research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(3-meth­­oxy-2-oxido­benzyl­­idene)azaniumyl]­benzoic acid methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Faculty of Engineering & Technology, Aligarh, Muslim University, Aligarh UP 202002, India, bDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842 001, India, cCMP College Allahabad, a constitution college of Allahabad University, Allahabad, UP, India, and dNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, tiskenderov@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 29 October 2018; accepted 16 November 2018; online 22 November 2018)

In the crystal of the title compound, C15H13NO4·CH3OH, the Schiff base mol­ecule exists in the zwitterionic form; an intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular structure. The benzene rings are nearly co-planar, subtending a dihedral angle of 5.34 (2)°. In the crystal, classical O—H⋯O and weak C—H⋯O hydrogen bonds link the Schiff base mol­ecules and methanol solvent mol­ecules into a three-dimensional supra­molecular architecture. The crystal studied was refined as an inversion twin.

1. Chemical context

Vanillin and o-vanillin are natural compounds that have both a phenolic OH and an aldehyde group. They are positional isomers, in which o-vanillin shows contradictory effects. There are several reports indicating that o-vanillin induces mutations and it has also been found to enhance chromosomal aberrations in in vitro systems (Barik et al., 2004[Barik, A., Priyadarsini, K. I. & Mohan, H. (2004). Radiat. Phys. Chem. 70, 687-696.]; Takahashi et al., 1989[Takahashi, K., Sekiguchi, M. & Kawazoe, Y. (1989). Biochem. Biophys. Res. Commun. 162, 1376-1381.]). Vanillin is also the primary component of the extract of the vanilla bean. Synthetic vanillin rather than natural vanilla extract is now more often used as a flavouring agent in foods, beverages and pharmaceuticals. Schiff bases containing o-vanillin possess anti­fungal and anti­bacterial properties (Thorat et al., 2012[Thorat, B. R., Mandewale, M., Shelke, S., Kamat, P., Atram, R. G., Bhalerao, M. & Yamgar, R. (2012). J. Chem. Pharm. Res. 4, 14-17.]). 4-Amino­benzoic acid (PABA) is an important biological mol­ecule, being an essential bacterial cofactor involved in the synthesis of folic acid (Robinson, 1966[Robinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541-662 London: Pergamon.]). PABA shows polymorphism and so far four polymorphs of PABA are known, all of which are centrosymmetric; a non-centrosymmetric polymorph of 4-amino­benzoic acid has also been reported (Benali-Cherif et al., 2014[Benali-Cherif, R., Takouachet, R., Bendeif, E.-E. & Benali-Cherif, N. (2014). Acta Cryst. C70, 323-325.]). Schiff bases derived from 2-hy­droxy-3-meth­oxy­benzaldehyde (o-vanillin) and PABA have not been investigated so thoroughly. Our research inter­est focuses on the study of Schiff bases derived from salicyl­aldehyde. It is well known that Schiff bases of salicyl­aldehyde derivatives may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the mol­ecule (Cohen & Schmidt, 1964[Cohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996-2000.]; Amimoto & Kawato, 2005[Amimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207-226.]). Schiff bases often exhibit various biological activities and in many cases have been shown to possess anti­bacterial, anti­cancer, anti-inflammatory and anti­toxic properties (Lozier et al., 1975[Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955-962.]). They are used as anion sensors (Dalapati et al., 2011[Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536-540.]), as non-linear optical compounds (Sun et al., 2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42-50.]) and as versatile polynuclear ligands for multinuclear magnetic exchange clusters (Moroz et al., 2012[Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445-7447.]). New salicyl­aldehyde-based Schiff bases have also been synthesized and reported (Faizi et al., 2015a[Faizi, M. S. H., Ohui, K. A. & Golenya, I. A. (2015a). Acta Cryst. E71, 1433-1435.],b[Faizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015b). Acta Cryst. E71, 28-30.]; 2016b[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15-20.]; 2017a[Faizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38-40.],b[Faizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96-98.],c[Faizi, M. S. H., Haque, A. & Kalibabchuk, V. A. (2017c). Acta Cryst. E73, 112-114.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic, excited state proton-transfer compounds and fluorescent chemosensors (Faizi et al., 2016a[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366-1369.]; Faizi et al., 2018[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457-464.]; Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787-3796.]). We report herein the crystal structure of the title compound synthesized by the condensation reaction of 2-hy­droxy-3-meth­oxy­benzaldehyde and PABA.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains a Schiff base mol­ecule and a methanol mol­ecule of crystallization. In the solid state, the Schiff base mol­ecule (Fig. 1[link]) exists in the zwitterionic form. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular structure (Table 1[link]). The imine group, which displays a C9—C8—N1—C5 torsion angle of 177.6 (3)°, contributes to the general planarity of the mol­ecule. The Schiff base mol­ecule displays a trans configuration with respect to the C=N and C–N bonds. The vanillin ring (C9–C14) is inclined to the central benzene ring (C2–C7) by 5.34 (2)°. A similar value of 5.3 (2)° is observed in 4-chloro-N′-(2-hy­droxy-4-meth­oxy­benzyl­idene)benzohydrazide meth­anol monosolvate (Zhi et al., 2011[Zhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.]). All bond lengths are in normal ranges. The O4—C15 bond length is 1.432 (2) Å and similar value of 1.432 (2) Å is observed in (E)-2-hy­droxy-3-meth­oxy-5-[(3-meth­oxy­phen­yl)diazen­yl]benzaldehyde (Karadayı et al., 2006[Karadayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1727-o1729.]). The meth­oxy group of the 2-hy­droxy-3-meth­oxy­phenyl is almost coplanar with its bound benzene ring, as seen by the Cmeth­yl—O—C—C torsion angle of 178.1 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 1.87 2.568 (4) 138
O2—H2⋯O5i 0.82 1.80 2.598 (4) 164
O5—H5O⋯O3ii 0.96 (5) 1.77 (5) 2.690 (4) 159 (4)
C7—H7⋯O2i 0.93 2.56 3.233 (5) 130
C8—H8⋯O1iii 0.93 2.41 3.281 (5) 155
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and the intra­molecular N—H⋯O hydrogen bond as a dashed line. Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, the hydroxyl group of the methanol solvent mol­ecule is linked to the carboxyl­ate group of the neighboring Schiff base mol­ecule and the deprotonated hydroxyl group of the other Schiff base mol­ecule via classical O—H⋯O hydrogen bonds, forming supra­molecular chains propagating along the b-axis direction (Fig. 2[link]). Weak C—H⋯O hydrogen bonds further link the chains into a three-dimensional supra­molecular architecture.

[Figure 2]
Figure 2
A view of the hydrogen-bonded chain extending along the b-axis direction. Hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.39, February 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar systems (benzyl­idene-phenyl-amine) yielded 285 hits of which ten are similar substituted benzyl­idene-phenyl-amines: N-salicyl­idene-p-chloro­aniline (I)[link] (BADDAL01; Kamwaya & Khoo, 1985[Kamwaya, M. E. & Khoo, L. E. (1985). J. Fiz. Malays. 6, 135-140.]), 5-{[(1E)-(2-hy­droxy­phen­yl)methyl­ene]amino}-2-hy­droxy­benzoic acid (II) (CAWJOA; Bourque et al., 2005[Bourque, T. A., Nelles, M. E., Gullon, T. J., Garon, C. N., Ringer, M. K., Leger, L. J., Mason, J. W., Wheaton, S. L., Baerlocher, F. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2005). Can. J. Chem. 83, 1063-1070.]), 2-(2-hy­droxy-5-methyl­benzyl­idene­ammonio)­benzoate (III) (CEXNEZ; Gayathri et al., 2007[Gayathri, D., Velmurugan, D., Ravikumar, K., Devaraj, S. & Kandaswamy, M. (2007). Acta Cryst. E63, o849-o851.]), N,N′-bis­(2-hy­droxy-1-naphthaldimine)-o-phenyl­enedi­amine methanol solvate (IV) (GETXEJ; Eltayeb et al., 2007[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o117-o119.]), o-(salicylideneaminium)phenol chloride (V) (HALGUW; Ondrácek et al., 1993[Ondráček, J., Kovářová, Z., Maixner, J. & Jursık, F. (1993). Acta Cryst. C49, 1948-1949.]), N-(2-carb­oxy­phen­yl)salicylidenimine (VI) (JUTKAK; Ligtenbarg et al., 1999[Ligtenbarg, A. G. J., Hage, R., Meetsma, A. & Feringa, B. L. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 807-812.]), diiso­thio­cyantotri­phenyl­tin bis­[1-(salicycl­idene­imino)-2-meth­oxy­benzene] (VII) (KIDYOL; Charland et al., 1989[Charland, J.-P., Gabe, E. J., Khoo, L. E. & Smith, F. E. (1989). Polyhedron, 8, 1897-1901.]), N-(2-oxyphen­yl)-3-meth­oxy­salicylaldimine (VIII) (NEDMUF; Kannappan et al., 2006[Kannappan, R., Tooke, D. M., Spek, A. L. & Reedijk, J. (2006). Inorg. Chim. Acta, 359, 334-338.]), N-(5-chloro-2-oxido­benzyl­idene)-2-hy­droxy-5-methyl­anilinium (IX) (QIKHEX; Elmali et al., 2001[Elmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485-486.]) and N-(5-chloro-2-hy­droxy­benzyl­idene)-4-hy­droxy­aniline (X) (SAQTOT; Ogawa et al., 1998[Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107-7108.]), 2-[(E)-(2-[{(E)-2,3-di­hydroxy­benzyl­idene]amino}-5-methyl­phen­yl)iminiometh­yl]-6-hy­droxy­phenolate (XI) (HUCQEC; Eltayeb et al., 2009[Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065-o2066.]) (see Fig. 3[link]). The dihedral angle between the benzene rings in the title compound [5.34 (2)°] is smaller than those in compounds (III) [5.6 (1)°] (IV [5.84 (9)°], (V) [7.3 (1)°] and (IX) [9.51 (6)°] and (XI) [17.36 (12)°]. In compound (VII), cationic protonated pairs co-crystallize with five-coordinate organotin anions. In the title compound, they form an intra­molecular S6 ring motif and stabilized by N—H⋯O hydrogen bonds.

[Figure 3]
Figure 3
Zwitterionic forms of some closely related compounds.

5. Synthesis and crystallization

To a hot stirred solution of 4-amino­benzoic acid (PABA) (1.00 g, 7.2 mmol) in methanol (15 ml) was added vanillin (1.11 g, 7.2 mmol)). The resulting mixture was then heated under reflux. After an hour, a precipitate formed. The reaction mixture was heated for about another 30 min until the completion of the reaction, which was monitored by TLC. The reaction mixture was cooled to room temperature, filtered and washed with hot methanol. It was then dried under vacuum to give the pure compound in 78% yield. Prismatic colourless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H and O–H atoms were located in a difference-Fourier map. Their positional and isotropic thermal parameters were included in further stages of the refinement. All C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H13NO4·CH4O
Mr 303.30
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 4.6993 (5), 10.038 (1), 30.155 (3)
V3) 1422.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.61 × 0.36 × 0.17
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.963, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 17046, 2526, 2117
Rint 0.095
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.08
No. of reflections 2526
No. of parameters 206
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.26
Absolute structure Refined as a perfect inversion twin.
Absolute structure parameter 0.5
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

4-[(3-Methoxy-2-oxidobenzylidene)azaniumyl]benzoic acid methanol monosolvate top
Crystal data top
C15H13NO4·CH4ODx = 1.416 Mg m3
Mr = 303.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8708 reflections
a = 4.6993 (5) Åθ = 2.4–29.9°
b = 10.038 (1) ŵ = 0.11 mm1
c = 30.155 (3) ÅT = 296 K
V = 1422.5 (3) Å3Prism, colorless
Z = 40.61 × 0.36 × 0.17 mm
F(000) = 640
Data collection top
STOE IPDS 2
diffractometer
2526 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2117 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.095
Detector resolution: 6.67 pixels mm-1θmax = 25.1°, θmin = 2.7°
rotation method scansh = 55
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.963, Tmax = 0.988l = 3535
17046 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.7153P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.25 e Å3
2526 reflectionsΔρmin = 0.26 e Å3
206 parametersAbsolute structure: Refined as a perfect inversion twin.
0 restraintsAbsolute structure parameter: 0.5
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9825 (8)0.5743 (4)0.20579 (12)0.0150 (8)
C20.8025 (8)0.5849 (4)0.24609 (12)0.0135 (8)
C30.6780 (8)0.7039 (4)0.25889 (12)0.0156 (9)
H30.7234430.7815130.2436310.019*
C40.4888 (8)0.7099 (4)0.29364 (12)0.0168 (9)
H40.4078800.7908690.3017800.020*
C50.4194 (8)0.5940 (4)0.31650 (11)0.0117 (8)
C60.5553 (8)0.4750 (4)0.30576 (12)0.0161 (8)
H60.5195160.3985780.3222960.019*
C70.7427 (8)0.4703 (4)0.27069 (12)0.0163 (9)
H70.8301720.3902290.2633180.020*
C80.0577 (8)0.6914 (4)0.36404 (12)0.0137 (8)
H80.0829420.7745550.3510070.016*
C90.1484 (8)0.6767 (4)0.39755 (12)0.0133 (8)
C100.1987 (8)0.5486 (4)0.41710 (12)0.0134 (8)
C110.4107 (8)0.5431 (4)0.45140 (12)0.0149 (9)
C120.5604 (9)0.6534 (4)0.46335 (12)0.0162 (8)
H120.6971970.6467460.4855200.019*
C130.5121 (8)0.7778 (4)0.44273 (12)0.0175 (9)
H130.6183180.8517780.4511680.021*
C140.3108 (8)0.7897 (4)0.41061 (12)0.0162 (9)
H140.2791960.8716950.3971530.019*
C150.6548 (9)0.4036 (4)0.50242 (13)0.0216 (10)
H15A0.8382330.4226450.4899350.032*
H15B0.6170860.4644550.5262840.032*
H15C0.6523370.3139830.5134950.032*
C160.4392 (9)1.1681 (4)0.40083 (13)0.0226 (9)
H16A0.3779531.0930740.3835590.034*
H16B0.3238041.2441170.3937310.034*
H16C0.4202261.1478150.4318000.034*
N10.2152 (6)0.5912 (3)0.35065 (10)0.0128 (7)
H10.1913310.5164740.3640680.015*
O11.0635 (6)0.4688 (3)0.19035 (9)0.0244 (7)
O21.0413 (6)0.6916 (2)0.18743 (8)0.0185 (6)
H21.1285980.6800310.1642030.028*
O30.0617 (6)0.4431 (2)0.40503 (8)0.0159 (6)
O40.4410 (6)0.4183 (3)0.46896 (8)0.0185 (6)
O50.7301 (6)1.1970 (3)0.39101 (9)0.0192 (6)
H5O0.795 (11)1.280 (5)0.4034 (16)0.049 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.014 (2)0.016 (2)0.0152 (19)0.0037 (18)0.0028 (17)0.0022 (16)
C20.0111 (19)0.014 (2)0.0151 (19)0.0001 (18)0.0019 (16)0.0005 (16)
C30.016 (2)0.012 (2)0.0190 (19)0.0024 (18)0.0022 (17)0.0026 (16)
C40.016 (2)0.0114 (19)0.022 (2)0.0007 (18)0.0053 (18)0.0034 (16)
C50.0084 (17)0.016 (2)0.0110 (18)0.0041 (17)0.0013 (16)0.0014 (15)
C60.0147 (19)0.015 (2)0.018 (2)0.0004 (17)0.0007 (18)0.0051 (16)
C70.017 (2)0.014 (2)0.018 (2)0.0037 (18)0.0006 (18)0.0011 (16)
C80.0125 (18)0.0132 (19)0.0155 (19)0.0008 (18)0.0037 (16)0.0013 (15)
C90.0106 (18)0.015 (2)0.0145 (19)0.0034 (16)0.0026 (16)0.0007 (16)
C100.0091 (18)0.018 (2)0.0132 (18)0.0011 (16)0.0057 (16)0.0018 (16)
C110.012 (2)0.018 (2)0.0147 (19)0.0022 (17)0.0030 (16)0.0003 (16)
C120.0139 (19)0.022 (2)0.0125 (19)0.0008 (18)0.0011 (17)0.0004 (16)
C130.013 (2)0.019 (2)0.021 (2)0.0011 (17)0.0017 (18)0.0046 (16)
C140.015 (2)0.016 (2)0.0175 (19)0.0052 (17)0.0032 (17)0.0011 (17)
C150.019 (2)0.024 (2)0.021 (2)0.000 (2)0.0052 (18)0.0036 (18)
C160.016 (2)0.026 (2)0.025 (2)0.0012 (19)0.0024 (19)0.0013 (18)
N10.0126 (16)0.0129 (17)0.0130 (16)0.0029 (15)0.0009 (14)0.0015 (13)
O10.0321 (17)0.0155 (15)0.0256 (15)0.0024 (13)0.0129 (14)0.0001 (12)
O20.0237 (15)0.0145 (14)0.0174 (14)0.0034 (13)0.0081 (13)0.0000 (11)
O30.0147 (13)0.0149 (14)0.0182 (13)0.0010 (12)0.0029 (12)0.0012 (11)
O40.0172 (13)0.0185 (14)0.0197 (14)0.0012 (13)0.0071 (12)0.0053 (12)
O50.0163 (14)0.0205 (15)0.0209 (14)0.0015 (14)0.0047 (12)0.0042 (13)
Geometric parameters (Å, º) top
C1—O11.217 (4)C8—C91.408 (5)
C1—O21.331 (4)C9—C141.422 (5)
C1—C21.484 (5)C9—C101.434 (5)
C2—C31.384 (5)C10—O31.292 (4)
C2—C71.397 (5)C10—C111.437 (5)
C3—C41.376 (5)C11—C121.360 (5)
C4—C51.392 (5)C11—O41.367 (4)
C5—C61.393 (5)C12—C131.414 (5)
C5—N11.408 (4)C13—C141.359 (5)
C6—C71.377 (5)C15—O41.432 (4)
C8—N11.312 (5)C16—O51.429 (5)
O1—C1—O2123.1 (3)C8—C9—C14119.0 (3)
O1—C1—C2123.6 (3)C8—C9—C10120.2 (3)
O2—C1—C2113.3 (3)C14—C9—C10120.8 (3)
C3—C2—C7118.5 (3)O3—C10—C9122.5 (3)
C3—C2—C1122.1 (3)O3—C10—C11121.1 (3)
C7—C2—C1119.4 (3)C9—C10—C11116.4 (3)
C4—C3—C2121.6 (4)C12—C11—O4126.1 (3)
C3—C4—C5119.4 (3)C12—C11—C10121.2 (3)
C4—C5—C6119.7 (3)O4—C11—C10112.7 (3)
C4—C5—N1122.6 (3)C11—C12—C13121.3 (4)
C6—C5—N1117.8 (3)C14—C13—C12120.1 (4)
C7—C6—C5120.1 (3)C13—C14—C9120.1 (4)
C6—C7—C2120.6 (3)C8—N1—C5126.5 (3)
N1—C8—C9121.9 (3)C11—O4—C15116.1 (3)
O1—C1—C2—C3169.8 (4)C8—C9—C10—C11179.3 (3)
O2—C1—C2—C38.6 (5)C14—C9—C10—C112.6 (5)
O1—C1—C2—C76.5 (5)O3—C10—C11—C12178.3 (3)
O2—C1—C2—C7175.1 (3)C9—C10—C11—C122.0 (5)
C7—C2—C3—C43.0 (6)O3—C10—C11—O41.1 (5)
C1—C2—C3—C4173.3 (3)C9—C10—C11—O4178.6 (3)
C2—C3—C4—C50.2 (6)O4—C11—C12—C13179.7 (3)
C3—C4—C5—C64.0 (6)C10—C11—C12—C130.4 (6)
C3—C4—C5—N1176.2 (3)C11—C12—C13—C140.7 (6)
C4—C5—C6—C74.5 (6)C12—C13—C14—C90.2 (5)
N1—C5—C6—C7175.7 (3)C8—C9—C14—C13179.7 (3)
C5—C6—C7—C21.2 (6)C10—C9—C14—C131.6 (5)
C3—C2—C7—C62.5 (6)C9—C8—N1—C5177.6 (3)
C1—C2—C7—C6173.9 (3)C4—C5—N1—C83.2 (6)
N1—C8—C9—C14179.7 (3)C6—C5—N1—C8176.9 (3)
N1—C8—C9—C102.2 (5)C12—C11—O4—C151.2 (5)
C8—C9—C10—O30.4 (5)C10—C11—O4—C15178.1 (3)
C14—C9—C10—O3177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.861.872.568 (4)138
O2—H2···O5i0.821.802.598 (4)164
O5—H5O···O3ii0.96 (5)1.77 (5)2.690 (4)159 (4)
C7—H7···O2i0.932.563.233 (5)130
C8—H8···O1iii0.932.413.281 (5)155
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The Department of Chemistry, Langat Singh College and the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, are thanked for providing laboratory facilities.

Funding information

The authors are grateful to the National Taras Shevchenko University, Department of Chemistry, and the University Grants Commission, New Delhi, for financial support.

References

First citationAmimoto, K. & Kawato, T. (2005). J. Photochem. Photobiol. Photochem. Rev. 6, 207–226.  Web of Science CrossRef CAS Google Scholar
First citationBarik, A., Priyadarsini, K. I. & Mohan, H. (2004). Radiat. Phys. Chem. 70, 687–696.  CrossRef Google Scholar
First citationBenali-Cherif, R., Takouachet, R., Bendeif, E.-E. & Benali-Cherif, N. (2014). Acta Cryst. C70, 323–325.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBourque, T. A., Nelles, M. E., Gullon, T. J., Garon, C. N., Ringer, M. K., Leger, L. J., Mason, J. W., Wheaton, S. L., Baerlocher, F. J., Vogels, C. M., Decken, A. & Westcott, S. A. (2005). Can. J. Chem. 83, 1063–1070.  Web of Science CrossRef CAS Google Scholar
First citationCharland, J.-P., Gabe, E. J., Khoo, L. E. & Smith, F. E. (1989). Polyhedron, 8, 1897–1901.  CrossRef Google Scholar
First citationCohen, M. D. & Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 1996–2000.  CrossRef Web of Science Google Scholar
First citationDalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluor. Chem. 132, 536–540.  Web of Science CrossRef CAS Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485–486.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o117–o119.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Ahmad, M., Kapshuk, A. A. & Golenya, I. A. (2017a). Acta Cryst. E73, 38–40.  CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018). J. Mol. Struct. 1156, 457–464.  CrossRef Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N., Haque, A., Kalibabchuk, V. A. & Cemberci, M. (2017b). Acta Cryst. E73, 96–98.  CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Haque, A. & Kalibabchuk, V. A. (2017c). Acta Cryst. E73, 112–114.  CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015b). Acta Cryst. E71, 28–30.  CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Ohui, K. A. & Golenya, I. A. (2015a). Acta Cryst. E71, 1433–1435.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Devaraj, S. & Kandaswamy, M. (2007). Acta Cryst. E63, o849–o851.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKamwaya, M. E. & Khoo, L. E. (1985). J. Fiz. Malays. 6, 135–140.  CAS Google Scholar
First citationKannappan, R., Tooke, D. M., Spek, A. L. & Reedijk, J. (2006). Inorg. Chim. Acta, 359, 334–338.  CrossRef Google Scholar
First citationKaradayı, N., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1727–o1729.  CrossRef IUCr Journals Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  CrossRef Google Scholar
First citationLigtenbarg, A. G. J., Hage, R., Meetsma, A. & Feringa, B. L. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 807–812.  Web of Science CrossRef Google Scholar
First citationLozier, R. H., Bogomolni, R. A. & Stoeckenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMoroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796.  CrossRef Google Scholar
First citationOgawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.  Web of Science CrossRef CAS Google Scholar
First citationOndráček, J., Kovářová, Z., Maixner, J. & Jursık, F. (1993). Acta Cryst. C49, 1948–1949.  CrossRef IUCr Journals Google Scholar
First citationRobinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541–662 London: Pergamon.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta Part A, 96, 42–50.  Web of Science CrossRef CAS Google Scholar
First citationTakahashi, K., Sekiguchi, M. & Kawazoe, Y. (1989). Biochem. Biophys. Res. Commun. 162, 1376–1381.  CrossRef Google Scholar
First citationThorat, B. R., Mandewale, M., Shelke, S., Kamat, P., Atram, R. G., Bhalerao, M. & Yamgar, R. (2012). J. Chem. Pharm. Res. 4, 14–17.  Google Scholar
First citationZhi, F., Wang, R., Zhang, Y., Wang, Q. & Yang, Y.-L. (2011). Acta Cryst. E67, o2825.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds