research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-{[2-oxo-3-(prop-1-en-2-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-1-yl]meth­yl}-3-(prop-1-en-2-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: as.saber.pro@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 October 2018; accepted 28 October 2018; online 9 November 2018)

In the title compound, C21H20N4O2, the intra­molecular C—H⋯O hydrogen-bonded benzo­diazo­lone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of inter­molecular C—H⋯O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.8%), H⋯C/C⋯H (30.7%) and H⋯O/O⋯H (11.2%) inter­actions.

1. Chemical context

The benzimidazole unit is an important pharmacophore and a privileged structure in the functions of biological mol­ecules. Benzimidazole derivatives have attracted considerable attention from researchers because their bioactive and pharmaceutical properties. Many members of this family are widely used as anti­convulsant, anti-fungal, analgesic, anti­microbial, anti-histaminic and hypnotic or anti-inflammatory agents (Ayhan-Kılcıgil et al., 2007[Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607-611.]; Soderlind et al., 1999[Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19-36.]; Luo et al., 2011[Luo, Y., Yao, J. P., Yang, L., Feng, C. L., Tang, W., Wang, G. F., Zuo, J. P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78-83.]; Walia et al., 2011[Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. Chem. 1, 565-574.]; Navarrete-Vázquez et al., 2001[Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Corés, R., Hernandez, M. & Castillo, R. (2001). Bioorg. Med. Chem. Lett. 11, 187-190.]). Benzimid­azolone derivatives also find commercial use as dyes for acrylic fibres. The search for new heterocyclic systems including the benzimidazolone moiety with biological activities therefore is of much current importance (Mondieig et al., 2013[Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51-61.]; Lakhrissi et al., 2008[Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421-433.]; Ouzidan et al., 2011[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362-o363.]; Dardouri et al., 2011[Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853.]). In this context, we are inter­ested in the synthesis of the title compound, 1-{[2-oxo-3-(prop-1-en-2-yl)2,3-di­hydro-1H-1,3-benzo­diazol-1-yl)meth­yl}-3-(prop-1-en-2-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one, by reaction of di­chloro­methane with 1-(prop-1-en-2-yl)-1H-benzimidazol-2(3H)-one under phase-transfer catalysis (PTC) conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base. We report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

2. Structural commentary

In the title compound (Fig. 1[link]), the intra­molecular C—H⋯O hydrogen-bonded (Table 1[link]) benzo­diazo­lone moieties are planar with the largest deviations being 0.017 (1) Å for atom C7 in the N1-containing unit (r.m.s. deviation = 0.011 Å) and 0.026 (1) Å for atom C18 in the N3-containing unit (r.m.s. deviation = 0.019 Å). The dihedral angle between the mean planes of the benzo­diazo­lone moieties is 57.35 (3)°.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2 0.951 (14) 2.493 (14) 3.3598 (11) 151.4 (10)
C10—H10A⋯O1i 0.986 (14) 2.596 (14) 3.3498 (12) 133.3 (11)
C10—H10B⋯O2vi 0.998 (14) 2.488 (14) 3.4780 (12) 171.4 (11)
C13—H13⋯O1 0.961 (13) 2.477 (13) 3.3381 (11) 149.1 (11)
Symmetry codes: (i) -x, -y+1, -z+1; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids. Intra­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

Hydrogen bonding and van der Waals contacts are the dominant inter­actions in the crystal packing. In the crystal, two sets of inter­molecular C—H⋯O hydrogen bonds (Table 1[link]) generate layers parallel to the bc plane. In these layers, one of the benzo­diazole units in each mol­ecule is approximately parallel to the bc plane while the other half of the mol­ecule protrudes from the surface (Fig. 2[link]).

[Figure 2]
Figure 2
The packing viewed along the b-axis direction giving an elevation view of two adjacent layers. Inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O1, O2 and hydrogen atoms H5, H10A and H10B indicate their roles as the respective donors and acceptors in the dominant C—H ⋯ O hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) as shown in Fig. 4[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly indicates that no ππ inter­actions are present in the title structure.

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1476 to 1.2686 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions, respectively, around the atoms corresponding to positive and negative potentials.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and N⋯C/C⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bg, respectively, together with their relative contributions to the Hirshfeld surface. The most important contribution to the overall crystal packing (51.8%) is from H⋯H inter­actions, which are shown in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The spike with the tip at de = di = 1.08 Å in Fig. 6[link]b is due to the short inter­atomic H⋯H contacts (Table 2[link]). The fingerprint plot, Fig. 6[link]c, delineated into H⋯C/C⋯H contacts, which make a 30.7% contribution to the HS, shows a pair of characteristic wings and a pair of spikes with the tips at de + di ∼2.65 Å. The H⋯O/O⋯H contacts in the structure with a 11.2% contribution to the HS have a symmetrical distribution of points, Fig. 6[link]d, with the tips at de + di = 2.40 Å arising from the short intra- and/or inter­atomic C—H ⋯ O hydrogen bonding (Table 1[link]) as well as from the H⋯O/O⋯H contacts (Table 2[link]). Finally, the H⋯N/N⋯H (Fig. 6[link]e) contacts in the structure with a 5.1% contribution to the HS also have a symmetrical distribution of points, with the pair of wings appearing at de + di = 2.80 Å.

Table 2
Selected interatomic distances (Å)

O1⋯C10 3.2233 (12) C3⋯H11Avi 3.017 (12)
O1⋯C13 3.3381 (12) C4⋯H20Bvii 3.013 (14)
O1⋯C10i 3.3499 (12) C5⋯H11A 2.980 (12)
O2⋯C20 3.1500 (13) C7⋯H13 3.084 (13)
O2⋯C5 3.3598 (12) C7⋯H21Bv 2.962 (14)
O1⋯H11B 2.510 (12) C7⋯H10A 2.891 (14)
O1⋯H13 2.477 (13) C8⋯H2 2.956 (13)
O1⋯H10Ai 2.595 (14) C9⋯H2 2.981 (13)
O1⋯H20Cii 2.917 (15) C9⋯H15ix 2.898 (13)
O1⋯H10A 2.667 (14) C10⋯H9Bx 3.051 (14)
O2⋯H3iii 2.772 (13) C11⋯H2iii 3.077 (13)
O2⋯H5 2.493 (14) C11⋯H13 3.009 (13)
O2⋯H11A 2.505 (12) C11⋯H5 2.972 (13)
O2⋯H20C 2.581 (15) C13⋯H11B 2.965 (12)
O2⋯H10Biv 2.487 (14) C13⋯H9Aiii 3.051 (14)
O2⋯H15v 2.781 (14) C14⋯H9Aiii 2.989 (14)
N1⋯C3iv 3.3814 (12) C16⋯H21A 3.080 (14)
N2⋯C21v 3.4318 (13) C17⋯H21A 2.979 (14)
N3⋯H3iii 2.938 (13) C18⋯H16v 2.858 (14)
N3⋯H16v 2.920 (14) C18⋯H5 3.093 (14)
C1⋯C21v 3.5839 (13) C18⋯H20C 2.852 (15)
C2⋯C11vi 3.5159 (12) C18⋯H3iii 2.701 (13)
C2⋯C9 3.4314 (13) C19⋯H16 2.977 (14)
C3⋯C18vii 3.3908 (13) C21⋯H16 2.874 (14)
C3⋯C11vi 3.3994 (12) H2⋯H11Bvii 2.428 (18)
C7⋯C21v 3.5253 (13) H5⋯H11A 2.583 (18)
C16⋯C21 3.3315 (14) H9B⋯H10C 2.495 (19)
C16⋯C18viii 3.4599 (13) H9B⋯H10Bx 2.44 (2)
C1⋯H21Av 2.941 (14) H9B⋯H15ix 2.578 (19)
C1⋯H9A 3.064 (13) H10C⋯H9B 2.495 (19)
C1⋯H11Avi 2.946 (12) H20A⋯H21B 2.45 (2)
C2⋯H11Avi 2.786 (12) H20A⋯H20Axi 2.34 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x, y+1, z; (viii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) -x+1, -y+1, -z+1; (x) -x, -y+2, -z+1; (xi) -x+1, -y, -z.
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The Hirshfeld surface representations for the function dnorm are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions in Fig. 7[link]ad, respectively.

[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for benzimidazolin-2-one derivatives in which both nitro­gen atoms form exocyclic C—N bonds gave 61 hits. In these structures, the bicyclic ring system is either planar, has a slight twist end-to-end or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape. The closest examples to the title compound are NOTQUI (Díez-Barra et al., 1997[Díez-Barra, E., Dotor, J., de la Hoz, A., Foces-Foces, C., Enjalbal, C., Aubagnac, J. L., Claramunt, R. M. & Elguero, J. (1997). Tetrahedron, 53, 7689-7704.]) and XEVJOX (Huang et al., 2001[Huang, K. S., Haddadin, M. J., Olmstead, M. M. & Kurth, M. J. (2001). J. Org. Chem. 66, 1310-1315.]) with ZICNEE (Shi & Thummel, 1995[Shi, Z. & Thummel, R. P. (1995). J. Org. Chem. 60, 5935-5945.]) as a more distant relative (see Fig. 8[link]). In XEVJOX, the N—C—N angle connecting the two bicyclic units [114.19 (12)°] is essentially the same as in the title compound [114.04 (7)°]. In both of these, the bicyclic units are in an anti arrangement and this is basically the same for ZICNEE. Inter­estingly, the three bicyclic units in NOTQUI are close to all being syn to one another.

[Figure 8]
Figure 8
NOTQUI, XEVJOX and ZICNEE.

6. Synthesis and crystallization

To a solution of 1-(prop-1-en-2-yl)-1H-benzimidazol-2(3H)-one (2.87mmol) in di­chloro­methane (30 ml) as reagent and solvent were added potassium carbonate (5.71 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide (0.37 mmol). The mixture was heated for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol solution to afford colourless crystals in 67% yield.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were located in a difference-Fourier map and were freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C21H20N4O2
Mr 360.41
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.5244 (5), 8.6312 (4), 17.9845 (8)
β (°) 94.134 (1)
V3) 1784.25 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.40 × 0.39 × 0.22
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 33699, 4912, 4269
Rint 0.027
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.09
No. of reflections 4912
No. of parameters 324
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.47, −0.18
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-{[2-Oxo-3-(prop-1-en-2-yl)-2,3-dihydro-1H-1,3-benzodiazol-1-yl)methyl}-3-(prop-1-en-2-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one top
Crystal data top
C21H20N4O2F(000) = 760
Mr = 360.41Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.5244 (5) ÅCell parameters from 9896 reflections
b = 8.6312 (4) Åθ = 2.3–29.6°
c = 17.9845 (8) ŵ = 0.09 mm1
β = 94.134 (1)°T = 100 K
V = 1784.25 (14) Å3Block, colourless
Z = 40.40 × 0.39 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4912 independent reflections
Radiation source: fine-focus sealed tube4269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3333 pixels mm-1θmax = 29.7°, θmin = 1.8°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.89, Tmax = 0.98l = 2525
33699 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.113All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.248P]
where P = (Fo2 + 2Fc2)/3
4912 reflections(Δ/σ)max < 0.001
324 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14989 (6)0.48310 (8)0.43717 (4)0.01960 (15)
O20.23203 (6)0.33229 (8)0.13640 (4)0.01728 (15)
N10.15509 (6)0.53341 (9)0.30979 (4)0.01421 (16)
N20.14171 (6)0.73261 (9)0.38646 (4)0.01478 (16)
N30.26416 (6)0.31586 (9)0.26564 (4)0.01347 (16)
N40.39789 (6)0.21797 (9)0.19636 (4)0.01465 (16)
C10.14167 (7)0.79263 (10)0.31433 (5)0.01364 (17)
C20.13453 (8)0.94353 (11)0.28808 (5)0.01628 (18)
H20.1277 (11)1.0298 (15)0.3234 (7)0.020 (3)*
C30.13427 (8)0.96453 (11)0.21101 (5)0.01748 (18)
H30.1274 (10)1.0686 (15)0.1888 (7)0.021 (3)*
C40.14246 (8)0.83917 (11)0.16280 (5)0.01769 (18)
H40.1443 (11)0.8573 (15)0.1091 (7)0.021 (3)*
C50.15041 (8)0.68681 (11)0.18947 (5)0.01611 (18)
H50.1568 (11)0.5978 (16)0.1588 (7)0.024 (3)*
C60.14948 (7)0.66652 (10)0.26575 (5)0.01342 (17)
C70.14860 (7)0.57243 (10)0.38459 (5)0.01462 (17)
C80.12521 (8)0.81967 (11)0.45309 (5)0.01582 (18)
C90.20574 (8)0.92203 (12)0.47637 (5)0.02068 (19)
H9A0.2757 (12)0.9366 (16)0.4506 (7)0.027 (3)*
H9B0.1940 (12)0.9911 (16)0.5186 (7)0.027 (3)*
C100.01276 (8)0.78748 (12)0.48653 (5)0.01963 (19)
H10A0.0075 (12)0.6777 (17)0.5012 (8)0.029 (3)*
H10B0.0541 (12)0.8114 (16)0.4499 (8)0.026 (3)*
H10C0.0073 (11)0.8515 (16)0.5326 (8)0.027 (3)*
C110.15234 (7)0.37476 (10)0.28445 (5)0.01449 (17)
H11A0.0994 (10)0.3665 (14)0.2396 (7)0.016 (3)*
H11B0.1243 (11)0.3110 (14)0.3247 (7)0.018 (3)*
C120.35153 (7)0.25387 (10)0.31484 (5)0.01369 (17)
C130.36158 (8)0.24451 (11)0.39187 (5)0.01675 (18)
H130.3032 (11)0.2870 (16)0.4215 (7)0.022 (3)*
C140.46041 (9)0.16942 (11)0.42436 (5)0.01995 (19)
H140.4683 (12)0.1616 (16)0.4794 (8)0.027 (3)*
C150.54473 (8)0.10818 (12)0.38065 (5)0.0208 (2)
H150.6129 (12)0.0591 (17)0.4037 (7)0.031 (3)*
C160.53439 (8)0.11942 (11)0.30305 (5)0.01861 (19)
H160.5928 (11)0.0792 (17)0.2729 (8)0.028 (3)*
C170.43617 (7)0.19291 (10)0.27099 (5)0.01441 (17)
C180.29128 (7)0.29272 (10)0.19241 (5)0.01344 (17)
C190.45369 (8)0.16277 (10)0.13270 (5)0.01655 (18)
C200.38248 (9)0.05439 (13)0.08298 (6)0.0238 (2)
H20A0.4249 (13)0.0262 (18)0.0389 (8)0.040 (4)*
H20B0.3693 (12)0.0429 (18)0.1112 (8)0.034 (4)*
H20C0.3068 (13)0.0959 (18)0.0661 (8)0.033 (3)*
C210.56303 (9)0.20343 (13)0.12450 (6)0.0232 (2)
H21A0.6039 (12)0.2754 (17)0.1589 (8)0.028 (3)*
H21B0.6045 (12)0.1602 (16)0.0827 (8)0.030 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (3)0.0166 (3)0.0187 (3)0.0040 (3)0.0045 (3)0.0038 (2)
O20.0170 (3)0.0173 (3)0.0171 (3)0.0021 (2)0.0019 (2)0.0004 (2)
N10.0163 (3)0.0111 (4)0.0153 (3)0.0012 (3)0.0022 (3)0.0005 (3)
N20.0180 (3)0.0121 (4)0.0143 (3)0.0011 (3)0.0021 (3)0.0008 (3)
N30.0124 (3)0.0133 (3)0.0146 (3)0.0022 (3)0.0004 (3)0.0010 (3)
N40.0134 (3)0.0157 (4)0.0149 (3)0.0026 (3)0.0016 (3)0.0004 (3)
C10.0114 (4)0.0139 (4)0.0156 (4)0.0004 (3)0.0006 (3)0.0006 (3)
C20.0157 (4)0.0132 (4)0.0198 (4)0.0015 (3)0.0004 (3)0.0014 (3)
C30.0171 (4)0.0145 (4)0.0206 (4)0.0030 (3)0.0002 (3)0.0024 (3)
C40.0173 (4)0.0187 (5)0.0169 (4)0.0025 (3)0.0001 (3)0.0022 (3)
C50.0158 (4)0.0163 (4)0.0162 (4)0.0006 (3)0.0008 (3)0.0016 (3)
C60.0111 (4)0.0116 (4)0.0175 (4)0.0000 (3)0.0007 (3)0.0003 (3)
C70.0129 (4)0.0142 (4)0.0169 (4)0.0016 (3)0.0024 (3)0.0005 (3)
C80.0178 (4)0.0159 (4)0.0138 (4)0.0052 (3)0.0008 (3)0.0013 (3)
C90.0204 (4)0.0202 (5)0.0213 (4)0.0016 (4)0.0007 (3)0.0049 (4)
C100.0173 (4)0.0237 (5)0.0181 (4)0.0029 (3)0.0031 (3)0.0017 (4)
C110.0114 (4)0.0116 (4)0.0206 (4)0.0004 (3)0.0018 (3)0.0020 (3)
C120.0134 (4)0.0107 (4)0.0168 (4)0.0002 (3)0.0003 (3)0.0000 (3)
C130.0190 (4)0.0146 (4)0.0167 (4)0.0006 (3)0.0011 (3)0.0017 (3)
C140.0237 (5)0.0180 (4)0.0175 (4)0.0007 (3)0.0030 (3)0.0004 (3)
C150.0192 (4)0.0198 (5)0.0226 (4)0.0039 (3)0.0039 (3)0.0015 (4)
C160.0153 (4)0.0186 (4)0.0218 (4)0.0035 (3)0.0010 (3)0.0002 (3)
C170.0142 (4)0.0129 (4)0.0160 (4)0.0002 (3)0.0003 (3)0.0003 (3)
C180.0133 (4)0.0108 (4)0.0162 (4)0.0008 (3)0.0012 (3)0.0011 (3)
C190.0181 (4)0.0157 (4)0.0163 (4)0.0027 (3)0.0044 (3)0.0008 (3)
C200.0235 (5)0.0256 (5)0.0231 (4)0.0021 (4)0.0070 (4)0.0083 (4)
C210.0180 (4)0.0292 (5)0.0230 (5)0.0011 (4)0.0053 (4)0.0011 (4)
Geometric parameters (Å, º) top
O1—C71.2194 (11)C8—C101.4936 (13)
O2—C181.2241 (11)C9—H9A0.967 (13)
N1—C71.3938 (11)C9—H9B0.982 (14)
N1—C61.3943 (11)C10—H10A0.986 (14)
N1—C111.4428 (11)C10—H10B0.998 (14)
N2—C71.3853 (12)C10—H10C1.001 (14)
N2—C11.3969 (11)C11—H11A0.978 (12)
N2—C81.4386 (11)C11—H11B0.982 (12)
N3—C181.3899 (11)C12—C131.3843 (12)
N3—C121.3980 (11)C12—C171.4003 (12)
N3—C111.4478 (11)C13—C141.4010 (13)
N4—C181.3850 (11)C13—H130.961 (13)
N4—C171.3991 (11)C14—C151.3970 (14)
N4—C191.4343 (11)C14—H140.991 (14)
C1—C21.3858 (12)C15—C161.3956 (13)
C1—C61.4026 (12)C15—H150.960 (14)
C2—C31.3976 (13)C16—C171.3863 (12)
C2—H20.986 (12)C16—H160.959 (14)
C3—C41.3940 (13)C19—C211.3265 (13)
C3—H30.984 (13)C19—C201.4975 (14)
C4—C51.4005 (13)C20—H20A0.992 (15)
C4—H40.980 (13)C20—H20B0.998 (15)
C5—C61.3839 (12)C20—H20C0.971 (15)
C5—H50.951 (14)C21—H21A0.973 (14)
C8—C91.3271 (14)C21—H21B0.993 (15)
O1···C103.2233 (12)C3···H11Avi3.017 (12)
O1···C133.3381 (12)C4···H20Bvii3.013 (14)
O1···C10i3.3499 (12)C5···H11A2.980 (12)
O2···C203.1500 (13)C7···H133.084 (13)
O2···C53.3598 (12)C7···H21Bv2.962 (14)
O1···H11B2.510 (12)C7···H10A2.891 (14)
O1···H132.477 (13)C8···H22.956 (13)
O1···H10Ai2.595 (14)C9···H22.981 (13)
O1···H20Cii2.917 (15)C9···H15ix2.898 (13)
O1···H10A2.667 (14)C10···H9Bx3.051 (14)
O2···H3iii2.772 (13)C11···H2iii3.077 (13)
O2···H52.493 (14)C11···H133.009 (13)
O2···H11A2.505 (12)C11···H52.972 (13)
O2···H20C2.581 (15)C13···H11B2.965 (12)
O2···H10Biv2.487 (14)C13···H9Aiii3.051 (14)
O2···H15v2.781 (14)C14···H9Aiii2.989 (14)
N1···C3iv3.3814 (12)C16···H21A3.080 (14)
N2···C21v3.4318 (13)C17···H21A2.979 (14)
N3···H3iii2.938 (13)C18···H16v2.858 (14)
N3···H16v2.920 (14)C18···H53.093 (14)
C1···C21v3.5839 (13)C18···H20C2.852 (15)
C2···C11vi3.5159 (12)C18···H3iii2.701 (13)
C2···C93.4314 (13)C19···H162.977 (14)
C3···C18vii3.3908 (13)C21···H162.874 (14)
C3···C11vi3.3994 (12)H2···H11Bvii2.428 (18)
C7···C21v3.5253 (13)H5···H11A2.583 (18)
C16···C213.3315 (14)H9B···H10C2.495 (19)
C16···C18viii3.4599 (13)H9B···H10Bx2.44 (2)
C1···H21Av2.941 (14)H9B···H15ix2.578 (19)
C1···H9A3.064 (13)H10C···H9B2.495 (19)
C1···H11Avi2.946 (12)H20A···H21B2.45 (2)
C2···H11Avi2.786 (12)H20A···H20Axi2.34 (2)
C7—N1—C6110.21 (7)C8—C10—H10C109.8 (8)
C7—N1—C11122.19 (7)H10A—C10—H10C107.5 (11)
C6—N1—C11127.12 (7)H10B—C10—H10C109.9 (11)
C7—N2—C1110.10 (7)N1—C11—N3114.04 (7)
C7—N2—C8123.56 (7)N1—C11—H11A109.1 (7)
C1—N2—C8126.06 (8)N3—C11—H11A107.2 (7)
C18—N3—C12110.11 (7)N1—C11—H11B107.4 (7)
C18—N3—C11122.45 (7)N3—C11—H11B108.7 (7)
C12—N3—C11126.81 (7)H11A—C11—H11B110.4 (10)
C18—N4—C17109.78 (7)C13—C12—N3131.31 (8)
C18—N4—C19124.12 (7)C13—C12—C17122.02 (8)
C17—N4—C19125.86 (7)N3—C12—C17106.66 (7)
C2—C1—N2131.38 (8)C12—C13—C14116.83 (8)
C2—C1—C6121.47 (8)C12—C13—H13121.4 (8)
N2—C1—C6107.15 (8)C14—C13—H13121.7 (8)
C1—C2—C3117.10 (8)C15—C14—C13121.19 (9)
C1—C2—H2119.7 (7)C15—C14—H14121.3 (8)
C3—C2—H2123.2 (7)C13—C14—H14117.5 (8)
C4—C3—C2121.38 (8)C16—C15—C14121.58 (9)
C4—C3—H3117.6 (7)C16—C15—H15118.0 (8)
C2—C3—H3121.0 (7)C14—C15—H15120.4 (8)
C3—C4—C5121.44 (8)C17—C16—C15117.13 (8)
C3—C4—H4119.7 (8)C17—C16—H16121.1 (8)
C5—C4—H4118.8 (8)C15—C16—H16121.8 (8)
C6—C5—C4116.95 (8)C16—C17—N4131.39 (8)
C6—C5—H5118.6 (8)C16—C17—C12121.25 (8)
C4—C5—H5124.4 (8)N4—C17—C12107.33 (7)
C5—C6—N1131.61 (8)O2—C18—N4127.76 (8)
C5—C6—C1121.65 (8)O2—C18—N3126.13 (8)
N1—C6—C1106.75 (7)N4—C18—N3106.11 (7)
O1—C7—N2127.56 (8)C21—C19—N4119.01 (9)
O1—C7—N1126.66 (8)C21—C19—C20125.66 (9)
N2—C7—N1105.77 (7)N4—C19—C20115.23 (8)
C9—C8—N2118.63 (8)C19—C20—H20A110.5 (9)
C9—C8—C10127.17 (8)C19—C20—H20B108.6 (8)
N2—C8—C10114.13 (8)H20A—C20—H20B107.6 (12)
C8—C9—H9A121.6 (8)C19—C20—H20C113.4 (9)
C8—C9—H9B121.1 (8)H20A—C20—H20C108.9 (12)
H9A—C9—H9B117.2 (12)H20B—C20—H20C107.6 (12)
C8—C10—H10A110.9 (8)C19—C21—H21A121.2 (8)
C8—C10—H10B110.3 (8)C19—C21—H21B119.9 (8)
H10A—C10—H10B108.4 (11)H21A—C21—H21B118.9 (12)
C7—N2—C1—C2178.97 (9)C18—N3—C11—N1106.27 (9)
C8—N2—C1—C24.89 (14)C12—N3—C11—N183.78 (10)
C7—N2—C1—C60.36 (9)C18—N3—C12—C13177.76 (9)
C8—N2—C1—C6174.44 (8)C11—N3—C12—C136.78 (15)
N2—C1—C2—C3178.63 (8)C18—N3—C12—C171.01 (9)
C6—C1—C2—C30.62 (13)C11—N3—C12—C17171.99 (8)
C1—C2—C3—C40.86 (13)N3—C12—C13—C14178.01 (9)
C2—C3—C4—C50.49 (14)C17—C12—C13—C140.60 (13)
C3—C4—C5—C60.15 (13)C12—C13—C14—C150.41 (14)
C4—C5—C6—N1179.51 (9)C13—C14—C15—C160.17 (15)
C4—C5—C6—C10.39 (13)C14—C15—C16—C170.55 (15)
C7—N1—C6—C5178.70 (9)C15—C16—C17—N4177.31 (9)
C11—N1—C6—C56.53 (15)C15—C16—C17—C120.36 (14)
C7—N1—C6—C11.21 (9)C18—N4—C17—C16177.76 (9)
C11—N1—C6—C1173.38 (8)C19—N4—C17—C163.22 (16)
C2—C1—C6—C50.00 (13)C18—N4—C17—C120.16 (10)
N2—C1—C6—C5179.41 (8)C19—N4—C17—C12174.69 (8)
C2—C1—C6—N1179.92 (8)C13—C12—C17—C160.22 (14)
N2—C1—C6—N10.51 (9)N3—C12—C17—C16178.69 (8)
C1—N2—C7—O1179.53 (8)C13—C12—C17—N4178.40 (8)
C8—N2—C7—O15.27 (14)N3—C12—C17—N40.51 (9)
C1—N2—C7—N11.08 (9)C17—N4—C18—O2179.70 (9)
C8—N2—C7—N1175.34 (7)C19—N4—C18—O25.05 (15)
C6—N1—C7—O1179.19 (8)C17—N4—C18—N30.76 (10)
C11—N1—C7—O16.57 (13)C19—N4—C18—N3175.42 (8)
C6—N1—C7—N21.42 (9)C12—N3—C18—O2179.36 (9)
C11—N1—C7—N2174.04 (7)C11—N3—C18—O27.92 (14)
C7—N2—C8—C9120.14 (10)C12—N3—C18—N41.10 (9)
C1—N2—C8—C966.54 (12)C11—N3—C18—N4172.54 (7)
C7—N2—C8—C1062.69 (11)C18—N4—C19—C21127.96 (10)
C1—N2—C8—C10110.64 (10)C17—N4—C19—C2158.25 (13)
C7—N1—C11—N3105.28 (9)C18—N4—C19—C2055.46 (12)
C6—N1—C11—N383.41 (10)C17—N4—C19—C20118.33 (10)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x, y+1, z; (viii) x+1, y1/2, z+1/2; (ix) x+1, y+1, z+1; (x) x, y+2, z+1; (xi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.951 (14)2.493 (14)3.3598 (11)151.4 (10)
C10—H10A···O1i0.986 (14)2.596 (14)3.3498 (12)133.3 (11)
C10—H10B···O2vi0.998 (14)2.488 (14)3.4780 (12)171.4 (11)
C13—H13···O10.961 (13)2.477 (13)3.3381 (11)149.1 (11)
Symmetry codes: (i) x, y+1, z+1; (vi) x, y+1/2, z+1/2.
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAyhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDíez-Barra, E., Dotor, J., de la Hoz, A., Foces-Foces, C., Enjalbal, C., Aubagnac, J. L., Claramunt, R. M. & Elguero, J. (1997). Tetrahedron, 53, 7689–7704.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHuang, K. S., Haddadin, M. J., Olmstead, M. M. & Kurth, M. J. (2001). J. Org. Chem. 66, 1310–1315.  CrossRef PubMed Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433.  CrossRef PubMed Google Scholar
First citationLuo, Y., Yao, J. P., Yang, L., Feng, C. L., Tang, W., Wang, G. F., Zuo, J. P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61.  Google Scholar
First citationNavarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Corés, R., Hernandez, M. & Castillo, R. (2001). Bioorg. Med. Chem. Lett. 11, 187–190.  PubMed Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, Z. & Thummel, R. P. (1995). J. Org. Chem. 60, 5935–5945.  CrossRef Google Scholar
First citationSoderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36.  Web of Science PubMed CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CrossRef CAS Google Scholar
First citationWalia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. Chem. 1, 565–574.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds