research communications
H-1,3-benzodiazol-1-yl]methyl}-3-(prop-1-en-2-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one
and Hirshfeld surface analysis of 1-{[2-oxo-3-(prop-1-en-2-yl)-2,3-dihydro-1aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: as.saber.pro@gmail.com
In the title compound, C21H20N4O2, the intramolecular C—H⋯O hydrogen-bonded benzodiazolone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of intermolecular C—H⋯O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (51.8%), H⋯C/C⋯H (30.7%) and H⋯O/O⋯H (11.2%) interactions.
Keywords: crystal structure; hydrogen bond; benzodiazolone; Hirshfeld surface.
CCDC reference: 1875883
1. Chemical context
The benzimidazole unit is an important pharmacophore and a privileged structure in the functions of biological molecules. Benzimidazole derivatives have attracted considerable attention from researchers because their bioactive and pharmaceutical properties. Many members of this family are widely used as anticonvulsant, anti-fungal, analgesic, antimicrobial, anti-histaminic and hypnotic or anti-inflammatory agents (Ayhan-Kılcıgil et al., 2007; Soderlind et al., 1999; Luo et al., 2011; Walia et al., 2011; Navarrete-Vázquez et al., 2001). Benzimidazolone derivatives also find commercial use as dyes for acrylic fibres. The search for new heterocyclic systems including the benzimidazolone moiety with biological activities therefore is of much current importance (Mondieig et al., 2013; Lakhrissi et al., 2008; Ouzidan et al., 2011; Dardouri et al., 2011). In this context, we are interested in the synthesis of the title compound, 1-{[2-oxo-3-(prop-1-en-2-yl)2,3-dihydro-1H-1,3-benzodiazol-1-yl)methyl}-3-(prop-1-en-2-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one, by reaction of dichloromethane with 1-(prop-1-en-2-yl)-1H-benzimidazol-2(3H)-one under (PTC) conditions using tetra-n-butylammonium bromide (TBAB) as catalyst and potassium carbonate as base. We report herein its crystal and molecular structures along with the Hirshfeld surface analysis.
2. Structural commentary
In the title compound (Fig. 1), the intramolecular C—H⋯O hydrogen-bonded (Table 1) benzodiazolone moieties are planar with the largest deviations being 0.017 (1) Å for atom C7 in the N1-containing unit (r.m.s. deviation = 0.011 Å) and 0.026 (1) Å for atom C18 in the N3-containing unit (r.m.s. deviation = 0.019 Å). The dihedral angle between the mean planes of the benzodiazolone moieties is 57.35 (3)°.
3. Supramolecular features
Hydrogen bonding and van der Waals contacts are the dominant interactions in the crystal packing. In the crystal, two sets of intermolecular C—H⋯O hydrogen bonds (Table 1) generate layers parallel to the bc plane. In these layers, one of the benzodiazole units in each molecule is approximately parallel to the bc plane while the other half of the molecule protrudes from the surface (Fig. 2).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots appearing near O1, O2 and hydrogen atoms H5, H10A and H10B indicate their roles as the respective donors and acceptors in the dominant C—H ⋯ O hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly indicates that no π–π interactions are present in the title structure.
The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and N⋯C/C⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 6b–g, respectively, together with their relative contributions to the Hirshfeld surface. The most important contribution to the overall crystal packing (51.8%) is from H⋯H interactions, which are shown in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule. The spike with the tip at de = di = 1.08 Å in Fig. 6b is due to the short interatomic H⋯H contacts (Table 2). The fingerprint plot, Fig. 6c, delineated into H⋯C/C⋯H contacts, which make a 30.7% contribution to the HS, shows a pair of characteristic wings and a pair of spikes with the tips at de + di ∼2.65 Å. The H⋯O/O⋯H contacts in the structure with a 11.2% contribution to the HS have a symmetrical distribution of points, Fig. 6d, with the tips at de + di = 2.40 Å arising from the short intra- and/or interatomic C—H ⋯ O hydrogen bonding (Table 1) as well as from the H⋯O/O⋯H contacts (Table 2). Finally, the H⋯N/N⋯H (Fig. 6e) contacts in the structure with a 5.1% contribution to the HS also have a symmetrical distribution of points, with the pair of wings appearing at de + di = 2.80 Å.
The Hirshfeld surface representations for the function dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions in Fig. 7a–d, respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39, update of August 2018; Groom et al., 2016) for benzimidazolin-2-one derivatives in which both nitrogen atoms form exocyclic C—N bonds gave 61 hits. In these structures, the bicyclic ring system is either planar, has a slight twist end-to-end or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape. The closest examples to the title compound are NOTQUI (Díez-Barra et al., 1997) and XEVJOX (Huang et al., 2001) with ZICNEE (Shi & Thummel, 1995) as a more distant relative (see Fig. 8). In XEVJOX, the N—C—N angle connecting the two bicyclic units [114.19 (12)°] is essentially the same as in the title compound [114.04 (7)°]. In both of these, the bicyclic units are in an anti arrangement and this is basically the same for ZICNEE. Interestingly, the three bicyclic units in NOTQUI are close to all being syn to one another.
6. Synthesis and crystallization
To a solution of 1-(prop-1-en-2-yl)-1H-benzimidazol-2(3H)-one (2.87mmol) in dichloromethane (30 ml) as reagent and solvent were added potassium carbonate (5.71 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.37 mmol). The mixture was heated for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol solution to afford colourless crystals in 67% yield.
7. Refinement
Crystal data, data collection and structure . H atoms were located in a difference-Fourier map and were freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1875883
https://doi.org/10.1107/S2056989018015219/xu5947sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018015219/xu5947Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015219/xu5947Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018015219/xu5947Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C21H20N4O2 | F(000) = 760 |
Mr = 360.41 | Dx = 1.342 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.5244 (5) Å | Cell parameters from 9896 reflections |
b = 8.6312 (4) Å | θ = 2.3–29.6° |
c = 17.9845 (8) Å | µ = 0.09 mm−1 |
β = 94.134 (1)° | T = 100 K |
V = 1784.25 (14) Å3 | Block, colourless |
Z = 4 | 0.40 × 0.39 × 0.22 mm |
Bruker SMART APEX CCD diffractometer | 4912 independent reflections |
Radiation source: fine-focus sealed tube | 4269 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.7°, θmin = 1.8° |
φ and ω scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→11 |
Tmin = 0.89, Tmax = 0.98 | l = −25→25 |
33699 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.113 | All H-atom parameters refined |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0731P)2 + 0.248P] where P = (Fo2 + 2Fc2)/3 |
4912 reflections | (Δ/σ)max < 0.001 |
324 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.14989 (6) | 0.48310 (8) | 0.43717 (4) | 0.01960 (15) | |
O2 | 0.23203 (6) | 0.33229 (8) | 0.13640 (4) | 0.01728 (15) | |
N1 | 0.15509 (6) | 0.53341 (9) | 0.30979 (4) | 0.01421 (16) | |
N2 | 0.14171 (6) | 0.73261 (9) | 0.38646 (4) | 0.01478 (16) | |
N3 | 0.26416 (6) | 0.31586 (9) | 0.26564 (4) | 0.01347 (16) | |
N4 | 0.39789 (6) | 0.21797 (9) | 0.19636 (4) | 0.01465 (16) | |
C1 | 0.14167 (7) | 0.79263 (10) | 0.31433 (5) | 0.01364 (17) | |
C2 | 0.13453 (8) | 0.94353 (11) | 0.28808 (5) | 0.01628 (18) | |
H2 | 0.1277 (11) | 1.0298 (15) | 0.3234 (7) | 0.020 (3)* | |
C3 | 0.13427 (8) | 0.96453 (11) | 0.21101 (5) | 0.01748 (18) | |
H3 | 0.1274 (10) | 1.0686 (15) | 0.1888 (7) | 0.021 (3)* | |
C4 | 0.14246 (8) | 0.83917 (11) | 0.16280 (5) | 0.01769 (18) | |
H4 | 0.1443 (11) | 0.8573 (15) | 0.1091 (7) | 0.021 (3)* | |
C5 | 0.15041 (8) | 0.68681 (11) | 0.18947 (5) | 0.01611 (18) | |
H5 | 0.1568 (11) | 0.5978 (16) | 0.1588 (7) | 0.024 (3)* | |
C6 | 0.14948 (7) | 0.66652 (10) | 0.26575 (5) | 0.01342 (17) | |
C7 | 0.14860 (7) | 0.57243 (10) | 0.38459 (5) | 0.01462 (17) | |
C8 | 0.12521 (8) | 0.81967 (11) | 0.45309 (5) | 0.01582 (18) | |
C9 | 0.20574 (8) | 0.92203 (12) | 0.47637 (5) | 0.02068 (19) | |
H9A | 0.2757 (12) | 0.9366 (16) | 0.4506 (7) | 0.027 (3)* | |
H9B | 0.1940 (12) | 0.9911 (16) | 0.5186 (7) | 0.027 (3)* | |
C10 | 0.01276 (8) | 0.78748 (12) | 0.48653 (5) | 0.01963 (19) | |
H10A | 0.0075 (12) | 0.6777 (17) | 0.5012 (8) | 0.029 (3)* | |
H10B | −0.0541 (12) | 0.8114 (16) | 0.4499 (8) | 0.026 (3)* | |
H10C | 0.0073 (11) | 0.8515 (16) | 0.5326 (8) | 0.027 (3)* | |
C11 | 0.15234 (7) | 0.37476 (10) | 0.28445 (5) | 0.01449 (17) | |
H11A | 0.0994 (10) | 0.3665 (14) | 0.2396 (7) | 0.016 (3)* | |
H11B | 0.1243 (11) | 0.3110 (14) | 0.3247 (7) | 0.018 (3)* | |
C12 | 0.35153 (7) | 0.25387 (10) | 0.31484 (5) | 0.01369 (17) | |
C13 | 0.36158 (8) | 0.24451 (11) | 0.39187 (5) | 0.01675 (18) | |
H13 | 0.3032 (11) | 0.2870 (16) | 0.4215 (7) | 0.022 (3)* | |
C14 | 0.46041 (9) | 0.16942 (11) | 0.42436 (5) | 0.01995 (19) | |
H14 | 0.4683 (12) | 0.1616 (16) | 0.4794 (8) | 0.027 (3)* | |
C15 | 0.54473 (8) | 0.10818 (12) | 0.38065 (5) | 0.0208 (2) | |
H15 | 0.6129 (12) | 0.0591 (17) | 0.4037 (7) | 0.031 (3)* | |
C16 | 0.53439 (8) | 0.11942 (11) | 0.30305 (5) | 0.01861 (19) | |
H16 | 0.5928 (11) | 0.0792 (17) | 0.2729 (8) | 0.028 (3)* | |
C17 | 0.43617 (7) | 0.19291 (10) | 0.27099 (5) | 0.01441 (17) | |
C18 | 0.29128 (7) | 0.29272 (10) | 0.19241 (5) | 0.01344 (17) | |
C19 | 0.45369 (8) | 0.16277 (10) | 0.13270 (5) | 0.01655 (18) | |
C20 | 0.38248 (9) | 0.05439 (13) | 0.08298 (6) | 0.0238 (2) | |
H20A | 0.4249 (13) | 0.0262 (18) | 0.0389 (8) | 0.040 (4)* | |
H20B | 0.3693 (12) | −0.0429 (18) | 0.1112 (8) | 0.034 (4)* | |
H20C | 0.3068 (13) | 0.0959 (18) | 0.0661 (8) | 0.033 (3)* | |
C21 | 0.56303 (9) | 0.20343 (13) | 0.12450 (6) | 0.0232 (2) | |
H21A | 0.6039 (12) | 0.2754 (17) | 0.1589 (8) | 0.028 (3)* | |
H21B | 0.6045 (12) | 0.1602 (16) | 0.0827 (8) | 0.030 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0239 (3) | 0.0166 (3) | 0.0187 (3) | 0.0040 (3) | 0.0045 (3) | 0.0038 (2) |
O2 | 0.0170 (3) | 0.0173 (3) | 0.0171 (3) | 0.0021 (2) | −0.0019 (2) | 0.0004 (2) |
N1 | 0.0163 (3) | 0.0111 (4) | 0.0153 (3) | 0.0012 (3) | 0.0022 (3) | −0.0005 (3) |
N2 | 0.0180 (3) | 0.0121 (4) | 0.0143 (3) | 0.0011 (3) | 0.0021 (3) | −0.0008 (3) |
N3 | 0.0124 (3) | 0.0133 (3) | 0.0146 (3) | 0.0022 (3) | 0.0004 (3) | −0.0010 (3) |
N4 | 0.0134 (3) | 0.0157 (4) | 0.0149 (3) | 0.0026 (3) | 0.0016 (3) | −0.0004 (3) |
C1 | 0.0114 (4) | 0.0139 (4) | 0.0156 (4) | −0.0004 (3) | 0.0006 (3) | −0.0006 (3) |
C2 | 0.0157 (4) | 0.0132 (4) | 0.0198 (4) | −0.0015 (3) | 0.0004 (3) | −0.0014 (3) |
C3 | 0.0171 (4) | 0.0145 (4) | 0.0206 (4) | −0.0030 (3) | −0.0002 (3) | 0.0024 (3) |
C4 | 0.0173 (4) | 0.0187 (5) | 0.0169 (4) | −0.0025 (3) | 0.0001 (3) | 0.0022 (3) |
C5 | 0.0158 (4) | 0.0163 (4) | 0.0162 (4) | −0.0006 (3) | 0.0008 (3) | −0.0016 (3) |
C6 | 0.0111 (4) | 0.0116 (4) | 0.0175 (4) | 0.0000 (3) | 0.0007 (3) | −0.0003 (3) |
C7 | 0.0129 (4) | 0.0142 (4) | 0.0169 (4) | 0.0016 (3) | 0.0024 (3) | −0.0005 (3) |
C8 | 0.0178 (4) | 0.0159 (4) | 0.0138 (4) | 0.0052 (3) | 0.0008 (3) | −0.0013 (3) |
C9 | 0.0204 (4) | 0.0202 (5) | 0.0213 (4) | 0.0016 (4) | 0.0007 (3) | −0.0049 (4) |
C10 | 0.0173 (4) | 0.0237 (5) | 0.0181 (4) | 0.0029 (3) | 0.0031 (3) | −0.0017 (4) |
C11 | 0.0114 (4) | 0.0116 (4) | 0.0206 (4) | 0.0004 (3) | 0.0018 (3) | −0.0020 (3) |
C12 | 0.0134 (4) | 0.0107 (4) | 0.0168 (4) | 0.0002 (3) | −0.0003 (3) | 0.0000 (3) |
C13 | 0.0190 (4) | 0.0146 (4) | 0.0167 (4) | 0.0006 (3) | 0.0011 (3) | −0.0017 (3) |
C14 | 0.0237 (5) | 0.0180 (4) | 0.0175 (4) | 0.0007 (3) | −0.0030 (3) | 0.0004 (3) |
C15 | 0.0192 (4) | 0.0198 (5) | 0.0226 (4) | 0.0039 (3) | −0.0039 (3) | 0.0015 (4) |
C16 | 0.0153 (4) | 0.0186 (4) | 0.0218 (4) | 0.0035 (3) | 0.0010 (3) | 0.0002 (3) |
C17 | 0.0142 (4) | 0.0129 (4) | 0.0160 (4) | −0.0002 (3) | 0.0003 (3) | −0.0003 (3) |
C18 | 0.0133 (4) | 0.0108 (4) | 0.0162 (4) | −0.0008 (3) | 0.0012 (3) | −0.0011 (3) |
C19 | 0.0181 (4) | 0.0157 (4) | 0.0163 (4) | 0.0027 (3) | 0.0044 (3) | 0.0008 (3) |
C20 | 0.0235 (5) | 0.0256 (5) | 0.0231 (4) | −0.0021 (4) | 0.0070 (4) | −0.0083 (4) |
C21 | 0.0180 (4) | 0.0292 (5) | 0.0230 (5) | 0.0011 (4) | 0.0053 (4) | 0.0011 (4) |
O1—C7 | 1.2194 (11) | C8—C10 | 1.4936 (13) |
O2—C18 | 1.2241 (11) | C9—H9A | 0.967 (13) |
N1—C7 | 1.3938 (11) | C9—H9B | 0.982 (14) |
N1—C6 | 1.3943 (11) | C10—H10A | 0.986 (14) |
N1—C11 | 1.4428 (11) | C10—H10B | 0.998 (14) |
N2—C7 | 1.3853 (12) | C10—H10C | 1.001 (14) |
N2—C1 | 1.3969 (11) | C11—H11A | 0.978 (12) |
N2—C8 | 1.4386 (11) | C11—H11B | 0.982 (12) |
N3—C18 | 1.3899 (11) | C12—C13 | 1.3843 (12) |
N3—C12 | 1.3980 (11) | C12—C17 | 1.4003 (12) |
N3—C11 | 1.4478 (11) | C13—C14 | 1.4010 (13) |
N4—C18 | 1.3850 (11) | C13—H13 | 0.961 (13) |
N4—C17 | 1.3991 (11) | C14—C15 | 1.3970 (14) |
N4—C19 | 1.4343 (11) | C14—H14 | 0.991 (14) |
C1—C2 | 1.3858 (12) | C15—C16 | 1.3956 (13) |
C1—C6 | 1.4026 (12) | C15—H15 | 0.960 (14) |
C2—C3 | 1.3976 (13) | C16—C17 | 1.3863 (12) |
C2—H2 | 0.986 (12) | C16—H16 | 0.959 (14) |
C3—C4 | 1.3940 (13) | C19—C21 | 1.3265 (13) |
C3—H3 | 0.984 (13) | C19—C20 | 1.4975 (14) |
C4—C5 | 1.4005 (13) | C20—H20A | 0.992 (15) |
C4—H4 | 0.980 (13) | C20—H20B | 0.998 (15) |
C5—C6 | 1.3839 (12) | C20—H20C | 0.971 (15) |
C5—H5 | 0.951 (14) | C21—H21A | 0.973 (14) |
C8—C9 | 1.3271 (14) | C21—H21B | 0.993 (15) |
O1···C10 | 3.2233 (12) | C3···H11Avi | 3.017 (12) |
O1···C13 | 3.3381 (12) | C4···H20Bvii | 3.013 (14) |
O1···C10i | 3.3499 (12) | C5···H11A | 2.980 (12) |
O2···C20 | 3.1500 (13) | C7···H13 | 3.084 (13) |
O2···C5 | 3.3598 (12) | C7···H21Bv | 2.962 (14) |
O1···H11B | 2.510 (12) | C7···H10A | 2.891 (14) |
O1···H13 | 2.477 (13) | C8···H2 | 2.956 (13) |
O1···H10Ai | 2.595 (14) | C9···H2 | 2.981 (13) |
O1···H20Cii | 2.917 (15) | C9···H15ix | 2.898 (13) |
O1···H10A | 2.667 (14) | C10···H9Bx | 3.051 (14) |
O2···H3iii | 2.772 (13) | C11···H2iii | 3.077 (13) |
O2···H5 | 2.493 (14) | C11···H13 | 3.009 (13) |
O2···H11A | 2.505 (12) | C11···H5 | 2.972 (13) |
O2···H20C | 2.581 (15) | C13···H11B | 2.965 (12) |
O2···H10Biv | 2.487 (14) | C13···H9Aiii | 3.051 (14) |
O2···H15v | 2.781 (14) | C14···H9Aiii | 2.989 (14) |
N1···C3iv | 3.3814 (12) | C16···H21A | 3.080 (14) |
N2···C21v | 3.4318 (13) | C17···H21A | 2.979 (14) |
N3···H3iii | 2.938 (13) | C18···H16v | 2.858 (14) |
N3···H16v | 2.920 (14) | C18···H5 | 3.093 (14) |
C1···C21v | 3.5839 (13) | C18···H20C | 2.852 (15) |
C2···C11vi | 3.5159 (12) | C18···H3iii | 2.701 (13) |
C2···C9 | 3.4314 (13) | C19···H16 | 2.977 (14) |
C3···C18vii | 3.3908 (13) | C21···H16 | 2.874 (14) |
C3···C11vi | 3.3994 (12) | H2···H11Bvii | 2.428 (18) |
C7···C21v | 3.5253 (13) | H5···H11A | 2.583 (18) |
C16···C21 | 3.3315 (14) | H9B···H10C | 2.495 (19) |
C16···C18viii | 3.4599 (13) | H9B···H10Bx | 2.44 (2) |
C1···H21Av | 2.941 (14) | H9B···H15ix | 2.578 (19) |
C1···H9A | 3.064 (13) | H10C···H9B | 2.495 (19) |
C1···H11Avi | 2.946 (12) | H20A···H21B | 2.45 (2) |
C2···H11Avi | 2.786 (12) | H20A···H20Axi | 2.34 (2) |
C7—N1—C6 | 110.21 (7) | C8—C10—H10C | 109.8 (8) |
C7—N1—C11 | 122.19 (7) | H10A—C10—H10C | 107.5 (11) |
C6—N1—C11 | 127.12 (7) | H10B—C10—H10C | 109.9 (11) |
C7—N2—C1 | 110.10 (7) | N1—C11—N3 | 114.04 (7) |
C7—N2—C8 | 123.56 (7) | N1—C11—H11A | 109.1 (7) |
C1—N2—C8 | 126.06 (8) | N3—C11—H11A | 107.2 (7) |
C18—N3—C12 | 110.11 (7) | N1—C11—H11B | 107.4 (7) |
C18—N3—C11 | 122.45 (7) | N3—C11—H11B | 108.7 (7) |
C12—N3—C11 | 126.81 (7) | H11A—C11—H11B | 110.4 (10) |
C18—N4—C17 | 109.78 (7) | C13—C12—N3 | 131.31 (8) |
C18—N4—C19 | 124.12 (7) | C13—C12—C17 | 122.02 (8) |
C17—N4—C19 | 125.86 (7) | N3—C12—C17 | 106.66 (7) |
C2—C1—N2 | 131.38 (8) | C12—C13—C14 | 116.83 (8) |
C2—C1—C6 | 121.47 (8) | C12—C13—H13 | 121.4 (8) |
N2—C1—C6 | 107.15 (8) | C14—C13—H13 | 121.7 (8) |
C1—C2—C3 | 117.10 (8) | C15—C14—C13 | 121.19 (9) |
C1—C2—H2 | 119.7 (7) | C15—C14—H14 | 121.3 (8) |
C3—C2—H2 | 123.2 (7) | C13—C14—H14 | 117.5 (8) |
C4—C3—C2 | 121.38 (8) | C16—C15—C14 | 121.58 (9) |
C4—C3—H3 | 117.6 (7) | C16—C15—H15 | 118.0 (8) |
C2—C3—H3 | 121.0 (7) | C14—C15—H15 | 120.4 (8) |
C3—C4—C5 | 121.44 (8) | C17—C16—C15 | 117.13 (8) |
C3—C4—H4 | 119.7 (8) | C17—C16—H16 | 121.1 (8) |
C5—C4—H4 | 118.8 (8) | C15—C16—H16 | 121.8 (8) |
C6—C5—C4 | 116.95 (8) | C16—C17—N4 | 131.39 (8) |
C6—C5—H5 | 118.6 (8) | C16—C17—C12 | 121.25 (8) |
C4—C5—H5 | 124.4 (8) | N4—C17—C12 | 107.33 (7) |
C5—C6—N1 | 131.61 (8) | O2—C18—N4 | 127.76 (8) |
C5—C6—C1 | 121.65 (8) | O2—C18—N3 | 126.13 (8) |
N1—C6—C1 | 106.75 (7) | N4—C18—N3 | 106.11 (7) |
O1—C7—N2 | 127.56 (8) | C21—C19—N4 | 119.01 (9) |
O1—C7—N1 | 126.66 (8) | C21—C19—C20 | 125.66 (9) |
N2—C7—N1 | 105.77 (7) | N4—C19—C20 | 115.23 (8) |
C9—C8—N2 | 118.63 (8) | C19—C20—H20A | 110.5 (9) |
C9—C8—C10 | 127.17 (8) | C19—C20—H20B | 108.6 (8) |
N2—C8—C10 | 114.13 (8) | H20A—C20—H20B | 107.6 (12) |
C8—C9—H9A | 121.6 (8) | C19—C20—H20C | 113.4 (9) |
C8—C9—H9B | 121.1 (8) | H20A—C20—H20C | 108.9 (12) |
H9A—C9—H9B | 117.2 (12) | H20B—C20—H20C | 107.6 (12) |
C8—C10—H10A | 110.9 (8) | C19—C21—H21A | 121.2 (8) |
C8—C10—H10B | 110.3 (8) | C19—C21—H21B | 119.9 (8) |
H10A—C10—H10B | 108.4 (11) | H21A—C21—H21B | 118.9 (12) |
C7—N2—C1—C2 | 178.97 (9) | C18—N3—C11—N1 | −106.27 (9) |
C8—N2—C1—C2 | 4.89 (14) | C12—N3—C11—N1 | 83.78 (10) |
C7—N2—C1—C6 | −0.36 (9) | C18—N3—C12—C13 | −177.76 (9) |
C8—N2—C1—C6 | −174.44 (8) | C11—N3—C12—C13 | −6.78 (15) |
N2—C1—C2—C3 | −178.63 (8) | C18—N3—C12—C17 | 1.01 (9) |
C6—C1—C2—C3 | 0.62 (13) | C11—N3—C12—C17 | 171.99 (8) |
C1—C2—C3—C4 | −0.86 (13) | N3—C12—C13—C14 | 178.01 (9) |
C2—C3—C4—C5 | 0.49 (14) | C17—C12—C13—C14 | −0.60 (13) |
C3—C4—C5—C6 | 0.15 (13) | C12—C13—C14—C15 | 0.41 (14) |
C4—C5—C6—N1 | 179.51 (9) | C13—C14—C15—C16 | 0.17 (15) |
C4—C5—C6—C1 | −0.39 (13) | C14—C15—C16—C17 | −0.55 (15) |
C7—N1—C6—C5 | −178.70 (9) | C15—C16—C17—N4 | −177.31 (9) |
C11—N1—C6—C5 | −6.53 (15) | C15—C16—C17—C12 | 0.36 (14) |
C7—N1—C6—C1 | 1.21 (9) | C18—N4—C17—C16 | 177.76 (9) |
C11—N1—C6—C1 | 173.38 (8) | C19—N4—C17—C16 | 3.22 (16) |
C2—C1—C6—C5 | 0.00 (13) | C18—N4—C17—C12 | −0.16 (10) |
N2—C1—C6—C5 | 179.41 (8) | C19—N4—C17—C12 | −174.69 (8) |
C2—C1—C6—N1 | −179.92 (8) | C13—C12—C17—C16 | 0.22 (14) |
N2—C1—C6—N1 | −0.51 (9) | N3—C12—C17—C16 | −178.69 (8) |
C1—N2—C7—O1 | −179.53 (8) | C13—C12—C17—N4 | 178.40 (8) |
C8—N2—C7—O1 | −5.27 (14) | N3—C12—C17—N4 | −0.51 (9) |
C1—N2—C7—N1 | 1.08 (9) | C17—N4—C18—O2 | −179.70 (9) |
C8—N2—C7—N1 | 175.34 (7) | C19—N4—C18—O2 | −5.05 (15) |
C6—N1—C7—O1 | 179.19 (8) | C17—N4—C18—N3 | 0.76 (10) |
C11—N1—C7—O1 | 6.57 (13) | C19—N4—C18—N3 | 175.42 (8) |
C6—N1—C7—N2 | −1.42 (9) | C12—N3—C18—O2 | 179.36 (9) |
C11—N1—C7—N2 | −174.04 (7) | C11—N3—C18—O2 | 7.92 (14) |
C7—N2—C8—C9 | 120.14 (10) | C12—N3—C18—N4 | −1.10 (9) |
C1—N2—C8—C9 | −66.54 (12) | C11—N3—C18—N4 | −172.54 (7) |
C7—N2—C8—C10 | −62.69 (11) | C18—N4—C19—C21 | 127.96 (10) |
C1—N2—C8—C10 | 110.64 (10) | C17—N4—C19—C21 | −58.25 (13) |
C7—N1—C11—N3 | −105.28 (9) | C18—N4—C19—C20 | −55.46 (12) |
C6—N1—C11—N3 | 83.41 (10) | C17—N4—C19—C20 | 118.33 (10) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z+1/2; (iii) x, y−1, z; (iv) −x, y−1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) −x, y+1/2, −z+1/2; (vii) x, y+1, z; (viii) −x+1, y−1/2, −z+1/2; (ix) −x+1, −y+1, −z+1; (x) −x, −y+2, −z+1; (xi) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2 | 0.951 (14) | 2.493 (14) | 3.3598 (11) | 151.4 (10) |
C10—H10A···O1i | 0.986 (14) | 2.596 (14) | 3.3498 (12) | 133.3 (11) |
C10—H10B···O2vi | 0.998 (14) | 2.488 (14) | 3.4780 (12) | 171.4 (11) |
C13—H13···O1 | 0.961 (13) | 2.477 (13) | 3.3381 (11) | 149.1 (11) |
Symmetry codes: (i) −x, −y+1, −z+1; (vi) −x, y+1/2, −z+1/2. |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853. Web of Science CrossRef IUCr Journals Google Scholar
Díez-Barra, E., Dotor, J., de la Hoz, A., Foces-Foces, C., Enjalbal, C., Aubagnac, J. L., Claramunt, R. M. & Elguero, J. (1997). Tetrahedron, 53, 7689–7704. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Huang, K. S., Haddadin, M. J., Olmstead, M. M. & Kurth, M. J. (2001). J. Org. Chem. 66, 1310–1315. CrossRef PubMed Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433. CrossRef PubMed Google Scholar
Luo, Y., Yao, J. P., Yang, L., Feng, C. L., Tang, W., Wang, G. F., Zuo, J. P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83. CrossRef Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61. Google Scholar
Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Corés, R., Hernandez, M. & Castillo, R. (2001). Bioorg. Med. Chem. Lett. 11, 187–190. PubMed Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, Z. & Thummel, R. P. (1995). J. Org. Chem. 60, 5935–5945. CrossRef Google Scholar
Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36. Web of Science PubMed CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CrossRef CAS Google Scholar
Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. Chem. 1, 565–574. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.