research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-benzyl-3-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: as.saber.pro@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 15 November 2018; accepted 16 November 2018; online 22 November 2018)

The title compound, C17H14N2O, is built up from the planar benzo­diazole unit linked to the benzyl and propynyl substituents. The substituents are rotated significantly out of the benzo­diazole plane, where the benzyl group is inclined by 68.91 (7)° to the benzo­diazole unit. In the crystal, the mol­ecules are linked via inter­molecular C—HBnzdzl⋯O and C—HBnzy⋯O (Bnzdzl = benzo­diazole and Bnzy = benz­yl) hydrogen bonds, enclosing R44(27) ring motifs, into a network consisting of rectangular layers parallel to the bc plane which are also stacked along the a-axis direction being associated through C—H⋯π (ring) inter­actions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.6%), H⋯C/C⋯H (42.0%) and H⋯O/O⋯H (8.9%) inter­actions.

1. Chemical context

The benzimidazole nucleus constitutes an important pharmacophore in medicinal chemistry and pharmacology (Ouzidan et al., 2011[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362-o363.]; Dardouri et al., 2011[Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853.]; Soderlind et al., 1999[Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19-36.]). Benzimidazol-2-one derivatives are of wide inter­est because of their diverse biological activities such as anti­microbial, anti-fungal, anti-histaminic, anti-inflammatory, anti­viral and anti-oxidant (Walia et al., 2011[Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & &Lamba, H. S. (2011). Int. J. Res. Pharm. & Chem. 1, 565-574.]; Luo et al., 2011[Luo, Y., Yao, J.-P., Yang, L., Feng, C.-L., Tang, W., Wang, G.-F., Zuo, J.-P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78-83.]; Ayhan-Kılcıgil et al., 2007[Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607-611.]; Navarrete-Vázquez et al., 2001[Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2001). Bioorg. Med. Chem. 11, 187-190.]).

[Scheme 1]

As a continuation of our research works devoted to the development of substituted benzimidazol-2-one derivatives (Lakhrissi et al., 2008[Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421-433.]; Mondieig et al., 2013[Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51-61.]), we report herein the synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis of a new benzimidazol-2-one derivative, namely 2-benzyl-1-(prop-2-yn­yl)-1H-benzoimidazol 2(3H)-one. It was obtained by condensation of benzyl chloride with 1-(prop-2-yn­yl)-1H-benzoimidazol-2(3H)-one in the presence of tetra-n-butyl­ammonium bromide as catalyst and potassium carbonate as base.

2. Structural commentary

The title compound is built up from a benzo­diazole unit linked to benzyl and propynyl substituents (Fig. 1[link]). The benzo­diazole moiety is planar to within 0.015 (1) Å (for atom C7), and the r.m.s. deviation of the fitted atoms is 0.008 Å. It is inclined by 68.91 (7)° to the C12–C17 ring plane. The benzyl substituent is nearly perpendicular to the benzodizole plane, as indicated by the C6—N1—C11—C12 torsion angle of −87.00 (15)° while the propynyl substituent is at a smaller angle [C1—N2—C8—C9 = −73.46 (18)°]. Atoms O1, C8 and C11 deviate by 0.038 (1), 0.003 (2) and 0.047 (2) Å, respectively, from the benzodizole plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked via inter­molecular C—HBnzdzl⋯O and C—HBnzy⋯O (Bnzdzl = benzo­diazole and Bnzy = benz­yl) hydrogen bonds (Table 1[link]), enclosing R44(27) ring motifs, into a network consisting of rectangular layers parallel to the bc plane (Fig. 2[link]), which stack along the a-axis direction being associated through C—H⋯π (ring) inter­actions (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1iii 0.982 (18) 2.542 (18) 3.4997 (18) 165.1 (14)
C16—H16⋯O1vi 0.994 (18) 2.568 (18) 3.468 (2) 150.6 (14)
C17—H17⋯Cg2viii 1.00 (2) 2.831 (18) 3.6964 (17) 144.6 (15)
Symmetry codes: (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) x, y-1, z; (viii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Plan view of a portion of one layer seen along the a-axis direction. Inter­molecular C—HBnzdzl⋯O and C—HBnzy⋯O (Bnzdzl = benzo­diazole and Bnzy = benz­yl) hydrogen bonds are shown by dashed lines.
[Figure 3]
Figure 3
Elevation view of two layers seen along the b-axis direction. C—H⋯O hydrogen bonds are shown by black dashed lines while C—H⋯π(ring) inter­actions are shown by green dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 4[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spot appearing near O1 indicates its role as acceptor in the dominant C—H⋯O hydrogen bonds. Hydrogen-bond donors and acceptors appear, respectively, as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) shown in Fig. 5[link]. The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 6[link] clearly suggests that there are no ππ inter­actions present. The overall two-dimensional fingerprint plot, Fig. 7[link](a), and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and N⋯C/C⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 7[link](b)–(g), respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action type is H⋯H, contributing 43.6% to the overall crystal packing, which is reflected in Fig. 7[link](b) as widely scattered points of high density due to the large hydrogen content of the mol­ecule and also due to the short H⋯H contacts (Table 2[link]). In the presence of C—H⋯π inter­actions, the pair of widely scattered points of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (42.0% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 7[link](c), with the tips at de + di ∼2.72 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (8.9% contribution), Fig. 7[link](d), arises from the C—H⋯O hydrogen bonds (Table 1[link]) as well as from the H⋯O/O⋯H contacts (Table 3[link]) and has a pair of spikes with the tips at de + di = 2.43 Å. The pair of characteristic wings resulting in the fingerprint plot delineated into H ⋯ N/N ⋯ H contacts [Fig. 7[link](e), 2.5% contribution] has a pair of spikes with the tips at de + di = 3.12 Å. Finally, the wide spike with the tip at de = di = 1.77 Å in Fig. 7[link](f) is due to the C⋯C contacts (Table 3[link]).

Table 2
Selected interatomic distances (Å)

O1⋯H8B 2.492 (18) C5⋯H11A 2.897 (16)
O1⋯H11B 2.607 (16) C5⋯H10vi 2.93 (3)
O1⋯H13 2.760 (18) C8⋯H2 2.947 (16)
O1⋯H16i 2.568 (18) C10⋯H8Aii 2.874 (18)
C2⋯C9 3.5265 (19) C10⋯H14iii 2.95 (2)
C7⋯C13 3.5805 (19) C10⋯H11Avii 2.895 (17)
C9⋯C1ii 3.5236 (18) C11⋯H5 2.998 (16)
C10⋯N2ii 3.4291 (19) C13⋯H14v 2.964 (17)
C10⋯C8ii 3.385 (2) H3⋯O1iii 2.542 (18)
C10⋯C14iii 3.512 (3) H5⋯H11A 2.46 (2)
C11⋯C13iv 3.495 (2) H11A⋯H17 2.38 (2)
C14⋯C14v 3.543 (2) H11B⋯H13 2.45 (2)
C4⋯H10vi 2.84 (3)    
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) -x, -y+1, -z+1; (vi) x, y-1, z; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 3
Experimental details

Crystal data
Chemical formula C17H14N2O
Mr 262.30
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 8.3567 (2), 9.2040 (2), 17.7868 (4)
β (°) 94.559 (1)
V3) 1363.74 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.23 × 0.20 × 0.19
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.86, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 13551, 2778, 2433
Rint 0.032
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.05
No. of reflections 2778
No. of parameters 238
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.15, −0.12
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae, et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1150 to 1.2702 a.u.
[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 6]
Figure 6
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H, (f) C⋯C and (g) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯O/O⋯H inter­actions in Fig. 8[link](a)–(d), respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H⋯O/O⋯H and (d) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

To a solution of 1-(prop-2-yn­yl)-1H-benzoimidazol-2(3H)-one (3.42 mmol), benzyl chloride (6.81 mmol) and potassium carbonate (6.42 mmol) in DMF (15 ml) was added a catalytic amount of tetra-n-butyl­ammonium bromide (0.37 mmol) and the mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 76% yield.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms were located in a difference-Fourier map and freely refined.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-Benzyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1H-1,3-benzodiazol-2-one top
Crystal data top
C17H14N2OF(000) = 552
Mr = 262.30Dx = 1.278 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.3567 (2) ÅCell parameters from 9908 reflections
b = 9.2040 (2) Åθ = 2.5–74.9°
c = 17.7868 (4) ŵ = 0.64 mm1
β = 94.559 (1)°T = 298 K
V = 1363.74 (5) Å3Block, colourless
Z = 40.23 × 0.20 × 0.19 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2433 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS micro-focus sourceRint = 0.032
ω scansθmax = 74.4°, θmin = 5.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.86, Tmax = 0.89k = 1111
13551 measured reflectionsl = 2221
2778 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038All H-atom parameters refined
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1595P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2778 reflectionsΔρmax = 0.15 e Å3
238 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL-2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0123 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22681 (15)0.83445 (11)0.40629 (6)0.0792 (3)
N10.34376 (12)0.66295 (10)0.33147 (5)0.0533 (3)
N20.17477 (12)0.82074 (10)0.27629 (6)0.0543 (3)
C10.22401 (13)0.73060 (12)0.22001 (6)0.0491 (3)
C20.18494 (17)0.72757 (15)0.14354 (7)0.0629 (3)
H20.1121 (19)0.7990 (18)0.1214 (9)0.075 (4)*
C30.2547 (2)0.62075 (18)0.10228 (8)0.0734 (4)
H30.234 (2)0.617 (2)0.0472 (10)0.090 (5)*
C40.3609 (2)0.52123 (16)0.13680 (8)0.0703 (4)
H40.414 (2)0.4500 (18)0.1060 (9)0.077 (4)*
C50.40140 (16)0.52408 (14)0.21399 (8)0.0590 (3)
H50.476 (2)0.4532 (18)0.2392 (9)0.077 (4)*
C60.33092 (13)0.63007 (12)0.25513 (6)0.0478 (3)
C70.24590 (16)0.77932 (13)0.34550 (7)0.0555 (3)
C80.06278 (18)0.94116 (15)0.26623 (10)0.0675 (4)
H8A0.034 (2)0.908 (2)0.2331 (11)0.095 (6)*
H8B0.030 (2)0.965 (2)0.3179 (11)0.089 (5)*
C90.13423 (17)1.06640 (14)0.23111 (8)0.0633 (3)
C100.1922 (2)1.16568 (17)0.20289 (11)0.0854 (5)
H100.236 (3)1.249 (3)0.1798 (13)0.132 (8)*
C110.43747 (17)0.58361 (15)0.39115 (8)0.0600 (3)
H11A0.539 (2)0.5429 (18)0.3684 (9)0.080 (5)*
H11B0.4649 (19)0.6538 (18)0.4327 (10)0.080 (5)*
C120.34639 (14)0.45907 (12)0.42256 (6)0.0512 (3)
C130.23968 (18)0.48403 (17)0.47628 (8)0.0675 (4)
H130.223 (2)0.587 (2)0.4938 (9)0.087 (5)*
C140.1570 (2)0.3702 (2)0.50568 (10)0.0819 (5)
H140.086 (2)0.387 (2)0.5429 (12)0.107 (6)*
C150.1808 (2)0.2308 (2)0.48218 (11)0.0830 (5)
H150.123 (2)0.154 (2)0.5025 (10)0.095 (6)*
C160.2874 (3)0.20500 (18)0.42939 (11)0.0870 (5)
H160.306 (2)0.104 (2)0.4124 (11)0.106 (6)*
C170.3696 (2)0.31841 (15)0.39958 (9)0.0701 (4)
H170.446 (2)0.299 (2)0.3599 (12)0.103 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1247 (9)0.0571 (6)0.0569 (5)0.0079 (5)0.0134 (5)0.0057 (4)
N10.0663 (6)0.0445 (5)0.0475 (5)0.0034 (4)0.0042 (4)0.0037 (4)
N20.0612 (6)0.0435 (5)0.0583 (6)0.0059 (4)0.0049 (4)0.0066 (4)
C10.0519 (6)0.0436 (6)0.0512 (6)0.0061 (4)0.0006 (4)0.0055 (4)
C20.0717 (8)0.0593 (7)0.0557 (7)0.0085 (6)0.0081 (6)0.0106 (6)
C30.1009 (11)0.0707 (9)0.0478 (7)0.0184 (8)0.0008 (7)0.0001 (6)
C40.0940 (10)0.0571 (8)0.0619 (8)0.0090 (7)0.0197 (7)0.0083 (6)
C50.0661 (7)0.0469 (6)0.0645 (7)0.0002 (5)0.0090 (6)0.0013 (5)
C60.0524 (6)0.0413 (5)0.0493 (6)0.0050 (4)0.0014 (4)0.0035 (4)
C70.0727 (8)0.0420 (6)0.0520 (6)0.0020 (5)0.0054 (5)0.0027 (5)
C80.0649 (8)0.0524 (7)0.0868 (10)0.0123 (6)0.0158 (7)0.0174 (7)
C90.0715 (8)0.0472 (6)0.0723 (8)0.0125 (6)0.0130 (6)0.0067 (6)
C100.1019 (12)0.0519 (8)0.1070 (13)0.0087 (8)0.0373 (10)0.0107 (8)
C110.0641 (7)0.0574 (7)0.0560 (7)0.0024 (6)0.0113 (6)0.0091 (6)
C120.0549 (6)0.0490 (6)0.0478 (6)0.0059 (5)0.0082 (5)0.0057 (5)
C130.0748 (8)0.0627 (8)0.0652 (8)0.0149 (7)0.0066 (6)0.0057 (6)
C140.0666 (8)0.0971 (12)0.0833 (10)0.0159 (8)0.0131 (8)0.0295 (9)
C150.0703 (9)0.0791 (11)0.0967 (12)0.0107 (8)0.0120 (8)0.0368 (9)
C160.1131 (14)0.0506 (8)0.0956 (12)0.0019 (8)0.0018 (10)0.0065 (8)
C170.0896 (10)0.0526 (7)0.0687 (8)0.0097 (7)0.0099 (7)0.0036 (6)
Geometric parameters (Å, º) top
O1—C71.2163 (15)C8—H8A1.01 (2)
N1—C71.3823 (16)C8—H8B1.004 (18)
N1—C61.3869 (15)C9—C101.166 (2)
N1—C111.4632 (15)C10—H100.95 (2)
N2—C71.3775 (16)C11—C121.5076 (17)
N2—C11.3875 (15)C11—H11A1.042 (17)
N2—C81.4525 (16)C11—H11B0.995 (18)
C1—C21.3737 (17)C12—C171.3761 (18)
C1—C61.3985 (16)C12—C131.3771 (19)
C2—C31.383 (2)C13—C141.381 (2)
C2—H20.959 (17)C13—H131.008 (19)
C3—C41.384 (2)C14—C151.369 (3)
C3—H30.982 (18)C14—H140.94 (2)
C4—C51.388 (2)C15—C161.366 (3)
C4—H40.983 (17)C15—H150.94 (2)
C5—C61.3793 (17)C16—C171.379 (2)
C5—H50.986 (17)C16—H160.99 (2)
C8—C91.4610 (19)C17—H171.00 (2)
O1···H8B2.492 (18)C5···H11A2.897 (16)
O1···H11B2.607 (16)C5···H10vi2.93 (3)
O1···H132.760 (18)C8···H22.947 (16)
O1···H16i2.568 (18)C10···H8Aii2.874 (18)
C2···C93.5265 (19)C10···H14iii2.95 (2)
C7···C133.5805 (19)C10···H11Avii2.895 (17)
C9···C1ii3.5236 (18)C11···H52.998 (16)
C10···N2ii3.4291 (19)C13···H14v2.964 (17)
C10···C8ii3.385 (2)H3···O1iii2.542 (18)
C10···C14iii3.512 (3)H5···H11A2.46 (2)
C11···C13iv3.495 (2)H11A···H172.38 (2)
C14···C14v3.543 (2)H11B···H132.45 (2)
C4···H10vi2.84 (3)
C7—N1—C6110.18 (9)N2—C8—H8B105.8 (10)
C7—N1—C11123.09 (10)C9—C8—H8B111.9 (11)
C6—N1—C11126.62 (10)H8A—C8—H8B109.7 (15)
C7—N2—C1110.34 (9)C10—C9—C8179.48 (16)
C7—N2—C8123.32 (11)C9—C10—H10178.1 (14)
C1—N2—C8126.34 (11)N1—C11—C12113.05 (10)
C2—C1—N2131.74 (11)N1—C11—H11A107.8 (9)
C2—C1—C6121.46 (11)C12—C11—H11A108.8 (9)
N2—C1—C6106.80 (10)N1—C11—H11B107.1 (10)
C1—C2—C3117.56 (13)C12—C11—H11B108.2 (9)
C1—C2—H2119.0 (10)H11A—C11—H11B112.0 (13)
C3—C2—H2123.4 (10)C17—C12—C13118.52 (13)
C2—C3—C4121.16 (13)C17—C12—C11121.19 (12)
C2—C3—H3120.6 (11)C13—C12—C11120.28 (12)
C4—C3—H3118.2 (11)C12—C13—C14120.50 (15)
C3—C4—C5121.56 (14)C12—C13—H13119.1 (10)
C3—C4—H4119.7 (10)C14—C13—H13120.4 (10)
C5—C4—H4118.6 (10)C15—C14—C13120.41 (16)
C6—C5—C4117.22 (13)C15—C14—H14119.1 (14)
C6—C5—H5120.5 (10)C13—C14—H14120.5 (14)
C4—C5—H5122.3 (10)C16—C15—C14119.46 (16)
C5—C6—N1132.12 (11)C16—C15—H15120.9 (11)
C5—C6—C1121.03 (11)C14—C15—H15119.6 (11)
N1—C6—C1106.85 (10)C15—C16—C17120.33 (16)
O1—C7—N2126.95 (12)C15—C16—H16119.8 (12)
O1—C7—N1127.23 (12)C17—C16—H16119.8 (12)
N2—C7—N1105.82 (10)C12—C17—C16120.78 (15)
N2—C8—C9111.93 (11)C12—C17—H17119.1 (11)
N2—C8—H8A108.6 (11)C16—C17—H17120.1 (11)
C9—C8—H8A108.8 (11)
C7—N2—C1—C2179.03 (13)C1—N2—C7—N11.23 (13)
C8—N2—C1—C20.1 (2)C8—N2—C7—N1179.61 (11)
C7—N2—C1—C60.58 (13)C6—N1—C7—O1178.85 (13)
C8—N2—C1—C6179.71 (11)C11—N1—C7—O12.4 (2)
N2—C1—C2—C3179.26 (12)C6—N1—C7—N21.44 (13)
C6—C1—C2—C30.29 (18)C11—N1—C7—N2177.93 (11)
C1—C2—C3—C40.4 (2)C7—N2—C8—C9107.51 (15)
C2—C3—C4—C50.2 (2)C1—N2—C8—C973.46 (18)
C3—C4—C5—C60.2 (2)C7—N1—C11—C1288.90 (15)
C4—C5—C6—N1179.75 (12)C6—N1—C11—C1287.00 (15)
C4—C5—C6—C10.37 (18)N1—C11—C12—C1799.61 (15)
C7—N1—C6—C5179.00 (12)N1—C11—C12—C1381.60 (15)
C11—N1—C6—C52.7 (2)C17—C12—C13—C140.6 (2)
C7—N1—C6—C11.11 (13)C11—C12—C13—C14179.46 (13)
C11—N1—C6—C1177.44 (11)C12—C13—C14—C150.4 (2)
C2—C1—C6—C50.12 (17)C13—C14—C15—C160.1 (3)
N2—C1—C6—C5179.78 (10)C14—C15—C16—C170.5 (3)
C2—C1—C6—N1179.98 (11)C13—C12—C17—C160.3 (2)
N2—C1—C6—N10.32 (12)C11—C12—C17—C16179.09 (14)
C1—N2—C7—O1179.06 (13)C15—C16—C17—C120.3 (3)
C8—N2—C7—O10.1 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x, y1, z; (vii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O1iii0.982 (18)2.542 (18)3.4997 (18)165.1 (14)
C16—H16···O1vi0.994 (18)2.568 (18)3.468 (2)150.6 (14)
C17—H17···Cg2viii1.00 (2)2.831 (18)3.6964 (17)144.6 (15)
Symmetry codes: (iii) x, y+3/2, z1/2; (vi) x, y1, z; (viii) x+1, y1/2, z+1/2.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAyhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433.  CrossRef PubMed Google Scholar
First citationLuo, Y., Yao, J.-P., Yang, L., Feng, C.-L., Tang, W., Wang, G.-F., Zuo, J.-P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61.  Google Scholar
First citationNavarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2001). Bioorg. Med. Chem. 11, 187–190.  Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36.  Web of Science PubMed CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CrossRef CAS Google Scholar
First citationWalia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & &Lamba, H. S. (2011). Int. J. Res. Pharm. & Chem. 1, 565–574.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds