research communications
H-1,2,3-triazol-4-yl)methyl]-3-methylquinoxalin-2(1H)-one
and Hirshfeld surface analysis of 1-[(1-butyl-1aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadeemabad2018@gmail.com
The title compound, C16H19N5O, is built up from a planar quinoxalinone ring system linked through a methylene bridge to a 1,2,3-triazole ring, which in turn carries an n-butyl substituent. The triazole ring is inclined by 67.09 (4)° to the quinoxalinone ring plane. In the crystal, the molecules form oblique stacks along the a-axis direction through intermolecular C—HTrz⋯NTrz (Trz = triazole) hydrogen bonds, and offset π-stacking interactions between quinoxalinone rings [centroid–centroid distance = 3.9107 (9) Å] and π–π interactions, which are associated pairwise by inversion-related C—HDhydqn⋯π(ring) (Dhydqn = dihydroquinoxaline) interactions. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (52.7%), H⋯N/N⋯H (18.9%) and H⋯C/C⋯H (17.0%) interactions.
Keywords: crystal structure; dihydroquinoxaline; triazole; π-stacking; Hirshfeld surface.
CCDC reference: 1878133
1. Chemical context
Quinoxaline groups are well known, important nitrogen-containing et al., 2013; Vieira et al., 2014; Teja et al., 2016), anti-inflammatory (Guirado et al., 2012), anticancer (Abbas et al., 2015), antidiabetic (Kulkarni et al., 2012) and antihistaminic activities (Sridevi et al., 2010). As a continuation of our research works on the synthesis, spectroscopic and biological properties of quinoxaline derivatives (Ramli et al., 2013, 2017; Ramli & Essassi, 2015; Abad et al., 2018a,b,c; Ellouz et al., 2015; Sebbar et al., 2014), we report herein the molecular and crystal structures along with the Hirshfeld surface analysis of the title compound, 1-[(1-butyl-1H-1,2,3-triazol-5-yl)methyl]-3-methyl-1,2-dihydroquinoxalin-2-one.
comprising a benzene and a pyrazine ring fused together. Diversely substituted quinoxalines and their derivatives embedded with variety of functional groups are important biological agents and a significant amount of research activity has been directed towards this class of compounds. These molecules exhibit a wide range of biological applications and are potentially useful in medicinal chemistry research and have therapeutic applications such as antimicrobial (Attia2. Structural commentary
The title compound, (I), is built up from the two fused six-membered rings of a quinoxalinone moiety linked through a methylene bridge to a 1,2,3-triazole ring, which in turn carries an n-butyl substituent on N3 (Fig. 1). The dihydroquinoxaline unit is planar within 0.029 (1) Å (r.m.s. deviation of the fitted atoms = 0.0123 Å) and the triazole ring is inclined by 67.09 (4)° to the above-mentioned plane. The molecule adopts a Z-shaped conformation with the (1H-1,2,3-triazol-5-yl)methyl substituent projecting well out of the mean plane of the dihydroquinxalone unit, as indicated by the C1—N2—C10—C11 torsion angle of 90.85 (16)°. The n-butyl group is oriented in the opposite direction as seen from the N4—N3—C13—C14 torsion angle of −95.26 (16)° (Fig. 2).
3. Supramolecular features
Hydrogen bonding and van der Waals contacts are the dominant interactions in the crystal packing. In the crystal, the molecules form oblique stacks along the a-axis direction through intermolecular C—HTrz⋯NTrz (Trz = triazole) hydrogen bonds (Table 1), and offset, very weak π-stacking interactions between the A (C1–C6) and B (N1/N2/C1/C6–C8) rings [centroid–centroid distance = 3.9107 (9) Å, dihedral angle = 0.94 (7)°] and π-interactions between the C8=O1 carbonyl group and the B rings [O1—centroid = 3.5505 (14) Å, C8–centroid = 3.4546 (17) Å, C8=O1⋯centroid = 75.51 (9)°]. Pairs of stacks are associated through C—HDhydqn⋯π (Dhydqn = dihydroquinoxaline) interactions, generating small, diamond-shaped channels along the a-axis direction (Table 1 and Fig. 2).
4. Database Survey
A search of the CSD (Version 5.39, updated May 2018; Groom et al., 2016) using the fragment shown in Scheme 2 (R = C, R1 = nothing) generated 37 hits. Of these, the ones most comparable to the title molecule have R1 = CH3 and R = CH2C≡CH (Benzeid et al., 2009), CH2Ph (Ramli et al., 2010a, 2018), C2H5 (Benzeid et al., 2008), (1,3-oxazolidin-3-yl)ethyl (Caleb et al., 2009), CH2CH=CH2 (Ramli et al., 2010b) and the isomer with R = (1-butyl-1H-1,2,3- triazol-5-yl)methyl (Abad et al., 2018a). Those with R = CH2C≡CH and C2H5 have Z′ = 1. A common feature of the above subset as well as the majority of the other compounds with different R1 substituents is the geometry of the bicyclic unit, which is either planar or has a slight end-to-end twist. Another feature is the orientation of the R group, which generally has a C—N—C—C torsion angle >65° and in quite a few cases, this is close to 90°. A comparison of the conformation of the title molecule with that of its (1-butyl-1H-1,2,3-triazol-5-yl)methyl isomer shows that the latter has a U shape with the R group extending back over the bicyclic unit as the result of an intramolecular C—H⋯O hydrogen bond from the α hydrogen of the butyl group while in the former, the more remote position of the butyl group on the triazole ring disfavours such an interaction and the molecule adopts a Z shape. This conformation is favoured by the opportunity for π-stacking and C—H⋯π(ring) interactions in the crystal.
5. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near the hydrogen atom H12 indicates their role as the respective donors and/or acceptors in the dominant C—H⋯N hydrogen bonds; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 4. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggest that there are π–π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 6(a), and those delineated into H⋯H, H⋯N/N⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, O⋯C/C⋯O, N⋯C/C⋯N and N⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 6(b)–(i), respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H contributing 52.7% to the overall crystal packing, which is reflected in Fig. 6(b) as widely scattered points of high density due to the large hydrogen content of the molecule. The split spike with the tip at de = di = 1.13 Å in Fig. 6(b) is due to the short interatomic H⋯H contacts (Table 2). The pair of characteristic wings resulting in the fingerprint plot delineated into H⋯N/N⋯H contacts Fig. 6(c), contribute 18.9% to the HS (Table 2) and are viewed as pair of spikes with the tips at de + di = 2.23 Å. In the presence of weak C—H⋯π interactions (Table 1) in the crystal, the pair of characteristic wings resulting in the fingerprint plot delineated into H⋯C/C⋯H contacts with a 17.0% contribution to the HS have a symmetrical distribution of points, Fig. 7(d), with the tips at de + di = 2.65 Å (Table 2). Finally, the H⋯O/O⋯H [Fig. 6(e)] contacts (Table 2) in the structure with 6.8% contribution to the HS also have symmetrical distribution of points, namely two pairs of thin and thick edges at de + di ∼2.53 and 2.58 Å, respectively.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯N/N⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 7(a)–(d), respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯N/N⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggests that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
6. Synthesis and crystallization
To a solution of 3-methyl-1-(prop-2-ynyl)-3,4-dihydroquinoxalin-2(1H)-one (0.68 mmol) in ethanol (15 mL) was added 1-azidobutane (1.03 mmol). The reaction mixture was stirred under reflux for 72 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by on silica gel by using as the mixture (hexane/ethyl acetate 8:2). The solid product obtained was crystallized from ethanol to afford colourless crystals in 78% yield.
7. Refinement
Crystal data, data collection and structure . H atoms were located in a difference Fourier map and were freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1878133
https://doi.org/10.1107/S205698901801589X/xu5949sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901801589X/xu5949Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901801589X/xu5949Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S205698901801589X/xu5949Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H19N5O | Z = 2 |
Mr = 297.36 | F(000) = 316 |
Triclinic, P1 | Dx = 1.336 Mg m−3 |
a = 5.3265 (2) Å | Cu Kα radiation, λ = 1.54178 Å |
b = 9.9946 (4) Å | Cell parameters from 3995 reflections |
c = 14.5414 (5) Å | θ = 3.2–72.1° |
α = 103.054 (2)° | µ = 0.71 mm−1 |
β = 100.039 (2)° | T = 150 K |
γ = 93.108 (2)° | Plate, colourless |
V = 739.03 (5) Å3 | 0.25 × 0.21 × 0.02 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2764 independent reflections |
Radiation source: INCOATEC IµS micro-focus source | 2281 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.1°, θmin = 3.2° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→11 |
Tmin = 0.84, Tmax = 0.97 | l = −16→17 |
5735 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | All H-atom parameters refined |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2108P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2764 reflections | Δρmax = 0.25 e Å−3 |
276 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0091 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.1373 (2) | 0.25655 (12) | 0.71106 (8) | 0.0317 (3) | |
N1 | 0.6669 (2) | 0.43499 (13) | 0.88772 (9) | 0.0246 (3) | |
N2 | 0.4435 (2) | 0.41368 (12) | 0.69511 (8) | 0.0214 (3) | |
N3 | 0.4218 (2) | 0.10144 (13) | 0.42094 (8) | 0.0214 (3) | |
N4 | 0.6468 (2) | 0.17916 (13) | 0.43816 (9) | 0.0257 (3) | |
N5 | 0.6307 (2) | 0.29436 (13) | 0.50153 (9) | 0.0253 (3) | |
C1 | 0.6701 (3) | 0.49930 (15) | 0.73511 (10) | 0.0214 (3) | |
C2 | 0.7938 (3) | 0.57499 (16) | 0.68289 (11) | 0.0245 (3) | |
H2 | 0.722 (3) | 0.5669 (19) | 0.6158 (13) | 0.034 (5)* | |
C3 | 1.0190 (3) | 0.65725 (16) | 0.72646 (12) | 0.0282 (4) | |
H3 | 1.102 (3) | 0.7133 (19) | 0.6888 (13) | 0.032 (5)* | |
C4 | 1.1277 (3) | 0.66500 (17) | 0.82210 (12) | 0.0291 (4) | |
H4 | 1.280 (4) | 0.720 (2) | 0.8511 (14) | 0.039 (5)* | |
C5 | 1.0094 (3) | 0.59047 (16) | 0.87417 (11) | 0.0267 (3) | |
H5 | 1.084 (3) | 0.5905 (18) | 0.9413 (13) | 0.031 (5)* | |
C6 | 0.7797 (3) | 0.50745 (15) | 0.83176 (10) | 0.0227 (3) | |
C7 | 0.4566 (3) | 0.35724 (15) | 0.84935 (10) | 0.0234 (3) | |
C8 | 0.3301 (3) | 0.33717 (15) | 0.74734 (10) | 0.0231 (3) | |
C9 | 0.3266 (3) | 0.28202 (18) | 0.90846 (12) | 0.0302 (4) | |
H9A | 0.422 (4) | 0.301 (2) | 0.9742 (15) | 0.046 (6)* | |
H9B | 0.310 (4) | 0.182 (2) | 0.8803 (15) | 0.051 (6)* | |
H9C | 0.153 (4) | 0.304 (2) | 0.9088 (14) | 0.048 (6)* | |
C10 | 0.3087 (3) | 0.40222 (16) | 0.59533 (10) | 0.0232 (3) | |
H10A | 0.338 (3) | 0.4926 (18) | 0.5805 (12) | 0.025 (4)* | |
H10B | 0.125 (3) | 0.3822 (17) | 0.5929 (12) | 0.028 (4)* | |
C11 | 0.3937 (3) | 0.28917 (15) | 0.52445 (10) | 0.0207 (3) | |
C12 | 0.2596 (3) | 0.16668 (16) | 0.47318 (10) | 0.0222 (3) | |
H12 | 0.088 (4) | 0.1281 (19) | 0.4678 (13) | 0.033 (5)* | |
C13 | 0.3800 (3) | −0.03351 (16) | 0.35173 (11) | 0.0265 (3) | |
H13A | 0.551 (3) | −0.0671 (18) | 0.3519 (12) | 0.030 (4)* | |
H13B | 0.280 (4) | −0.096 (2) | 0.3780 (13) | 0.036 (5)* | |
C14 | 0.2469 (3) | −0.02638 (17) | 0.25207 (11) | 0.0262 (3) | |
H14A | 0.210 (3) | −0.123 (2) | 0.2122 (13) | 0.034 (5)* | |
H14B | 0.078 (3) | 0.0099 (18) | 0.2559 (12) | 0.031 (5)* | |
C15 | 0.3969 (3) | 0.05954 (18) | 0.20269 (11) | 0.0293 (4) | |
H15A | 0.570 (4) | 0.0313 (19) | 0.2062 (13) | 0.037 (5)* | |
H15B | 0.412 (3) | 0.160 (2) | 0.2368 (13) | 0.035 (5)* | |
C16 | 0.2667 (4) | 0.0438 (2) | 0.09843 (13) | 0.0420 (5) | |
H16A | 0.248 (4) | −0.057 (2) | 0.0616 (15) | 0.047 (6)* | |
H16B | 0.360 (5) | 0.095 (3) | 0.0645 (17) | 0.067 (7)* | |
H16C | 0.092 (5) | 0.071 (3) | 0.0943 (17) | 0.068 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0292 (6) | 0.0338 (7) | 0.0292 (6) | −0.0076 (5) | 0.0029 (5) | 0.0062 (5) |
N1 | 0.0267 (7) | 0.0249 (7) | 0.0226 (6) | 0.0033 (5) | 0.0053 (5) | 0.0059 (5) |
N2 | 0.0216 (6) | 0.0233 (7) | 0.0191 (6) | 0.0024 (5) | 0.0035 (5) | 0.0048 (5) |
N3 | 0.0177 (6) | 0.0237 (7) | 0.0215 (6) | 0.0004 (5) | 0.0013 (4) | 0.0051 (5) |
N4 | 0.0193 (6) | 0.0290 (7) | 0.0255 (6) | −0.0012 (5) | 0.0031 (5) | 0.0017 (5) |
N5 | 0.0212 (6) | 0.0286 (7) | 0.0246 (6) | −0.0006 (5) | 0.0054 (5) | 0.0030 (5) |
C1 | 0.0205 (7) | 0.0208 (7) | 0.0227 (7) | 0.0034 (5) | 0.0055 (5) | 0.0032 (6) |
C2 | 0.0273 (8) | 0.0238 (8) | 0.0240 (8) | 0.0050 (6) | 0.0063 (6) | 0.0071 (6) |
C3 | 0.0287 (8) | 0.0261 (8) | 0.0326 (8) | 0.0015 (6) | 0.0113 (6) | 0.0090 (7) |
C4 | 0.0234 (8) | 0.0284 (8) | 0.0330 (8) | −0.0026 (6) | 0.0049 (6) | 0.0038 (7) |
C5 | 0.0252 (8) | 0.0291 (8) | 0.0234 (8) | 0.0019 (6) | 0.0026 (6) | 0.0029 (6) |
C6 | 0.0232 (7) | 0.0224 (8) | 0.0229 (7) | 0.0030 (6) | 0.0062 (6) | 0.0046 (6) |
C7 | 0.0265 (8) | 0.0209 (8) | 0.0236 (7) | 0.0042 (6) | 0.0067 (6) | 0.0054 (6) |
C8 | 0.0235 (7) | 0.0227 (8) | 0.0239 (7) | 0.0033 (6) | 0.0068 (6) | 0.0052 (6) |
C9 | 0.0348 (9) | 0.0297 (9) | 0.0268 (8) | −0.0017 (7) | 0.0071 (7) | 0.0084 (7) |
C10 | 0.0219 (7) | 0.0264 (8) | 0.0208 (7) | 0.0037 (6) | 0.0021 (6) | 0.0057 (6) |
C11 | 0.0182 (7) | 0.0260 (8) | 0.0194 (7) | 0.0025 (5) | 0.0027 (5) | 0.0091 (6) |
C12 | 0.0164 (7) | 0.0282 (8) | 0.0226 (7) | 0.0004 (6) | 0.0037 (5) | 0.0077 (6) |
C13 | 0.0294 (8) | 0.0205 (8) | 0.0269 (8) | 0.0011 (6) | 0.0024 (6) | 0.0029 (6) |
C14 | 0.0235 (8) | 0.0261 (8) | 0.0251 (8) | −0.0013 (6) | 0.0007 (6) | 0.0021 (6) |
C15 | 0.0307 (9) | 0.0296 (9) | 0.0263 (8) | −0.0005 (7) | 0.0050 (6) | 0.0049 (7) |
C16 | 0.0528 (12) | 0.0436 (12) | 0.0286 (9) | −0.0001 (9) | 0.0044 (8) | 0.0101 (8) |
O1—C8 | 1.2292 (18) | C7—C9 | 1.492 (2) |
N1—C7 | 1.2891 (19) | C9—H9A | 0.97 (2) |
N1—C6 | 1.3917 (19) | C9—H9B | 0.98 (2) |
N2—C8 | 1.3780 (19) | C9—H9C | 0.96 (2) |
N2—C1 | 1.3951 (18) | C10—C11 | 1.495 (2) |
N2—C10 | 1.4787 (17) | C10—H10A | 0.986 (18) |
N3—N4 | 1.3451 (17) | C10—H10B | 0.982 (18) |
N3—C12 | 1.3471 (18) | C11—C12 | 1.368 (2) |
N3—C13 | 1.4690 (19) | C12—H12 | 0.954 (19) |
N4—N5 | 1.3196 (18) | C13—C14 | 1.517 (2) |
N5—C11 | 1.3617 (18) | C13—H13A | 0.986 (18) |
C1—C2 | 1.401 (2) | C13—H13B | 0.98 (2) |
C1—C6 | 1.407 (2) | C14—C15 | 1.515 (2) |
C2—C3 | 1.382 (2) | C14—H14A | 0.996 (19) |
C2—H2 | 0.966 (18) | C14—H14B | 0.992 (18) |
C3—C4 | 1.393 (2) | C15—C16 | 1.522 (2) |
C3—H3 | 1.003 (19) | C15—H15A | 0.977 (19) |
C4—C5 | 1.377 (2) | C15—H15B | 1.005 (19) |
C4—H4 | 0.93 (2) | C16—H16A | 1.02 (2) |
C5—C6 | 1.401 (2) | C16—H16B | 0.96 (3) |
C5—H5 | 0.988 (18) | C16—H16C | 0.98 (3) |
C7—C8 | 1.482 (2) | ||
O1···C11 | 3.3134 (19) | C4···C8iv | 3.502 (2) |
O1···C13i | 3.306 (2) | C5···C8iv | 3.491 (2) |
O1···C14i | 3.193 (2) | C5···C7iv | 3.429 (2) |
O1···H10B | 2.341 (17) | C11···C13ii | 3.589 (2) |
O1···H9B | 2.75 (2) | C12···C13ii | 3.470 (2) |
O1···H9C | 2.79 (2) | C16···C16viii | 3.577 (3) |
O1···H13Aii | 2.696 (17) | C2···H15Bvii | 2.991 (19) |
O1···H13Bi | 2.62 (2) | C2···H10A | 2.600 (17) |
O1···H14Ai | 2.752 (18) | C2···H10Biv | 2.928 (17) |
N1···N2 | 2.8013 (17) | C3···H15Bvii | 3.055 (18) |
N2···C3iii | 3.421 (2) | C4···H16Cvii | 3.03 (3) |
N2···N5 | 3.1514 (17) | C7···H14Aii | 3.081 (19) |
N4···C15 | 3.364 (2) | C8···H13Aii | 2.918 (18) |
N4···C12iv | 3.228 (2) | C10···H2 | 2.608 (18) |
N5···C2 | 3.343 (2) | C11···H2vii | 2.755 (19) |
N1···H5v | 2.680 (18) | C11···H13Bii | 3.08 (2) |
N3···H15B | 2.860 (19) | C11···H2 | 3.086 (19) |
N4···H12iv | 2.42 (2) | C12···H13Aii | 2.973 (17) |
N4···H13Bii | 2.944 (19) | C15···H4vi | 3.04 (2) |
N4···H15B | 2.936 (18) | C15···H9Bii | 3.08 (2) |
N4···H3vi | 2.821 (18) | C16···H16Cviii | 3.04 (2) |
N5···H2 | 2.819 (19) | H2···H10A | 2.07 (2) |
N5···H10Biv | 2.733 (17) | H4···H16Bvi | 2.52 (3) |
N5···H2vii | 2.932 (18) | H9B···H15Aii | 2.40 (3) |
N5···H10Avii | 2.676 (18) | H13A···H15A | 2.54 (3) |
N5···H13Bii | 2.93 (2) | H14A···H16A | 2.46 (3) |
C2···C10iv | 3.586 (2) | H14B···H16C | 2.57 (3) |
C2···C11 | 3.559 (2) | H15A···H13A | 2.54 (3) |
C2···C11vii | 3.589 (2) | H15A···H9Bii | 2.40 (3) |
C3···C10iv | 3.431 (2) | ||
C7—N1—C6 | 118.81 (13) | H9B—C9—H9C | 104.4 (17) |
C8—N2—C1 | 121.65 (12) | N2—C10—C11 | 112.53 (12) |
C8—N2—C10 | 116.29 (12) | N2—C10—H10A | 107.5 (10) |
C1—N2—C10 | 122.04 (12) | C11—C10—H10A | 111.5 (10) |
N4—N3—C12 | 110.55 (12) | N2—C10—H10B | 107.9 (10) |
N4—N3—C13 | 120.31 (12) | C11—C10—H10B | 108.4 (10) |
C12—N3—C13 | 129.14 (13) | H10A—C10—H10B | 108.9 (14) |
N5—N4—N3 | 107.55 (11) | N5—C11—C12 | 108.52 (13) |
N4—N5—C11 | 108.38 (12) | N5—C11—C10 | 123.12 (13) |
N2—C1—C2 | 122.89 (13) | C12—C11—C10 | 128.37 (13) |
N2—C1—C6 | 118.01 (13) | N3—C12—C11 | 105.01 (13) |
C2—C1—C6 | 119.10 (14) | N3—C12—H12 | 121.9 (11) |
C3—C2—C1 | 120.11 (14) | C11—C12—H12 | 133.1 (11) |
C3—C2—H2 | 120.6 (11) | N3—C13—C14 | 112.79 (13) |
C1—C2—H2 | 119.3 (11) | N3—C13—H13A | 105.8 (10) |
C2—C3—C4 | 120.75 (15) | C14—C13—H13A | 112.3 (10) |
C2—C3—H3 | 119.2 (10) | N3—C13—H13B | 107.0 (11) |
C4—C3—H3 | 120.0 (10) | C14—C13—H13B | 111.2 (11) |
C5—C4—C3 | 119.81 (15) | H13A—C13—H13B | 107.3 (15) |
C5—C4—H4 | 119.6 (12) | C15—C14—C13 | 114.99 (13) |
C3—C4—H4 | 120.6 (12) | C15—C14—H14A | 109.5 (10) |
C4—C5—C6 | 120.42 (14) | C13—C14—H14A | 107.1 (10) |
C4—C5—H5 | 122.2 (11) | C15—C14—H14B | 109.1 (10) |
C6—C5—H5 | 117.3 (11) | C13—C14—H14B | 109.3 (10) |
N1—C6—C5 | 118.15 (13) | H14A—C14—H14B | 106.5 (14) |
N1—C6—C1 | 122.05 (13) | C14—C15—C16 | 111.11 (14) |
C5—C6—C1 | 119.80 (14) | C14—C15—H15A | 109.0 (11) |
N1—C7—C8 | 123.58 (14) | C16—C15—H15A | 110.5 (11) |
N1—C7—C9 | 120.01 (13) | C14—C15—H15B | 110.4 (10) |
C8—C7—C9 | 116.41 (13) | C16—C15—H15B | 108.5 (10) |
O1—C8—N2 | 121.86 (13) | H15A—C15—H15B | 107.3 (15) |
O1—C8—C7 | 122.32 (14) | C15—C16—H16A | 110.7 (12) |
N2—C8—C7 | 115.82 (13) | C15—C16—H16B | 113.1 (14) |
C7—C9—H9A | 111.1 (12) | H16A—C16—H16B | 106.6 (17) |
C7—C9—H9B | 110.3 (12) | C15—C16—H16C | 111.0 (14) |
H9A—C9—H9B | 109.1 (17) | H16A—C16—H16C | 105.7 (18) |
C7—C9—H9C | 112.1 (12) | H16B—C16—H16C | 109 (2) |
H9A—C9—H9C | 109.6 (16) | ||
C12—N3—N4—N5 | 0.11 (16) | C1—N2—C8—O1 | −176.40 (13) |
C13—N3—N4—N5 | 179.17 (12) | C10—N2—C8—O1 | 4.9 (2) |
N3—N4—N5—C11 | 0.03 (15) | C1—N2—C8—C7 | 2.99 (19) |
C8—N2—C1—C2 | 178.01 (13) | C10—N2—C8—C7 | −175.71 (12) |
C10—N2—C1—C2 | −3.4 (2) | N1—C7—C8—O1 | 175.85 (14) |
C8—N2—C1—C6 | −1.0 (2) | C9—C7—C8—O1 | −4.4 (2) |
C10—N2—C1—C6 | 177.67 (13) | N1—C7—C8—N2 | −3.5 (2) |
N2—C1—C2—C3 | −179.52 (13) | C9—C7—C8—N2 | 176.18 (13) |
C6—C1—C2—C3 | −0.6 (2) | C8—N2—C10—C11 | −90.45 (15) |
C1—C2—C3—C4 | 0.7 (2) | C1—N2—C10—C11 | 90.85 (16) |
C2—C3—C4—C5 | −0.3 (2) | N4—N5—C11—C12 | −0.15 (16) |
C3—C4—C5—C6 | −0.3 (2) | N4—N5—C11—C10 | 179.35 (13) |
C7—N1—C6—C5 | −179.41 (14) | N2—C10—C11—N5 | −69.14 (18) |
C7—N1—C6—C1 | 0.5 (2) | N2—C10—C11—C12 | 110.25 (16) |
C4—C5—C6—N1 | −179.55 (14) | N4—N3—C12—C11 | −0.20 (15) |
C4—C5—C6—C1 | 0.5 (2) | C13—N3—C12—C11 | −179.15 (13) |
N2—C1—C6—N1 | −1.0 (2) | N5—C11—C12—N3 | 0.22 (16) |
C2—C1—C6—N1 | 180.00 (13) | C10—C11—C12—N3 | −179.25 (13) |
N2—C1—C6—C5 | 178.96 (13) | N4—N3—C13—C14 | −95.26 (16) |
C2—C1—C6—C5 | 0.0 (2) | C12—N3—C13—C14 | 83.59 (19) |
C6—N1—C7—C8 | 1.8 (2) | N3—C13—C14—C15 | 63.83 (18) |
C6—N1—C7—C9 | −177.94 (14) | C13—C14—C15—C16 | 171.75 (15) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) x+1, y, z; (v) −x+2, −y+1, −z+2; (vi) −x+2, −y+1, −z+1; (vii) −x+1, −y+1, −z+1; (viii) −x, −y, −z. |
Cg1 is the centroid of the N3–N5/C11/C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···N4iii | 0.954 (19) | 2.419 (19) | 3.2282 (19) | 142.4 (15) |
C2—H2···Cg1vii | 0.966 (18) | 2.986 (19) | 3.642 (1) | 126.3 (14) |
Symmetry codes: (iii) x−1, y, z; (vii) −x+1, −y+1, −z+1. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Abad, N., El Bakri, Y., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018b). IUCrData, 3, x180680. Google Scholar
Abad, N., El Bakri, Y., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2018c). IUCrData, 3, x180519. Google Scholar
Abad, N., Ramli, Y., Sebbar, N. K., Kaur, M., Essassi, E. M. & Jasinski, J. P. (2018a). IUCrData, 3, x180482. Google Scholar
Abbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560–6572. CrossRef Google Scholar
Attia, A. S., Abdel Aziz, A. A., Alfallous, K. A. & El-Shahat, M. F. (2013). Polyhedron, 51, 243–254. Web of Science CrossRef CAS Google Scholar
Benzeid, H., Ramli, Y., Vendier, L., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o2196. CrossRef IUCr Journals Google Scholar
Benzeid, H., Vendier, L., Ramli, Y., Garrigues, B. & Essassi, E. M. (2008). Acta Cryst. E64, o2234. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caleb, A. A., Bouhfid, R., Essassi, E. M. & El Ammari, L. (2009). Acta Cryst. E65, o2024–o2025. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023. Web of Science CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87–94. Web of Science CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663–671. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ramli, Y., El Bakri, Y., 'El Ghayati, L., Essassi, E. M. & Mague, J. T. (2018). IUCRData 3, x180390. Google Scholar
Ramli, Y. & Essassi, E. M. (2015). Adv. Chem. Res. 27, 109–160. Google Scholar
Ramli, Y., Karrouchi, K., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1320–o1321. CrossRef IUCr Journals Google Scholar
Ramli, Y., Missioui, M., El Fal, M., Ouhcine, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171424. Google Scholar
Ramli, Y., Moussaif, A., Zouihri, H., Lazar, S. & Essassi, E. M. (2010a). Acta Cryst. E66, o1922. CrossRef IUCr Journals Google Scholar
Ramli, Y., Slimani, R., Zouihri, H., Lazar, S. & Essassi, E. M. (2010b). Acta Cryst. E66, o1767. CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o116. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Sridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). Eur. J. Chem. 7, 234–238. Google Scholar
Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387–S392. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CrossRef CAS Google Scholar
Vieira, M., Pinheiro, C., Fernandes, R., Noronha, J. P. & Prudêncio, C. (2014). Microbiol. Res. 169, 287–293. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.