research communications
H-1,3-benzodiazol-2-one
and Hirshfeld surface analysis of 1-benzyl-3-(prop-2-yn-1-yl)-2,3-dihydro-1aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: as.saber.pro@gmail.com
The title compound, C17H14N2O, is built up from the planar benzodiazole unit linked to the benzyl and propynyl substituents. The substituents are rotated significantly out of the benzodiazole plane, where the benzyl group is inclined by 68.91 (7)° to the benzodiazole unit. In the crystal, the molecules are linked via intermolecular C—HBnzdzl⋯O and C—HBnzy⋯O (Bnzdzl = benzodiazole and Bnzy = benzyl) hydrogen bonds, enclosing R44(27) ring motifs, into a network consisting of rectangular layers parallel to the bc plane which are also stacked along the a-axis direction being associated through C—H⋯π (ring) interactions. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (43.6%), H⋯C/C⋯H (42.0%) and H⋯O/O⋯H (8.9%) interactions.
Keywords: crystal structure; benzodiazole; hydrogen bond; alkyne; Hirshfeld surface.
CCDC reference: 1879758
1. Chemical context
The benzimidazole nucleus constitutes an important pharmacophore in medicinal chemistry and pharmacology (Ouzidan et al., 2011; Dardouri et al., 2011; Soderlind et al., 1999). Benzimidazol-2-one derivatives are of wide interest because of their diverse biological activities such as antimicrobial, anti-fungal, anti-histaminic, anti-inflammatory, antiviral and anti-oxidant (Walia et al., 2011; Luo et al., 2011; Ayhan-Kılcıgil et al., 2007; Navarrete-Vázquez et al., 2001).
As a continuation of our research works devoted to the development of substituted benzimidazol-2-one derivatives (Lakhrissi et al., 2008; Mondieig et al., 2013), we report herein the synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis of a new benzimidazol-2-one derivative, namely 2-benzyl-1-(prop-2-ynyl)-1H-benzoimidazol 2(3H)-one. It was obtained by condensation of benzyl chloride with 1-(prop-2-ynyl)-1H-benzoimidazol-2(3H)-one in the presence of tetra-n-butylammonium bromide as catalyst and potassium carbonate as base.
2. Structural commentary
The title compound is built up from a benzodiazole unit linked to benzyl and propynyl substituents (Fig. 1). The benzodiazole moiety is planar to within 0.015 (1) Å (for atom C7), and the r.m.s. deviation of the fitted atoms is 0.008 Å. It is inclined by 68.91 (7)° to the C12–C17 ring plane. The benzyl substituent is nearly perpendicular to the benzodizole plane, as indicated by the C6—N1—C11—C12 torsion angle of −87.00 (15)° while the propynyl substituent is at a smaller angle [C1—N2—C8—C9 = −73.46 (18)°]. Atoms O1, C8 and C11 deviate by 0.038 (1), 0.003 (2) and 0.047 (2) Å, respectively, from the benzodizole plane.
3. Supramolecular features
In the crystal, the molecules are linked via intermolecular C—HBnzdzl⋯O and C—HBnzy⋯O (Bnzdzl = benzodiazole and Bnzy = benzyl) hydrogen bonds (Table 1), enclosing R44(27) ring motifs, into a network consisting of rectangular layers parallel to the bc plane (Fig. 2), which stack along the a-axis direction being associated through C—H⋯π (ring) interactions (Fig. 3).
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spot appearing near O1 indicates its role as acceptor in the dominant C—H⋯O hydrogen bonds. Hydrogen-bond donors and acceptors appear, respectively, as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 5. The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 6 clearly suggests that there are no π–π interactions present. The overall two-dimensional fingerprint plot, Fig. 7(a), and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H, C⋯C and N⋯C/C⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 7(b)–(g), respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction type is H⋯H, contributing 43.6% to the overall crystal packing, which is reflected in Fig. 7(b) as widely scattered points of high density due to the large hydrogen content of the molecule and also due to the short H⋯H contacts (Table 2). In the presence of C—H⋯π interactions, the pair of widely scattered points of wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (42.0% contribution to the HS) have a nearly symmetrical distribution of points, Fig. 7(c), with the tips at de + di ∼2.72 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts (8.9% contribution), Fig. 7(d), arises from the C—H⋯O hydrogen bonds (Table 1) as well as from the H⋯O/O⋯H contacts (Table 3) and has a pair of spikes with the tips at de + di = 2.43 Å. The pair of characteristic wings resulting in the fingerprint plot delineated into H ⋯ N/N ⋯ H contacts [Fig. 7(e), 2.5% contribution] has a pair of spikes with the tips at de + di = 3.12 Å. Finally, the wide spike with the tip at de = di = 1.77 Å in Fig. 7(f) is due to the C⋯C contacts (Table 3).
|
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯O/O⋯H interactions in Fig. 8(a)–(d), respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯O/O⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Synthesis and crystallization
To a solution of 1-(prop-2-ynyl)-1H-benzoimidazol-2(3H)-one (3.42 mmol), benzyl chloride (6.81 mmol) and potassium carbonate (6.42 mmol) in DMF (15 ml) was added a catalytic amount of tetra-n-butylammonium bromide (0.37 mmol) and the mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colourless crystals in 76% yield.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in a difference-Fourier map and freely refined.
details are summarized in Table 3Supporting information
CCDC reference: 1879758
https://doi.org/10.1107/S2056989018016298/xu5952sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018016298/xu5952Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018016298/xu5952Isup3.cdx
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae, et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H14N2O | F(000) = 552 |
Mr = 262.30 | Dx = 1.278 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 8.3567 (2) Å | Cell parameters from 9908 reflections |
b = 9.2040 (2) Å | θ = 2.5–74.9° |
c = 17.7868 (4) Å | µ = 0.64 mm−1 |
β = 94.559 (1)° | T = 298 K |
V = 1363.74 (5) Å3 | Block, colourless |
Z = 4 | 0.23 × 0.20 × 0.19 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2433 reflections with I > 2σ(I) |
Radiation source: INCOATEC IµS micro-focus source | Rint = 0.032 |
ω scans | θmax = 74.4°, θmin = 5.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.86, Tmax = 0.89 | k = −11→11 |
13551 measured reflections | l = −22→21 |
2778 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | All H-atom parameters refined |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0559P)2 + 0.1595P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2778 reflections | Δρmax = 0.15 e Å−3 |
238 parameters | Δρmin = −0.12 e Å−3 |
0 restraints | Extinction correction: SHELXL-2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0123 (10) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.22681 (15) | 0.83445 (11) | 0.40629 (6) | 0.0792 (3) | |
N1 | 0.34376 (12) | 0.66295 (10) | 0.33147 (5) | 0.0533 (3) | |
N2 | 0.17477 (12) | 0.82074 (10) | 0.27629 (6) | 0.0543 (3) | |
C1 | 0.22401 (13) | 0.73060 (12) | 0.22001 (6) | 0.0491 (3) | |
C2 | 0.18494 (17) | 0.72757 (15) | 0.14354 (7) | 0.0629 (3) | |
H2 | 0.1121 (19) | 0.7990 (18) | 0.1214 (9) | 0.075 (4)* | |
C3 | 0.2547 (2) | 0.62075 (18) | 0.10228 (8) | 0.0734 (4) | |
H3 | 0.234 (2) | 0.617 (2) | 0.0472 (10) | 0.090 (5)* | |
C4 | 0.3609 (2) | 0.52123 (16) | 0.13680 (8) | 0.0703 (4) | |
H4 | 0.414 (2) | 0.4500 (18) | 0.1060 (9) | 0.077 (4)* | |
C5 | 0.40140 (16) | 0.52408 (14) | 0.21399 (8) | 0.0590 (3) | |
H5 | 0.476 (2) | 0.4532 (18) | 0.2392 (9) | 0.077 (4)* | |
C6 | 0.33092 (13) | 0.63007 (12) | 0.25513 (6) | 0.0478 (3) | |
C7 | 0.24590 (16) | 0.77932 (13) | 0.34550 (7) | 0.0555 (3) | |
C8 | 0.06278 (18) | 0.94116 (15) | 0.26623 (10) | 0.0675 (4) | |
H8A | −0.034 (2) | 0.908 (2) | 0.2331 (11) | 0.095 (6)* | |
H8B | 0.030 (2) | 0.965 (2) | 0.3179 (11) | 0.089 (5)* | |
C9 | 0.13423 (17) | 1.06640 (14) | 0.23111 (8) | 0.0633 (3) | |
C10 | 0.1922 (2) | 1.16568 (17) | 0.20289 (11) | 0.0854 (5) | |
H10 | 0.236 (3) | 1.249 (3) | 0.1798 (13) | 0.132 (8)* | |
C11 | 0.43747 (17) | 0.58361 (15) | 0.39115 (8) | 0.0600 (3) | |
H11A | 0.539 (2) | 0.5429 (18) | 0.3684 (9) | 0.080 (5)* | |
H11B | 0.4649 (19) | 0.6538 (18) | 0.4327 (10) | 0.080 (5)* | |
C12 | 0.34639 (14) | 0.45907 (12) | 0.42256 (6) | 0.0512 (3) | |
C13 | 0.23968 (18) | 0.48403 (17) | 0.47628 (8) | 0.0675 (4) | |
H13 | 0.223 (2) | 0.587 (2) | 0.4938 (9) | 0.087 (5)* | |
C14 | 0.1570 (2) | 0.3702 (2) | 0.50568 (10) | 0.0819 (5) | |
H14 | 0.086 (2) | 0.387 (2) | 0.5429 (12) | 0.107 (6)* | |
C15 | 0.1808 (2) | 0.2308 (2) | 0.48218 (11) | 0.0830 (5) | |
H15 | 0.123 (2) | 0.154 (2) | 0.5025 (10) | 0.095 (6)* | |
C16 | 0.2874 (3) | 0.20500 (18) | 0.42939 (11) | 0.0870 (5) | |
H16 | 0.306 (2) | 0.104 (2) | 0.4124 (11) | 0.106 (6)* | |
C17 | 0.3696 (2) | 0.31841 (15) | 0.39958 (9) | 0.0701 (4) | |
H17 | 0.446 (2) | 0.299 (2) | 0.3599 (12) | 0.103 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1247 (9) | 0.0571 (6) | 0.0569 (5) | 0.0079 (5) | 0.0134 (5) | −0.0057 (4) |
N1 | 0.0663 (6) | 0.0445 (5) | 0.0475 (5) | 0.0034 (4) | −0.0042 (4) | 0.0037 (4) |
N2 | 0.0612 (6) | 0.0435 (5) | 0.0583 (6) | 0.0059 (4) | 0.0049 (4) | 0.0066 (4) |
C1 | 0.0519 (6) | 0.0436 (6) | 0.0512 (6) | −0.0061 (4) | 0.0006 (4) | 0.0055 (4) |
C2 | 0.0717 (8) | 0.0593 (7) | 0.0557 (7) | −0.0085 (6) | −0.0081 (6) | 0.0106 (6) |
C3 | 0.1009 (11) | 0.0707 (9) | 0.0478 (7) | −0.0184 (8) | 0.0008 (7) | 0.0001 (6) |
C4 | 0.0940 (10) | 0.0571 (8) | 0.0619 (8) | −0.0090 (7) | 0.0197 (7) | −0.0083 (6) |
C5 | 0.0661 (7) | 0.0469 (6) | 0.0645 (7) | 0.0002 (5) | 0.0090 (6) | 0.0013 (5) |
C6 | 0.0524 (6) | 0.0413 (5) | 0.0493 (6) | −0.0050 (4) | 0.0014 (4) | 0.0035 (4) |
C7 | 0.0727 (8) | 0.0420 (6) | 0.0520 (6) | −0.0020 (5) | 0.0054 (5) | 0.0027 (5) |
C8 | 0.0649 (8) | 0.0524 (7) | 0.0868 (10) | 0.0123 (6) | 0.0158 (7) | 0.0174 (7) |
C9 | 0.0715 (8) | 0.0472 (6) | 0.0723 (8) | 0.0125 (6) | 0.0130 (6) | 0.0067 (6) |
C10 | 0.1019 (12) | 0.0519 (8) | 0.1070 (13) | 0.0087 (8) | 0.0373 (10) | 0.0107 (8) |
C11 | 0.0641 (7) | 0.0574 (7) | 0.0560 (7) | −0.0024 (6) | −0.0113 (6) | 0.0091 (6) |
C12 | 0.0549 (6) | 0.0490 (6) | 0.0478 (6) | 0.0059 (5) | −0.0082 (5) | 0.0057 (5) |
C13 | 0.0748 (8) | 0.0627 (8) | 0.0652 (8) | 0.0149 (7) | 0.0066 (6) | 0.0057 (6) |
C14 | 0.0666 (8) | 0.0971 (12) | 0.0833 (10) | 0.0159 (8) | 0.0131 (8) | 0.0295 (9) |
C15 | 0.0703 (9) | 0.0791 (11) | 0.0967 (12) | −0.0107 (8) | −0.0120 (8) | 0.0368 (9) |
C16 | 0.1131 (14) | 0.0506 (8) | 0.0956 (12) | −0.0019 (8) | −0.0018 (10) | 0.0065 (8) |
C17 | 0.0896 (10) | 0.0526 (7) | 0.0687 (8) | 0.0097 (7) | 0.0099 (7) | 0.0036 (6) |
O1—C7 | 1.2163 (15) | C8—H8A | 1.01 (2) |
N1—C7 | 1.3823 (16) | C8—H8B | 1.004 (18) |
N1—C6 | 1.3869 (15) | C9—C10 | 1.166 (2) |
N1—C11 | 1.4632 (15) | C10—H10 | 0.95 (2) |
N2—C7 | 1.3775 (16) | C11—C12 | 1.5076 (17) |
N2—C1 | 1.3875 (15) | C11—H11A | 1.042 (17) |
N2—C8 | 1.4525 (16) | C11—H11B | 0.995 (18) |
C1—C2 | 1.3737 (17) | C12—C17 | 1.3761 (18) |
C1—C6 | 1.3985 (16) | C12—C13 | 1.3771 (19) |
C2—C3 | 1.383 (2) | C13—C14 | 1.381 (2) |
C2—H2 | 0.959 (17) | C13—H13 | 1.008 (19) |
C3—C4 | 1.384 (2) | C14—C15 | 1.369 (3) |
C3—H3 | 0.982 (18) | C14—H14 | 0.94 (2) |
C4—C5 | 1.388 (2) | C15—C16 | 1.366 (3) |
C4—H4 | 0.983 (17) | C15—H15 | 0.94 (2) |
C5—C6 | 1.3793 (17) | C16—C17 | 1.379 (2) |
C5—H5 | 0.986 (17) | C16—H16 | 0.99 (2) |
C8—C9 | 1.4610 (19) | C17—H17 | 1.00 (2) |
O1···H8B | 2.492 (18) | C5···H11A | 2.897 (16) |
O1···H11B | 2.607 (16) | C5···H10vi | 2.93 (3) |
O1···H13 | 2.760 (18) | C8···H2 | 2.947 (16) |
O1···H16i | 2.568 (18) | C10···H8Aii | 2.874 (18) |
C2···C9 | 3.5265 (19) | C10···H14iii | 2.95 (2) |
C7···C13 | 3.5805 (19) | C10···H11Avii | 2.895 (17) |
C9···C1ii | 3.5236 (18) | C11···H5 | 2.998 (16) |
C10···N2ii | 3.4291 (19) | C13···H14v | 2.964 (17) |
C10···C8ii | 3.385 (2) | H3···O1iii | 2.542 (18) |
C10···C14iii | 3.512 (3) | H5···H11A | 2.46 (2) |
C11···C13iv | 3.495 (2) | H11A···H17 | 2.38 (2) |
C14···C14v | 3.543 (2) | H11B···H13 | 2.45 (2) |
C4···H10vi | 2.84 (3) | ||
C7—N1—C6 | 110.18 (9) | N2—C8—H8B | 105.8 (10) |
C7—N1—C11 | 123.09 (10) | C9—C8—H8B | 111.9 (11) |
C6—N1—C11 | 126.62 (10) | H8A—C8—H8B | 109.7 (15) |
C7—N2—C1 | 110.34 (9) | C10—C9—C8 | 179.48 (16) |
C7—N2—C8 | 123.32 (11) | C9—C10—H10 | 178.1 (14) |
C1—N2—C8 | 126.34 (11) | N1—C11—C12 | 113.05 (10) |
C2—C1—N2 | 131.74 (11) | N1—C11—H11A | 107.8 (9) |
C2—C1—C6 | 121.46 (11) | C12—C11—H11A | 108.8 (9) |
N2—C1—C6 | 106.80 (10) | N1—C11—H11B | 107.1 (10) |
C1—C2—C3 | 117.56 (13) | C12—C11—H11B | 108.2 (9) |
C1—C2—H2 | 119.0 (10) | H11A—C11—H11B | 112.0 (13) |
C3—C2—H2 | 123.4 (10) | C17—C12—C13 | 118.52 (13) |
C2—C3—C4 | 121.16 (13) | C17—C12—C11 | 121.19 (12) |
C2—C3—H3 | 120.6 (11) | C13—C12—C11 | 120.28 (12) |
C4—C3—H3 | 118.2 (11) | C12—C13—C14 | 120.50 (15) |
C3—C4—C5 | 121.56 (14) | C12—C13—H13 | 119.1 (10) |
C3—C4—H4 | 119.7 (10) | C14—C13—H13 | 120.4 (10) |
C5—C4—H4 | 118.6 (10) | C15—C14—C13 | 120.41 (16) |
C6—C5—C4 | 117.22 (13) | C15—C14—H14 | 119.1 (14) |
C6—C5—H5 | 120.5 (10) | C13—C14—H14 | 120.5 (14) |
C4—C5—H5 | 122.3 (10) | C16—C15—C14 | 119.46 (16) |
C5—C6—N1 | 132.12 (11) | C16—C15—H15 | 120.9 (11) |
C5—C6—C1 | 121.03 (11) | C14—C15—H15 | 119.6 (11) |
N1—C6—C1 | 106.85 (10) | C15—C16—C17 | 120.33 (16) |
O1—C7—N2 | 126.95 (12) | C15—C16—H16 | 119.8 (12) |
O1—C7—N1 | 127.23 (12) | C17—C16—H16 | 119.8 (12) |
N2—C7—N1 | 105.82 (10) | C12—C17—C16 | 120.78 (15) |
N2—C8—C9 | 111.93 (11) | C12—C17—H17 | 119.1 (11) |
N2—C8—H8A | 108.6 (11) | C16—C17—H17 | 120.1 (11) |
C9—C8—H8A | 108.8 (11) | ||
C7—N2—C1—C2 | 179.03 (13) | C1—N2—C7—N1 | 1.23 (13) |
C8—N2—C1—C2 | −0.1 (2) | C8—N2—C7—N1 | −179.61 (11) |
C7—N2—C1—C6 | −0.58 (13) | C6—N1—C7—O1 | 178.85 (13) |
C8—N2—C1—C6 | −179.71 (11) | C11—N1—C7—O1 | 2.4 (2) |
N2—C1—C2—C3 | −179.26 (12) | C6—N1—C7—N2 | −1.44 (13) |
C6—C1—C2—C3 | 0.29 (18) | C11—N1—C7—N2 | −177.93 (11) |
C1—C2—C3—C4 | −0.4 (2) | C7—N2—C8—C9 | 107.51 (15) |
C2—C3—C4—C5 | 0.2 (2) | C1—N2—C8—C9 | −73.46 (18) |
C3—C4—C5—C6 | 0.2 (2) | C7—N1—C11—C12 | 88.90 (15) |
C4—C5—C6—N1 | 179.75 (12) | C6—N1—C11—C12 | −87.00 (15) |
C4—C5—C6—C1 | −0.37 (18) | N1—C11—C12—C17 | 99.61 (15) |
C7—N1—C6—C5 | −179.00 (12) | N1—C11—C12—C13 | −81.60 (15) |
C11—N1—C6—C5 | −2.7 (2) | C17—C12—C13—C14 | −0.6 (2) |
C7—N1—C6—C1 | 1.11 (13) | C11—C12—C13—C14 | −179.46 (13) |
C11—N1—C6—C1 | 177.44 (11) | C12—C13—C14—C15 | 0.4 (2) |
C2—C1—C6—C5 | 0.12 (17) | C13—C14—C15—C16 | 0.1 (3) |
N2—C1—C6—C5 | 179.78 (10) | C14—C15—C16—C17 | −0.5 (3) |
C2—C1—C6—N1 | −179.98 (11) | C13—C12—C17—C16 | 0.3 (2) |
N2—C1—C6—N1 | −0.32 (12) | C11—C12—C17—C16 | 179.09 (14) |
C1—N2—C7—O1 | −179.06 (13) | C15—C16—C17—C12 | 0.3 (3) |
C8—N2—C7—O1 | 0.1 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x, y+1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) x, y−1, z; (vii) −x+1, y+1/2, −z+1/2. |
Cg2 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1iii | 0.982 (18) | 2.542 (18) | 3.4997 (18) | 165.1 (14) |
C16—H16···O1vi | 0.994 (18) | 2.568 (18) | 3.468 (2) | 150.6 (14) |
C17—H17···Cg2viii | 1.00 (2) | 2.831 (18) | 3.6964 (17) | 144.6 (15) |
Symmetry codes: (iii) x, −y+3/2, z−1/2; (vi) x, y−1, z; (viii) −x+1, y−1/2, −z+1/2. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dardouri, R., Rodi, Y. K., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o1853. Web of Science CrossRef IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lakhrissi, B., Benksim, A., Massoui, M., Essassi, el M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433. CrossRef PubMed Google Scholar
Luo, Y., Yao, J.-P., Yang, L., Feng, C.-L., Tang, W., Wang, G.-F., Zuo, J.-P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61. Google Scholar
Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2001). Bioorg. Med. Chem. 11, 187–190. Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36. Web of Science PubMed CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CrossRef CAS Google Scholar
Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & &Lamba, H. S. (2011). Int. J. Res. Pharm. & Chem. 1, 565–574. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.