—N1i2.1658 (15)C21—C221.390 (3)
Mn1—N31i2.3200 (14)C21—H210.9500
Mn1—N312.3200 (14)C22—H220.9500
Mn1—N112.3232 (14)N31—C351.342 (2)
Mn1—N11i2.3232 (14)N31—C311.343 (2)
N1—C11.169 (2)C31—C321.393 (2)
C1—S11.6249 (18)C31—H310.9500
N11—C111.336 (2)C32—C331.391 (3)
N11—C151.348 (2)C32—H320.9500
C11—C121.390 (3)C33—C341.386 (3)
C11—H110.9500C33—C361.507 (2)
C12—C131.383 (3)C34—C351.384 (2)
C12—H120.9500C34—H340.9500
C13—C141.392 (3)C35—H350.9500
C13—C161.503 (2)C36—O211.222 (2)
C14—C151.385 (3)C36—C371.487 (3)
C14—H140.9500C37—C381.392 (3)
C15—H150.9500C37—C421.397 (2)
C16—O111.218 (2)C38—C391.391 (3)
C16—C171.487 (3)C38—H380.9500
C17—C221.396 (3)C39—C401.379 (3)
C17—C181.400 (3)C39—H390.9500
C18—C191.382 (3)C40—C411.387 (3)
C18—H180.9500C40—H400.9500
C19—C201.386 (3)C41—C421.378 (3)
C19—H190.9500C41—H410.9500
C20—C211.386 (3)C42—H420.9500
N1—Mn1—N1i180.0C19—C20—H20119.9
N1—Mn1—N31i90.09 (5)C21—C20—H20119.9
N1i—Mn1—N31i89.91 (5)C20—C21—C22120.3 (2)
N1—Mn1—N3189.91 (5)C20—C21—H21119.9
N1i—Mn1—N3190.09 (5)C22—C21—H21119.9
N31i—Mn1—N31180.0C21—C22—C17119.80 (18)
N1—Mn1—N1191.35 (5)C21—C22—H22120.1
N1i—Mn1—N1188.65 (5)C17—C22—H22120.1
N31i—Mn1—N1192.63 (5)C35—N31—C31117.34 (15)
N31—Mn1—N1187.37 (5)C35—N31—Mn1119.43 (11)
N1—Mn1—N11i88.65 (5)C31—N31—Mn1123.19 (12)
N1i—Mn1—N11i91.35 (5)N31—C31—C32123.08 (17)
N31i—Mn1—N11i87.37 (5)N31—C31—H31118.5
N31—Mn1—N11i92.63 (5)C32—C31—H31118.5
N11—Mn1—N11i180.0C33—C32—C31118.93 (17)
C1—N1—Mn1169.93 (14)C33—C32—H32120.5
N1—C1—S1179.33 (17)C31—C32—H32120.5
C11—N11—C15117.48 (15)C34—C33—C32118.03 (16)
C11—N11—Mn1119.44 (11)C34—C33—C36118.34 (16)
C15—N11—Mn1123.04 (12)C32—C33—C36123.48 (16)
N11—C11—C12123.26 (17)C35—C34—C33119.41 (16)
N11—C11—H11118.4C35—C34—H34120.3
C12—C11—H11118.4C33—C34—H34120.3
C13—C12—C11119.06 (17)N31—C35—C34123.17 (16)
C13—C12—H12120.5N31—C35—H35118.4
C11—C12—H12120.5C34—C35—H35118.4
C12—C13—C14118.06 (16)O21—C36—C37121.05 (17)
C12—C13—C16122.15 (17)O21—C36—C33118.07 (17)
C14—C13—C16119.73 (17)C37—C36—C33120.88 (15)
C15—C14—C13119.30 (17)C38—C37—C42119.12 (18)
C15—C14—H14120.4C38—C37—C36122.43 (16)
C13—C14—H14120.4C42—C37—C36118.37 (17)
N11—C15—C14122.72 (17)C39—C38—C37120.35 (18)
N11—C15—H15118.6C39—C38—H38119.8
C14—C15—H15118.6C37—C38—H38119.8
O11—C16—C17121.37 (17)C40—C39—C38119.9 (2)
O11—C16—C13118.55 (18)C40—C39—H39120.0
C17—C16—C13120.07 (16)C38—C39—H39120.0
C22—C17—C18119.47 (18)C39—C40—C41120.1 (2)
C22—C17—C16122.12 (16)C39—C40—H40119.9
C18—C17—C16118.16 (17)C41—C40—H40119.9
C19—C18—C17120.18 (19)C42—C41—C40120.34 (19)
C19—C18—H18119.9C42—C41—H41119.8
C17—C18—H18119.9C40—C41—H41119.8
C18—C19—C20120.15 (19)C41—C42—C37120.18 (19)
C18—C19—H19119.9C41—C42—H42119.9
C20—C19—H19119.9C37—C42—H42119.9
C19—C20—C21120.1 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N10.952.573.215 (2)126
C15—H15···N1i0.952.613.195 (2)120
C15—H15···O21ii0.952.543.263 (2)133
C31—H31···N10.952.663.251 (2)120
C35—H35···N1i0.952.563.181 (2)124
C35—H35···O21ii0.952.633.350 (2)133
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z+2.
 

Acknowledgements

We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/6–1) and the State of Schleswig-Holstein.

References

First citationBai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A, 79, 1338–1344.  CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuckingham, D. A. (1994). Coord. Chem. Rev. 135–136, 587–621.  CrossRef Web of Science Google Scholar
First citationDrew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434–1437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGonzález, R., Acosta, A., Chiozzone, R., Kremer, C., Armentano, D., De Munno, G., Julve, M., Lloret, F. & Faus, J. C. (2012). Inorg. Chem. 51, 5737–5747.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuillet, J. L., Bhowmick, I., Shores, M. P., Daley, C. J. A., Gembicky, M., Golen, J. A., Rheingold, A. L. & Doerrer, L. H. (2016). Inorg. Chem. 55, 8099–8109.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJochim, A., Rams, M., Wellm, C., Reinsch, H. M., Wójtowicz, G. M. & Näther, C. (2018). Eur. J. Inorg. Chem. https://doi.org/10.1002ejic.201800939.  Google Scholar
First citationMautner, F. A., Fischer, R. C., Rashmawi, L. G., Louka, F. R. & Massoud, S. (2017). Polyhedron, 124, 237–242.  CrossRef Google Scholar
First citationMekuimemba, C. D., Conan, F., Mota, A. J., Palacios, M. A., Colacio, E. & Triki, S. (2018). Inorg. Chem. 57, 2184–2192.  CrossRef Google Scholar
First citationNeumann, T., Ceglarska, M., Germann, L. S., Rams, M., Dinnebier, R. E., Suckert, S., Jess, I. & Näther, C. (2018b). Inorg. Chem. 57, 3305–3314.  CrossRef Google Scholar
First citationNeumann, T., Jess, I., dos Santos Cunha, C., Terraschke, H. & Näther, C. (2018a). Inorg. Chim. Acta, 478, 15–24.  CrossRef Google Scholar
First citationPalion-Gazda, J., Gryca, I., Maroń, A., Machura, B. & Kruszynski, R. (2017). Polyhedron, 135, 109–120.  Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  CrossRef CAS PubMed Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115–125.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Rams, M. R. & Näther, C. (2017a). Inorg. Chem. 56, 8007–8017.  CrossRef Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017b). Acta Cryst. E73, 365–368.  CrossRef IUCr Journals Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015). Inorg. Chem. 54, 2893–2901.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Runčevski, T., Dinnebier, R., Ebbinghaus, S. & Näther, C. (2014a). Cryst. Growth Des. 14, 1902–1913.  Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, M. U. & Näther, C. (2014b). Inorg. Chem. 53, 8298–8310.  Google Scholar
First citationWöhlert, S., Wriedt, M., Fic, T., Tomkowicz, Z., Haase, W. & Näther, C. (2013). Inorg. Chem. 52, 1061–1068.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds