research communications
of 4-[(3-methoxy-2-oxidobenzylidene)azaniumyl]benzoic acid methanol monosolvate
aDepartment of Applied Chemistry, Faculty of Engineering & Technology, Aligarh, Muslim University, Aligarh UP 202002, India, bDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842 001, India, cCMP College Allahabad, a constitution college of Allahabad University, Allahabad, UP, India, and dNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, tiskenderov@ukr.net
In the crystal of the title compound, C15H13NO4·CH3OH, the Schiff base molecule exists in the zwitterionic form; an intramolecular N—H⋯O hydrogen bond stabilizes the molecular structure. The benzene rings are nearly co-planar, subtending a dihedral angle of 5.34 (2)°. In the crystal, classical O—H⋯O and weak C—H⋯O hydrogen bonds link the Schiff base molecules and methanol solvent molecules into a three-dimensional supramolecular architecture. The crystal studied was refined as an inversion twin.
Keywords: crystal structure; zwitterion; 2-hydroxy-3-methoxy-benzaldehyde; 4-aminobenzoic acid (PABA); Schiff base; hydrogen bonding; vanillin.
CCDC reference: 1879300
1. Chemical context
Vanillin and o-vanillin are natural compounds that have both a phenolic OH and an aldehyde group. They are positional isomers, in which o-vanillin shows contradictory effects. There are several reports indicating that o-vanillin induces mutations and it has also been found to enhance chromosomal aberrations in in vitro systems (Barik et al., 2004; Takahashi et al., 1989). Vanillin is also the primary component of the extract of the vanilla bean. Synthetic vanillin rather than natural vanilla extract is now more often used as a flavouring agent in foods, beverages and pharmaceuticals. containing o-vanillin possess antifungal and antibacterial properties (Thorat et al., 2012). 4-Aminobenzoic acid (PABA) is an important biological molecule, being an essential bacterial cofactor involved in the synthesis of folic acid (Robinson, 1966). PABA shows and so far four polymorphs of PABA are known, all of which are centrosymmetric; a non-centrosymmetric polymorph of 4-aminobenzoic acid has also been reported (Benali-Cherif et al., 2014). derived from 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) and PABA have not been investigated so thoroughly. Our research interest focuses on the study of derived from salicylaldehyde. It is well known that of salicylaldehyde derivatives may exhibit thermochromism or depending on the planarity or non-planarity of the molecule (Cohen & Schmidt, 1964; Amimoto & Kawato, 2005). often exhibit various biological activities and in many cases have been shown to possess antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). They are used as anion sensors (Dalapati et al., 2011), as non-linear optical compounds (Sun et al., 2012) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012). New salicylaldehyde-based have also been synthesized and reported (Faizi et al., 2015a,b; 2016b; 2017a,b,c). The present work is a part of an ongoing structural study of and their utilization in the synthesis of new organic, proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2016a; Faizi et al., 2018; Kumar et al., 2018; Mukherjee et al., 2018). We report herein the of the title compound synthesized by the condensation reaction of 2-hydroxy-3-methoxybenzaldehyde and PABA.
2. Structural commentary
The ) exists in the zwitterionic form. An intramolecular N—H⋯O hydrogen bond stabilizes the molecular structure (Table 1). The imine group, which displays a C9—C8—N1—C5 torsion angle of 177.6 (3)°, contributes to the general planarity of the molecule. The Schiff base molecule displays a trans configuration with respect to the C=N and C–N bonds. The vanillin ring (C9–C14) is inclined to the central benzene ring (C2–C7) by 5.34 (2)°. A similar value of 5.3 (2)° is observed in 4-chloro-N′-(2-hydroxy-4-methoxybenzylidene)benzohydrazide methanol monosolvate (Zhi et al., 2011). All bond lengths are in normal ranges. The O4—C15 bond length is 1.432 (2) Å and similar value of 1.432 (2) Å is observed in (E)-2-hydroxy-3-methoxy-5-[(3-methoxyphenyl)diazenyl]benzaldehyde (Karadayı et al., 2006). The methoxy group of the 2-hydroxy-3-methoxyphenyl is almost coplanar with its bound benzene ring, as seen by the Cmethyl—O—C—C torsion angle of 178.1 (2)°.
of the title compound contains a Schiff base molecule and a methanol molecule of crystallization. In the solid state, the Schiff base molecule (Fig. 13. Supramolecular features
In the crystal, the hydroxyl group of the methanol solvent molecule is linked to the carboxylate group of the neighboring Schiff base molecule and the deprotonated hydroxyl group of the other Schiff base molecule via classical O—H⋯O hydrogen bonds, forming supramolecular chains propagating along the b-axis direction (Fig. 2). Weak C—H⋯O hydrogen bonds further link the chains into a three-dimensional supramolecular architecture.
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.39, February 2018 update; Groom et al., 2016) for similar systems (benzylidene-phenyl-amine) yielded 285 hits of which ten are similar substituted benzylidene-phenyl-amines: N-salicylidene-p-chloroaniline (I) (BADDAL01; Kamwaya & Khoo, 1985), 5-{[(1E)-(2-hydroxyphenyl)methylene]amino}-2-hydroxybenzoic acid (II) (CAWJOA; Bourque et al., 2005), 2-(2-hydroxy-5-methylbenzylideneammonio)benzoate (III) (CEXNEZ; Gayathri et al., 2007), N,N′-bis(2-hydroxy-1-naphthaldimine)-o-phenylenediamine methanol solvate (IV) (GETXEJ; Eltayeb et al., 2007), o-(salicylideneaminium)phenol chloride (V) (HALGUW; Ondrácek et al., 1993), N-(2-carboxyphenyl)salicylidenimine (VI) (JUTKAK; Ligtenbarg et al., 1999), diisothiocyantotriphenyltin bis[1-(salicyclideneimino)-2-methoxybenzene] (VII) (KIDYOL; Charland et al., 1989), N-(2-oxyphenyl)-3-methoxysalicylaldimine (VIII) (NEDMUF; Kannappan et al., 2006), N-(5-chloro-2-oxidobenzylidene)-2-hydroxy-5-methylanilinium (IX) (QIKHEX; Elmali et al., 2001) and N-(5-chloro-2-hydroxybenzylidene)-4-hydroxyaniline (X) (SAQTOT; Ogawa et al., 1998), 2-[(E)-(2-[{(E)-2,3-dihydroxybenzylidene]amino}-5-methylphenyl)iminiomethyl]-6-hydroxyphenolate (XI) (HUCQEC; Eltayeb et al., 2009) (see Fig. 3). The dihedral angle between the benzene rings in the title compound [5.34 (2)°] is smaller than those in compounds (III) [5.6 (1)°] (IV [5.84 (9)°], (V) [7.3 (1)°] and (IX) [9.51 (6)°] and (XI) [17.36 (12)°]. In compound (VII), cationic protonated pairs co-crystallize with five-coordinate organotin anions. In the title compound, they form an intramolecular S6 ring motif and stabilized by N—H⋯O hydrogen bonds.
5. Synthesis and crystallization
To a hot stirred solution of 4-aminobenzoic acid (PABA) (1.00 g, 7.2 mmol) in methanol (15 ml) was added vanillin (1.11 g, 7.2 mmol)). The resulting mixture was then heated under reflux. After an hour, a precipitate formed. The reaction mixture was heated for about another 30 min until the completion of the reaction, which was monitored by TLC. The reaction mixture was cooled to room temperature, filtered and washed with hot methanol. It was then dried under vacuum to give the pure compound in 78% yield. Prismatic colourless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
6. Refinement
Crystal data, data collection and structure . The N—H and O–H atoms were located in a difference-Fourier map. Their positional and isotropic thermal parameters were included in further stages of the All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1879300
https://doi.org/10.1107/S2056989018016262/xu5950sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018016262/xu5950Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).C15H13NO4·CH4O | Dx = 1.416 Mg m−3 |
Mr = 303.30 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 8708 reflections |
a = 4.6993 (5) Å | θ = 2.4–29.9° |
b = 10.038 (1) Å | µ = 0.11 mm−1 |
c = 30.155 (3) Å | T = 296 K |
V = 1422.5 (3) Å3 | Prism, colorless |
Z = 4 | 0.61 × 0.36 × 0.17 mm |
F(000) = 640 |
STOE IPDS 2 diffractometer | 2526 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2117 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.095 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.1°, θmin = 2.7° |
rotation method scans | h = −5→5 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | k = −11→11 |
Tmin = 0.963, Tmax = 0.988 | l = −35→35 |
17046 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0401P)2 + 0.7153P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.112 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.25 e Å−3 |
2526 reflections | Δρmin = −0.26 e Å−3 |
206 parameters | Absolute structure: Refined as a perfect inversion twin. |
0 restraints | Absolute structure parameter: 0.5 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component inversion twin |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9825 (8) | 0.5743 (4) | 0.20579 (12) | 0.0150 (8) | |
C2 | 0.8025 (8) | 0.5849 (4) | 0.24609 (12) | 0.0135 (8) | |
C3 | 0.6780 (8) | 0.7039 (4) | 0.25889 (12) | 0.0156 (9) | |
H3 | 0.723443 | 0.781513 | 0.243631 | 0.019* | |
C4 | 0.4888 (8) | 0.7099 (4) | 0.29364 (12) | 0.0168 (9) | |
H4 | 0.407880 | 0.790869 | 0.301780 | 0.020* | |
C5 | 0.4194 (8) | 0.5940 (4) | 0.31650 (11) | 0.0117 (8) | |
C6 | 0.5553 (8) | 0.4750 (4) | 0.30576 (12) | 0.0161 (8) | |
H6 | 0.519516 | 0.398578 | 0.322296 | 0.019* | |
C7 | 0.7427 (8) | 0.4703 (4) | 0.27069 (12) | 0.0163 (9) | |
H7 | 0.830172 | 0.390229 | 0.263318 | 0.020* | |
C8 | 0.0577 (8) | 0.6914 (4) | 0.36404 (12) | 0.0137 (8) | |
H8 | 0.082942 | 0.774555 | 0.351007 | 0.016* | |
C9 | −0.1484 (8) | 0.6767 (4) | 0.39755 (12) | 0.0133 (8) | |
C10 | −0.1987 (8) | 0.5486 (4) | 0.41710 (12) | 0.0134 (8) | |
C11 | −0.4107 (8) | 0.5431 (4) | 0.45140 (12) | 0.0149 (9) | |
C12 | −0.5604 (9) | 0.6534 (4) | 0.46335 (12) | 0.0162 (8) | |
H12 | −0.697197 | 0.646746 | 0.485520 | 0.019* | |
C13 | −0.5121 (8) | 0.7778 (4) | 0.44273 (12) | 0.0175 (9) | |
H13 | −0.618318 | 0.851778 | 0.451168 | 0.021* | |
C14 | −0.3108 (8) | 0.7897 (4) | 0.41061 (12) | 0.0162 (9) | |
H14 | −0.279196 | 0.871695 | 0.397153 | 0.019* | |
C15 | −0.6548 (9) | 0.4036 (4) | 0.50242 (13) | 0.0216 (10) | |
H15A | −0.838233 | 0.422645 | 0.489935 | 0.032* | |
H15B | −0.617086 | 0.464455 | 0.526284 | 0.032* | |
H15C | −0.652337 | 0.313983 | 0.513495 | 0.032* | |
C16 | 0.4392 (9) | 1.1681 (4) | 0.40083 (13) | 0.0226 (9) | |
H16A | 0.377953 | 1.093074 | 0.383559 | 0.034* | |
H16B | 0.323804 | 1.244117 | 0.393731 | 0.034* | |
H16C | 0.420226 | 1.147815 | 0.431800 | 0.034* | |
N1 | 0.2152 (6) | 0.5912 (3) | 0.35065 (10) | 0.0128 (7) | |
H1 | 0.191331 | 0.516474 | 0.364068 | 0.015* | |
O1 | 1.0635 (6) | 0.4688 (3) | 0.19035 (9) | 0.0244 (7) | |
O2 | 1.0413 (6) | 0.6916 (2) | 0.18743 (8) | 0.0185 (6) | |
H2 | 1.128598 | 0.680031 | 0.164203 | 0.028* | |
O3 | −0.0617 (6) | 0.4431 (2) | 0.40503 (8) | 0.0159 (6) | |
O4 | −0.4410 (6) | 0.4183 (3) | 0.46896 (8) | 0.0185 (6) | |
O5 | 0.7301 (6) | 1.1970 (3) | 0.39101 (9) | 0.0192 (6) | |
H5O | 0.795 (11) | 1.280 (5) | 0.4034 (16) | 0.049 (15)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.014 (2) | 0.016 (2) | 0.0152 (19) | −0.0037 (18) | −0.0028 (17) | 0.0022 (16) |
C2 | 0.0111 (19) | 0.014 (2) | 0.0151 (19) | 0.0001 (18) | −0.0019 (16) | −0.0005 (16) |
C3 | 0.016 (2) | 0.012 (2) | 0.0190 (19) | −0.0024 (18) | 0.0022 (17) | 0.0026 (16) |
C4 | 0.016 (2) | 0.0114 (19) | 0.022 (2) | 0.0007 (18) | 0.0053 (18) | −0.0034 (16) |
C5 | 0.0084 (17) | 0.016 (2) | 0.0110 (18) | −0.0041 (17) | −0.0013 (16) | −0.0014 (15) |
C6 | 0.0147 (19) | 0.015 (2) | 0.018 (2) | 0.0004 (17) | 0.0007 (18) | 0.0051 (16) |
C7 | 0.017 (2) | 0.014 (2) | 0.018 (2) | 0.0037 (18) | −0.0006 (18) | −0.0011 (16) |
C8 | 0.0125 (18) | 0.0132 (19) | 0.0155 (19) | −0.0008 (18) | −0.0037 (16) | −0.0013 (15) |
C9 | 0.0106 (18) | 0.015 (2) | 0.0145 (19) | 0.0034 (16) | −0.0026 (16) | −0.0007 (16) |
C10 | 0.0091 (18) | 0.018 (2) | 0.0132 (18) | −0.0011 (16) | −0.0057 (16) | −0.0018 (16) |
C11 | 0.012 (2) | 0.018 (2) | 0.0147 (19) | −0.0022 (17) | −0.0030 (16) | −0.0003 (16) |
C12 | 0.0139 (19) | 0.022 (2) | 0.0125 (19) | −0.0008 (18) | 0.0011 (17) | −0.0004 (16) |
C13 | 0.013 (2) | 0.019 (2) | 0.021 (2) | 0.0011 (17) | −0.0017 (18) | −0.0046 (16) |
C14 | 0.015 (2) | 0.016 (2) | 0.0175 (19) | −0.0052 (17) | −0.0032 (17) | −0.0011 (17) |
C15 | 0.019 (2) | 0.024 (2) | 0.021 (2) | 0.000 (2) | 0.0052 (18) | 0.0036 (18) |
C16 | 0.016 (2) | 0.026 (2) | 0.025 (2) | 0.0012 (19) | −0.0024 (19) | 0.0013 (18) |
N1 | 0.0126 (16) | 0.0129 (17) | 0.0130 (16) | −0.0029 (15) | −0.0009 (14) | 0.0015 (13) |
O1 | 0.0321 (17) | 0.0155 (15) | 0.0256 (15) | 0.0024 (13) | 0.0129 (14) | −0.0001 (12) |
O2 | 0.0237 (15) | 0.0145 (14) | 0.0174 (14) | −0.0034 (13) | 0.0081 (13) | 0.0000 (11) |
O3 | 0.0147 (13) | 0.0149 (14) | 0.0182 (13) | 0.0010 (12) | 0.0029 (12) | −0.0012 (11) |
O4 | 0.0172 (13) | 0.0185 (14) | 0.0197 (14) | 0.0012 (13) | 0.0071 (12) | 0.0053 (12) |
O5 | 0.0163 (14) | 0.0205 (15) | 0.0209 (14) | −0.0015 (14) | 0.0047 (12) | −0.0042 (13) |
C1—O1 | 1.217 (4) | C8—C9 | 1.408 (5) |
C1—O2 | 1.331 (4) | C9—C14 | 1.422 (5) |
C1—C2 | 1.484 (5) | C9—C10 | 1.434 (5) |
C2—C3 | 1.384 (5) | C10—O3 | 1.292 (4) |
C2—C7 | 1.397 (5) | C10—C11 | 1.437 (5) |
C3—C4 | 1.376 (5) | C11—C12 | 1.360 (5) |
C4—C5 | 1.392 (5) | C11—O4 | 1.367 (4) |
C5—C6 | 1.393 (5) | C12—C13 | 1.414 (5) |
C5—N1 | 1.408 (4) | C13—C14 | 1.359 (5) |
C6—C7 | 1.377 (5) | C15—O4 | 1.432 (4) |
C8—N1 | 1.312 (5) | C16—O5 | 1.429 (5) |
O1—C1—O2 | 123.1 (3) | C8—C9—C14 | 119.0 (3) |
O1—C1—C2 | 123.6 (3) | C8—C9—C10 | 120.2 (3) |
O2—C1—C2 | 113.3 (3) | C14—C9—C10 | 120.8 (3) |
C3—C2—C7 | 118.5 (3) | O3—C10—C9 | 122.5 (3) |
C3—C2—C1 | 122.1 (3) | O3—C10—C11 | 121.1 (3) |
C7—C2—C1 | 119.4 (3) | C9—C10—C11 | 116.4 (3) |
C4—C3—C2 | 121.6 (4) | C12—C11—O4 | 126.1 (3) |
C3—C4—C5 | 119.4 (3) | C12—C11—C10 | 121.2 (3) |
C4—C5—C6 | 119.7 (3) | O4—C11—C10 | 112.7 (3) |
C4—C5—N1 | 122.6 (3) | C11—C12—C13 | 121.3 (4) |
C6—C5—N1 | 117.8 (3) | C14—C13—C12 | 120.1 (4) |
C7—C6—C5 | 120.1 (3) | C13—C14—C9 | 120.1 (4) |
C6—C7—C2 | 120.6 (3) | C8—N1—C5 | 126.5 (3) |
N1—C8—C9 | 121.9 (3) | C11—O4—C15 | 116.1 (3) |
O1—C1—C2—C3 | −169.8 (4) | C8—C9—C10—C11 | 179.3 (3) |
O2—C1—C2—C3 | 8.6 (5) | C14—C9—C10—C11 | −2.6 (5) |
O1—C1—C2—C7 | 6.5 (5) | O3—C10—C11—C12 | −178.3 (3) |
O2—C1—C2—C7 | −175.1 (3) | C9—C10—C11—C12 | 2.0 (5) |
C7—C2—C3—C4 | −3.0 (6) | O3—C10—C11—O4 | 1.1 (5) |
C1—C2—C3—C4 | 173.3 (3) | C9—C10—C11—O4 | −178.6 (3) |
C2—C3—C4—C5 | −0.2 (6) | O4—C11—C12—C13 | −179.7 (3) |
C3—C4—C5—C6 | 4.0 (6) | C10—C11—C12—C13 | −0.4 (6) |
C3—C4—C5—N1 | −176.2 (3) | C11—C12—C13—C14 | −0.7 (6) |
C4—C5—C6—C7 | −4.5 (6) | C12—C13—C14—C9 | 0.2 (5) |
N1—C5—C6—C7 | 175.7 (3) | C8—C9—C14—C13 | 179.7 (3) |
C5—C6—C7—C2 | 1.2 (6) | C10—C9—C14—C13 | 1.6 (5) |
C3—C2—C7—C6 | 2.5 (6) | C9—C8—N1—C5 | 177.6 (3) |
C1—C2—C7—C6 | −173.9 (3) | C4—C5—N1—C8 | 3.2 (6) |
N1—C8—C9—C14 | 179.7 (3) | C6—C5—N1—C8 | −176.9 (3) |
N1—C8—C9—C10 | −2.2 (5) | C12—C11—O4—C15 | 1.2 (5) |
C8—C9—C10—O3 | −0.4 (5) | C10—C11—O4—C15 | −178.1 (3) |
C14—C9—C10—O3 | 177.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.86 | 1.87 | 2.568 (4) | 138 |
O2—H2···O5i | 0.82 | 1.80 | 2.598 (4) | 164 |
O5—H5O···O3ii | 0.96 (5) | 1.77 (5) | 2.690 (4) | 159 (4) |
C7—H7···O2i | 0.93 | 2.56 | 3.233 (5) | 130 |
C8—H8···O1iii | 0.93 | 2.41 | 3.281 (5) | 155 |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x+1, y+1, z; (iii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The Department of Chemistry, Langat Singh College and the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, are thanked for providing laboratory facilities.
Funding information
The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, and the University Grants Commission, New Delhi, for financial support.
References
Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226. Web of Science CrossRef CAS Google Scholar
Barik, A., Priyadarsini, K. I. & Mohan, H. (2004). Radiat. Phys. Chem. 70, 687–696. CrossRef Google Scholar
Benali-Cherif, R., Takouachet, R., Bendeif, E.-E. & Benali-Cherif, N. (2014). Acta Cryst. C70, 323–325. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bourque, T. A., Nelles, M. E., Gullon, T. J., Garon, C. N., Ringer, M. K., Leger, L. J., Mason, J. W., Wheaton, S. L., Baerlocher, F. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2005). Can. J. Chem. 83, 1063–1070. Web of Science CrossRef CAS Google Scholar
Charland, J.-P., Gabe, E. J., Khoo, L. E. & Smith, F. E. (1989). Polyhedron, 8, 1897–1901. CrossRef Google Scholar
Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996–2000. CrossRef Web of Science Google Scholar
Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540. Web of Science CrossRef CAS Google Scholar
Elmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485–486. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o117–o119. Web of Science CrossRef IUCr Journals Google Scholar
Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066. Web of Science CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38–40. CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464. CrossRef Google Scholar
Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369. Web of Science CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96–98. CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20. Web of Science CrossRef CAS Google Scholar
Faizi, M. S. H., Haque, A. & Kalibabchuk, V. A. (2017c). Acta Cryst. E73, 112–114. CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015b). Acta Cryst. E71, 28–30. CrossRef IUCr Journals Google Scholar
Faizi, M. S. H., Ohui, K. A. & Golenya, I. A. (2015a). Acta Cryst. E71, 1433–1435. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gayathri, D., Velmurugan, D., Ravikumar, K., Devaraj, S. & Kandaswamy, M. (2007). Acta Cryst. E63, o849–o851. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kamwaya, M. E. & Khoo, L. E. (1985). J. Fiz. Malays. 6, 135–140. CAS Google Scholar
Kannappan, R., Tooke, D. M., Spek, A. L. & Reedijk, J. (2006). Inorg. Chim. Acta, 359, 334–338. CrossRef Google Scholar
Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1727–o1729. CrossRef IUCr Journals Google Scholar
Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899. CrossRef Google Scholar
Ligtenbarg, A. G. J., Hage, R., Meetsma, A. & Feringa, B. L. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 807–812. Web of Science CrossRef Google Scholar
Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962. CrossRef PubMed CAS Web of Science Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CrossRef CAS PubMed Google Scholar
Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796. CrossRef Google Scholar
Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108. Web of Science CrossRef CAS Google Scholar
Ondráček, J., Kovářová, Z., Maixner, J. & Jursık, F. (1993). Acta Cryst. C49, 1948–1949. CrossRef IUCr Journals Google Scholar
Robinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541–662 London: Pergamon. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50. Web of Science CrossRef CAS Google Scholar
Takahashi, K., Sekiguchi, M. & Kawazoe, Y. (1989). Biochem. Biophys. Res. Commun. 162, 1376–1381. CrossRef Google Scholar
Thorat, B. R., Mandewale, M., Shelke, S., Kamat, P., Atram, R. G., Bhalerao, M. & Yamgar, R. (2012). J. Chem. Pharm. Res. 4, 14–17. Google Scholar
Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.