research communications
Formation and structural characterization of a potassium amidinoguanidinate
aChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de
The first potassium amidinoguanidinate complex, catena-poly[[bis(μ-1-amidinato-N,N′,N′′,N′′′-tetraisopropylguanidinato-κ5N1:N1,N2:N2,N4)dipotassium]-μ-1,2-dimethoxyethane-κ2O:O′], [K2(C14H32N4)2(C4H10O2)]n or [{iPrN= CHN(iPr)N(NiPr)2K}2(μ-DME)]n where DME is 1,2-dimethoxyethane, has been synthesized and structurally characterized. The title compound was isolated in 76% yield from a reaction of N,N′-diisopropylcarbodiimide with potassium hydride in DME. The single-crystal X-ray of the title compound revealed a polymeric chain structure comprising cage-like dimeric units, with the amidinoguanidinate ligand displaying a mixed σ-/π-coordination mode.
Keywords: crystal structure; amidinate ligands; guanidinate ligands; amidinoguanidinate; potassium; π-coordination.
CCDC reference: 1862025
1. Chemical context
Heteroallylic N,N′-chelating donor ligands such as amidinate anions [RC(NR)2]− and guanidinate anions [R2NC(NR)2]− are of significant importance in various fields of organometallic and coordination chemistry. It is generally accepted that both types of N,N′-chelating ligands can be regarded as `steric cyclopentadienyl equivalents' (Bailey & Pace, 2001; Collins, 2011; Edelmann, 2013). Over the past three decades, amidinato and guanidinato complexes have been synthesized for nearly every metallic element in the Periodic Table ranging from lithium to the f-block elements (Edelmann, 2009, 2012, 2013; Trifonov, 2010). Important applications of amidinate and guanidinate ligands include the stabilization of unusually low oxidation states (e.g. MgI and FeI) as well as the design of highly active homogeneous catalysts (Collins, 2011; Edelmann, 2013; Chen et al., 2018). Metal amidinate and guanidinate complexes bearing small aliphatic substituents have also been established as ALD (= atomic layer deposition) and MOCVD (= metal–organic chemical vapor deposition) precursors for the deposition of thin films of metals, metal oxides, metal nitrides etc. (Devi, 2013). Formally, amidinate anions are nitrogen analogues of carboxylate anions, while guanidinates are related in the same way to carbamate anions. However, in contrast to the carboxylates and the steric properties of amidinates and guanidinates can be tuned over a wide range by employing different substituents at the outer nitrogen atoms as well as at the central carbon atom of the chelating NCN unit. The most important starting materials in this area are lithium amidinates, which are normally prepared in a straightforward manner by the addition of lithium alkyls to N,N′-diorganocarbodiimides in a 1:1 molar ratio. Lithium guanidinates are formed in the same manner by adding lithium-N,N-dialkylamides to N,N′-diorganocarbodiimides (Stalke et al., 1992; Aharonovich et al., 2008; Chlupatý et al., 2011; Nevoralová et al., 2013; Hong et al., 2013). All of these reactions are generally quite straightforward and afford the desired products in high yields. Less investigated are amidinate salts of the heavier alkali metals sodium and potassium (Cole et al., 2003; Cole & Junk, 2003; Junk & Cole, 2007; Yao et al., 2009; Dröse et al., 2010, Chen et al., 2018).
We recently reported in this journal that, under certain conditions, seemingly straightforward reactions of lithium alkyls with N,N′-diorganocarbodiimides can take a different course, leading to lithium salts of dimerized amidinates ligands (`amidinoguanidinates') (Sroor et al., 2016). These could even become the major reaction products when the N,N′-diorganocarbodiimides are used in a twofold molar excess. The first complexes comprising amidinoguanidinate ligands included the lithium precursors Li[nBuC(=NR)(NR)C(NR)2] [R = iPr, Cy (= cyclohexyl)] and the holmium(III) complex [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (Sroor et al., 2016). In this contribution, we report the synthesis and structural characterization of the first potassium amidinoguanidinate derivative, polymeric catena-poly[[bis(μ-1-amidinato-N,N′,N′′,N′′′-tetraisopropylguanidinato-κ5N1:N1,N2:N2,N4)dipotassium]-μ-1,2-dimethoxyethane-κ2O:O′] [{iPrN=CHN(iPr)N(NiPr)2K}2(μ-DME)]n.
As illustrated in Fig. 1, the title compound was formed when N,N′-diisopropylcarbodiimide was added to a suspension of potassium hydride in 1,2-dimethoxyethane (DME). With the attempt to prepare the corresponding amidinate K[HC(NiPr)2], the reactants were used in a molar ratio 1:1. After filtration and concentration of the filtrate to a small volume, the product crystallized directly at room temperature and could be isolated as colorless, plate-like, moisture-sensitive crystals in 76% yield (calculated after determination of the crystal structure). The compound was characterized through elemental analysis as well as IR, NMR (1H and 13C) and mass spectra. However, the usual set of analytical and spectroscopic methods did not allow for an unequivocal elucidation of the molecular structure. NMR data clearly indicated the presence of coordinated DME. However, both the 1H and 13C NMR spectra showed two sets of iso-propyl resonances, thereby ruling out the formation of a simple potassium formamidinate salt of the composition `(DME)K[HC(NiPr)2]'. Fortunately, the single crystals obtained directly from the filtered and concentrated reaction solution were suitable for X-ray This study confirmed the formation of a new amidinoguanidinate complex through dimerization of N,N′-diisopropylcarbodiimide in the coordination sphere of potassium.
2. Structural commentary
The molecular structure of the title compound consists of centrosymmetric dimeric units, being composed of two potassium atoms and two amidinoguanidinate ligands (Fig. 2). The guanidinate unit is attached to potassium in an N,N′-chelating mode, with the K atom in the N3C plane of the guanidinate. The same guanidinate moiety is linked to the symmetry-equivalent K atom in an η3-diazaallyl mode, i.e. the metal atom is situated above the N1/C1/N2 plane. The exposed nitrogen donor of the amidinate backbone (N4) in the title compound is attached to the metal center in a simple monodentate coordination, with the N atom having a perfectly planar environment (sum of bond angles = 360.0°). This is in agreement with the expected sp2 of atom N4 (cf. Scheme). As a result of the μ-bridging coordination of the amidinoguanidinate ligand, the potassium atom is surrounded by a σ-chelating guanidinate group, a π-diazaallyl-coordinated guanidinate group, and a single amidinate nitrogen atom in a T-shaped fashion. A pseudo-square-planar coordination is completed by one oxygen atom of a μ-κO:κO′-coordinated DME ligand. Through this bridging DME coordination, the dimeric units are interconnected into a one-dimensional coordination polymer (Fig. 3).
An increased tendency towards π-coordination modes is characteristic for the heavier alkali metals and has frequently been observed in other complexes with nitrogen ligands (e.g. von Bülow et al., 2004; Liebing & Merzweiler, 2015). However, in potassium amidinates and guanidinates, a symmetric double-chelating coordination is usually preferred over coordination modes with a contribution of the π-electron system (Fig. 4) (Giesbrecht et al., 1999; Benndorf et al., 2011). A similar mixed σ-/π-coordination to that in the title compound has been recently observed by us in a potassium dithiocarbamate (Liebing, 2017).
The K—N bond lengths to the σ-bonded guanidinate group are 2.793 (2) Å (N1) and 2.814 (2) Å (N2), while the bond to the single amidinate nitrogen donor (N4) is considerably longer at 2.939 (2) Å. All these values are within the range usually observed for K—N bonds (crystal structures deposited in the CSD; Groom et al., 2016). The K—N distances to the π-coordinated guanidinate group are 2.882 (2) Å (N1) and 2.979 (2) Å (N2), and the corresponding K—C1 separation was determined to be 2.967 (2) Å. The latter value is considerably smaller than in a structurally related potassium dithiocarbamate [K—C 3.150 (2) Å; Liebing, 2017].
3. Supramolecular features
The
of the title compound does not display any specific interactions between the polymeric chains. The closest interchain contact is 3.632 (3) Å (C5⋯C14) between the methyl carbon atoms of isopropyl groups.4. Database survey
For a review article on related alkali metal bis(aryl)formamidinates, see: Junk & Cole (2007). For other structurally characterized alkali metal amidinates and guanidinates, see: Giesbrecht et al. (1999), Stalke et al. (1992), Cole et al. (2003), Aharonovich et al. (2008), Chlupatý et al. (2011), Cole & Junk (2003), Junk & Cole (2007), Benndorf et al. (2011), Nevoralová et al. (2013) and Hong et al. (2013).
5. Synthesis and crystallization
General Procedures: The reaction was carried out under an inert atmosphere of dry argon employing standard Schlenk and glove-box techniques. The solvent dimethoxyethane (DME) was distilled from sodium/benzophenone under nitrogen atmosphere prior to use. All glassware was oven-dried at 393 K for at least 24 h, assembled while hot, and cooled under high vacuum prior to use. The starting material N,N′-diisopropylcarbodiimide was obtained from Sigma–Aldrich and used as received. Commercially available potassium hydride was freed from protecting paraffin oil by thoroughly washing with n-pentane and stored in a glove-box. The 1H and 13C NMR spectra were recorded in solutions on a Bruker Biospin AVIII 400 MHz spectrometer at 298 K. Chemical shifts are referenced to tetramethylsilane. The IR spectrum was measured with a Bruker Optics VERTEX 70v spectrometer, and the electron impact was recorded using a MAT95 spectrometer with an of 70 eV. Microanalysis of the title compound was performed using a `vario EL cube' apparatus from Elementar Analysensysteme GmbH. The melting/decomposition point was measured on a Büchi Melting Point B-540 apparatus.
Synthesis of [{iPrN=CHN(iPr)N(NiPr)2K}2(μ-DME)]n: 1.6 mL (1.26 g, 10.0 mmol) of N,N′-diisopropylcarbodiimide were added to a stirred suspension of 0.41 g (10 mmol) of KH in 50 ml of DME. The reaction mixture was stirred for two days and refluxed for an additional 2 h. After cooling to room temperature, all insoluble solid parts were filtered off and the volume of the resulting clear solution was reduced to ca 25 ml. After three days at room temperature, the title compound crystallized as colorless, plate-like crystals suitable for single-crystal X-ray diffraction. Yield: 1.3 g (76%). M.p. 378 K (dec.). C32H68K2N8O2 (M = 675.15 g mol−1): calculated C 56.93, H 10.15, N 16.60; found: C 56.81, H 10.24, N 16.33%. IR (ATR): ν = 2952 m, 2858 m, 2824 w, 1626 m, 1538 s, 1465 m, 1453 m, 1383 m, 1369 m, 1358 m, 1343 m, 1318 m, 1298 m, 1196 m, 1162 m, 1125 m, 1111 m 1048 w, 993 m, 955 w, 946 w, 858 w, 815 w, 674 w, 575 w, 516 w, 442 m 373 w, 338 m, 295 w, 262 m cm−1. 1H NMR (400.1 MHz, THF-d8, 293 K): δ = 7.90 (s, 2H, N—CH=N), 3.47 [sept, 4H, CH(CH3)2], 3.43 (s, 8H, DME), 3.27 (s, 12H, DME), 3.01 [sept, 4H, CH(CH3)2], 1.15 [d, 24H, CH(CH3)2], 0.94 [d, 24H, CH(CH3)2] ppm. 13C NMR (100.6 MHz, THF-d8, 293 K): δ = 166.0 (N—CH=N), 150.0 (N—CN—N), 72.6 (DME), 58.9 (DME), 55.5 [CH(CH3)2], 49.4 [CH(CH3)2], 28.2 [CH(CH3)2], 25.0 [CH(CH3)2] ppm. MS (EI, 70 eV): m/z = 254 (5) [C14H30N4]+, 211 (30) [C14H30N4 − iPr]+, 184 (32), 170 (38), 144 (82), 129 (100).
6. Refinement
Crystal data, data collection and structure . H atoms attached to C atoms were fixed geometrically and refined using a riding model. CH3 groups were allowed to rotate freely around the C—C vector, and the corresponding C—H distances were constrained to 0.98 Å. C—H distances within CH2 groups were constrained to 0.99 Å, C—H distances within the iPr CH groups to 1.00 Å, and the C—H distance within the amidinate group (i.e. at C2) to 0.95 Å. The Uiso(H) values were set at 1.5Ueq(C) for methyl groups and at 1.2Ueq(C) in all other cases. The reflections (001) and (010) disagreed strongly with the structural model and were therefore omitted from the refinement.
details are summarized in Table 1Supporting information
CCDC reference: 1862025
https://doi.org/10.1107/S2056989018015980/zl2742sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018015980/zl2742Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).[K2(C14H32N4)2(C4H10O2)] | Z = 2 |
Mr = 337.57 | F(000) = 370 |
Triclinic, P1 | Dx = 1.110 Mg m−3 |
a = 10.3207 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5311 (6) Å | Cell parameters from 12337 reflections |
c = 11.6703 (7) Å | θ = 2.0–29.2° |
α = 71.605 (4)° | µ = 0.27 mm−1 |
β = 64.168 (4)° | T = 153 K |
γ = 63.516 (4)° | Plate, colorless |
V = 1010.23 (11) Å3 | 0.46 × 0.37 × 0.16 mm |
STOE IPDS 2T diffractometer | 3368 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.104 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.0°, θmin = 2.4° |
area detector scans | h = −12→12 |
9148 measured reflections | k = −12→12 |
3941 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: heavy-atom method |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0873P)2] where P = (Fo2 + 2Fc2)/3 |
3941 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1180 (2) | 0.10787 (17) | 0.76592 (16) | 0.0246 (4) | |
C2 | 0.2802 (2) | −0.03149 (19) | 0.59010 (17) | 0.0258 (4) | |
H1 | 0.343661 | −0.037395 | 0.502260 | 0.031* | |
C3 | −0.1057 (2) | 0.1371 (2) | 0.72593 (19) | 0.0334 (4) | |
H2 | −0.033813 | 0.142578 | 0.634615 | 0.040* | |
C4 | −0.1524 (3) | 0.0079 (2) | 0.7597 (2) | 0.0423 (5) | |
H4 | −0.207873 | 0.020053 | 0.704601 | 0.051* | |
H3 | −0.219625 | 0.000043 | 0.850132 | 0.051* | |
H5 | −0.059844 | −0.079402 | 0.745993 | 0.051* | |
C5 | −0.2492 (3) | 0.2737 (3) | 0.7413 (3) | 0.0484 (6) | |
H7 | −0.306745 | 0.278110 | 0.691062 | 0.073* | |
H8 | −0.218236 | 0.357464 | 0.710293 | 0.073* | |
H6 | −0.314695 | 0.273254 | 0.832358 | 0.073* | |
C6 | 0.3490 (2) | 0.0683 (2) | 0.7999 (2) | 0.0333 (4) | |
H9 | 0.389908 | 0.086282 | 0.703653 | 0.040* | |
C7 | 0.4370 (3) | −0.0860 (3) | 0.8468 (2) | 0.0436 (5) | |
H10 | 0.545801 | −0.099728 | 0.821237 | 0.065* | |
H12 | 0.429255 | −0.151624 | 0.808497 | 0.065* | |
H11 | 0.392692 | −0.105796 | 0.940845 | 0.065* | |
C8 | 0.3718 (3) | 0.1705 (3) | 0.8520 (3) | 0.0480 (6) | |
H14 | 0.481983 | 0.153889 | 0.821431 | 0.072* | |
H15 | 0.331857 | 0.153064 | 0.946321 | 0.072* | |
H13 | 0.315981 | 0.269944 | 0.821474 | 0.072* | |
C9 | 0.2355 (2) | 0.22472 (19) | 0.53339 (18) | 0.0308 (4) | |
H16 | 0.349595 | 0.201466 | 0.493239 | 0.037* | |
C10 | 0.1732 (3) | 0.2586 (2) | 0.4266 (2) | 0.0446 (5) | |
H17 | 0.205883 | 0.333363 | 0.360018 | 0.067* | |
H19 | 0.060151 | 0.292378 | 0.462140 | 0.067* | |
H18 | 0.213228 | 0.171778 | 0.388692 | 0.067* | |
C11 | 0.1659 (4) | 0.3553 (2) | 0.5973 (2) | 0.0507 (6) | |
H21 | 0.182135 | 0.437472 | 0.531850 | 0.076* | |
H22 | 0.215296 | 0.337369 | 0.658908 | 0.076* | |
H20 | 0.054980 | 0.376198 | 0.642701 | 0.076* | |
C12 | 0.3481 (2) | −0.2763 (2) | 0.60265 (19) | 0.0340 (4) | |
H23 | 0.414440 | −0.253644 | 0.512021 | 0.041* | |
C13 | 0.2278 (3) | −0.3213 (3) | 0.6014 (3) | 0.0536 (6) | |
H25 | 0.279619 | −0.407185 | 0.559670 | 0.080* | |
H26 | 0.164617 | −0.243316 | 0.553660 | 0.080* | |
H24 | 0.161667 | −0.342468 | 0.690020 | 0.080* | |
C14 | 0.4483 (3) | −0.3951 (2) | 0.6748 (2) | 0.0494 (6) | |
H27 | 0.502364 | −0.480376 | 0.632053 | 0.074* | |
H29 | 0.383544 | −0.418301 | 0.763433 | 0.074* | |
H28 | 0.523942 | −0.363514 | 0.675633 | 0.074* | |
C15 | 0.2643 (4) | −0.5193 (4) | 1.0541 (3) | 0.0671 (8) | |
H32 | 0.344120 | −0.476641 | 1.009850 | 0.101* | |
H31 | 0.312830 | −0.623859 | 1.058811 | 0.101* | |
H30 | 0.206810 | −0.494569 | 1.141425 | 0.101* | |
C16 | 0.0442 (3) | −0.5234 (2) | 1.0445 (2) | 0.0473 (6) | |
H34 | −0.025475 | −0.488497 | 1.127880 | 0.057* | |
H33 | 0.089693 | −0.629485 | 1.060744 | 0.057* | |
N1 | −0.02933 (18) | 0.12443 (17) | 0.81012 (15) | 0.0280 (3) | |
N2 | 0.18526 (17) | 0.09405 (17) | 0.84450 (15) | 0.0282 (3) | |
N3 | 0.20814 (18) | 0.09943 (16) | 0.62832 (15) | 0.0265 (3) | |
N4 | 0.26831 (18) | −0.14760 (16) | 0.66462 (15) | 0.0278 (3) | |
O1 | 0.1619 (2) | −0.46565 (17) | 0.98535 (16) | 0.0478 (4) | |
K1 | 0.08968 (5) | −0.15986 (4) | 0.94197 (4) | 0.02868 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0225 (8) | 0.0230 (8) | 0.0240 (8) | −0.0074 (7) | −0.0036 (7) | −0.0060 (6) |
C2 | 0.0208 (8) | 0.0280 (9) | 0.0252 (9) | −0.0077 (7) | −0.0031 (7) | −0.0083 (7) |
C3 | 0.0260 (9) | 0.0427 (11) | 0.0315 (10) | −0.0131 (8) | −0.0093 (8) | −0.0056 (8) |
C4 | 0.0296 (10) | 0.0456 (12) | 0.0566 (14) | −0.0113 (9) | −0.0133 (10) | −0.0196 (10) |
C5 | 0.0423 (13) | 0.0415 (12) | 0.0665 (16) | −0.0096 (10) | −0.0336 (12) | −0.0016 (10) |
C6 | 0.0193 (9) | 0.0454 (11) | 0.0331 (10) | −0.0124 (8) | −0.0045 (8) | −0.0089 (8) |
C7 | 0.0270 (10) | 0.0482 (12) | 0.0511 (13) | −0.0049 (9) | −0.0141 (10) | −0.0141 (10) |
C8 | 0.0339 (11) | 0.0525 (13) | 0.0652 (16) | −0.0197 (10) | −0.0167 (11) | −0.0130 (11) |
C9 | 0.0290 (9) | 0.0281 (9) | 0.0306 (10) | −0.0125 (8) | −0.0064 (8) | −0.0013 (7) |
C10 | 0.0593 (15) | 0.0372 (11) | 0.0388 (12) | −0.0190 (11) | −0.0221 (11) | 0.0021 (9) |
C11 | 0.0791 (18) | 0.0309 (11) | 0.0438 (13) | −0.0248 (12) | −0.0210 (13) | −0.0008 (9) |
C12 | 0.0331 (10) | 0.0280 (9) | 0.0324 (10) | −0.0101 (8) | 0.0000 (8) | −0.0118 (7) |
C13 | 0.0543 (15) | 0.0539 (14) | 0.0586 (15) | −0.0274 (12) | −0.0031 (13) | −0.0283 (12) |
C14 | 0.0427 (12) | 0.0291 (10) | 0.0476 (13) | 0.0001 (9) | −0.0029 (11) | −0.0080 (9) |
C15 | 0.077 (2) | 0.0673 (18) | 0.0608 (18) | −0.0303 (16) | −0.0307 (16) | 0.0023 (14) |
C16 | 0.0517 (14) | 0.0360 (11) | 0.0388 (12) | −0.0176 (10) | −0.0021 (11) | −0.0035 (9) |
N1 | 0.0207 (7) | 0.0335 (8) | 0.0283 (8) | −0.0087 (6) | −0.0071 (6) | −0.0064 (6) |
N2 | 0.0192 (7) | 0.0338 (8) | 0.0294 (8) | −0.0084 (6) | −0.0057 (6) | −0.0078 (6) |
N3 | 0.0257 (7) | 0.0244 (7) | 0.0251 (8) | −0.0092 (6) | −0.0038 (6) | −0.0053 (6) |
N4 | 0.0242 (8) | 0.0260 (8) | 0.0284 (8) | −0.0072 (6) | −0.0035 (7) | −0.0090 (6) |
O1 | 0.0516 (10) | 0.0365 (8) | 0.0448 (9) | −0.0172 (7) | −0.0098 (8) | −0.0012 (6) |
K1 | 0.0274 (2) | 0.0255 (2) | 0.0275 (2) | −0.00806 (16) | −0.00473 (17) | −0.00624 (14) |
C1—N2 | 1.313 (2) | C10—H17 | 0.9800 |
C1—N1 | 1.321 (2) | C10—H19 | 0.9800 |
C1—N3 | 1.472 (2) | C10—H18 | 0.9800 |
C1—K1 | 2.9685 (17) | C11—H21 | 0.9800 |
C1—K1i | 3.2060 (18) | C11—H22 | 0.9800 |
C2—N4 | 1.279 (2) | C11—H20 | 0.9800 |
C2—N3 | 1.356 (2) | C12—N4 | 1.464 (2) |
C2—H1 | 0.9500 | C12—C14 | 1.511 (3) |
C3—N1 | 1.450 (2) | C12—C13 | 1.520 (3) |
C3—C4 | 1.523 (3) | C12—H23 | 1.0000 |
C3—C5 | 1.525 (3) | C13—H25 | 0.9800 |
C3—H2 | 1.0000 | C13—H26 | 0.9800 |
C4—K1 | 3.495 (2) | C13—H24 | 0.9800 |
C4—H4 | 0.9800 | C14—H27 | 0.9800 |
C4—H3 | 0.9800 | C14—H29 | 0.9800 |
C4—H5 | 0.9800 | C14—H28 | 0.9800 |
C5—H7 | 0.9800 | C15—O1 | 1.414 (4) |
C5—H8 | 0.9800 | C15—K1 | 3.483 (3) |
C5—H6 | 0.9800 | C15—H32 | 0.9800 |
C6—N2 | 1.454 (2) | C15—H31 | 0.9800 |
C6—C7 | 1.523 (3) | C15—H30 | 0.9800 |
C6—C8 | 1.531 (3) | C16—O1 | 1.409 (3) |
C6—H9 | 1.0000 | C16—C16ii | 1.502 (5) |
C7—H10 | 0.9800 | C16—H34 | 0.9900 |
C7—H12 | 0.9800 | C16—H33 | 0.9900 |
C7—H11 | 0.9800 | N1—K1i | 2.7931 (16) |
C8—H14 | 0.9800 | N1—K1 | 2.8809 (16) |
C8—H15 | 0.9800 | N2—K1i | 2.8135 (16) |
C8—H13 | 0.9800 | N2—K1 | 2.9786 (16) |
C9—N3 | 1.478 (2) | N4—K1 | 2.9394 (16) |
C9—C11 | 1.504 (3) | O1—K1 | 2.8880 (16) |
C9—C10 | 1.520 (3) | K1—K1i | 3.4252 (8) |
C9—H16 | 1.0000 | ||
N2—C1—N1 | 120.49 (16) | K1—C15—H32 | 72.0 |
N2—C1—N3 | 120.05 (15) | O1—C15—H31 | 109.5 |
N1—C1—N3 | 119.42 (15) | K1—C15—H31 | 160.6 |
N2—C1—K1 | 77.68 (10) | H32—C15—H31 | 109.5 |
N1—C1—K1 | 73.27 (10) | O1—C15—H30 | 109.5 |
N3—C1—K1 | 118.28 (10) | K1—C15—H30 | 87.3 |
N2—C1—K1i | 60.96 (10) | H32—C15—H30 | 109.5 |
N1—C1—K1i | 60.10 (10) | H31—C15—H30 | 109.5 |
N3—C1—K1i | 174.37 (11) | O1—C16—C16ii | 108.0 (2) |
K1—C1—K1i | 67.26 (4) | O1—C16—H34 | 110.1 |
N4—C2—N3 | 124.26 (17) | C16ii—C16—H34 | 110.1 |
N4—C2—H1 | 117.9 | O1—C16—H33 | 110.1 |
N3—C2—H1 | 117.9 | C16ii—C16—H33 | 110.1 |
N1—C3—C4 | 110.43 (17) | H34—C16—H33 | 108.4 |
N1—C3—C5 | 109.08 (17) | C1—N1—C3 | 121.64 (16) |
C4—C3—C5 | 109.46 (17) | C1—N1—K1i | 95.69 (11) |
N1—C3—H2 | 109.3 | C3—N1—K1i | 141.98 (12) |
C4—C3—H2 | 109.3 | C1—N1—K1 | 80.68 (10) |
C5—C3—H2 | 109.3 | C3—N1—K1 | 115.75 (11) |
C3—C4—K1 | 87.31 (11) | K1i—N1—K1 | 74.25 (4) |
C3—C4—H4 | 109.5 | C1—N2—C6 | 121.77 (16) |
K1—C4—H4 | 159.9 | C1—N2—K1i | 94.96 (11) |
C3—C4—H3 | 109.5 | C6—N2—K1i | 142.90 (12) |
K1—C4—H3 | 73.4 | C1—N2—K1 | 76.81 (10) |
H4—C4—H3 | 109.5 | C6—N2—K1 | 117.91 (11) |
C3—C4—H5 | 109.5 | K1i—N2—K1 | 72.44 (4) |
K1—C4—H5 | 52.6 | C2—N3—C1 | 118.08 (14) |
H4—C4—H5 | 109.5 | C2—N3—C9 | 118.91 (15) |
H3—C4—H5 | 109.5 | C1—N3—C9 | 122.73 (14) |
C3—C5—H7 | 109.5 | C2—N4—C12 | 115.65 (16) |
C3—C5—H8 | 109.5 | C2—N4—K1 | 123.14 (12) |
H7—C5—H8 | 109.5 | C12—N4—K1 | 121.21 (11) |
C3—C5—H6 | 109.5 | C16—O1—C15 | 112.12 (19) |
H7—C5—H6 | 109.5 | C16—O1—K1 | 121.11 (14) |
H8—C5—H6 | 109.5 | C15—O1—K1 | 102.68 (15) |
N2—C6—C7 | 110.45 (16) | N1i—K1—N2i | 48.14 (4) |
N2—C6—C8 | 109.34 (17) | N1i—K1—N1 | 105.75 (4) |
C7—C6—C8 | 109.17 (18) | N2i—K1—N1 | 88.98 (5) |
N2—C6—H9 | 109.3 | N1i—K1—O1 | 98.99 (5) |
C7—C6—H9 | 109.3 | N2i—K1—O1 | 97.20 (5) |
C8—C6—H9 | 109.3 | N1—K1—O1 | 151.41 (5) |
C6—C7—H10 | 109.5 | N1i—K1—N4 | 152.08 (4) |
C6—C7—H12 | 109.5 | N2i—K1—N4 | 153.54 (5) |
H10—C7—H12 | 109.5 | N1—K1—N4 | 70.20 (4) |
C6—C7—H11 | 109.5 | O1—K1—N4 | 94.19 (5) |
H10—C7—H11 | 109.5 | N1i—K1—C1 | 107.91 (5) |
H12—C7—H11 | 109.5 | N2i—K1—C1 | 109.93 (5) |
C6—C8—H14 | 109.5 | N1—K1—C1 | 26.05 (5) |
C6—C8—H15 | 109.5 | O1—K1—C1 | 150.33 (5) |
H14—C8—H15 | 109.5 | N4—K1—C1 | 56.14 (5) |
C6—C8—H13 | 109.5 | N1i—K1—N2 | 87.43 (4) |
H14—C8—H13 | 109.5 | N2i—K1—N2 | 107.56 (4) |
H15—C8—H13 | 109.5 | N1—K1—N2 | 45.91 (4) |
N3—C9—C11 | 111.21 (16) | O1—K1—N2 | 151.32 (5) |
N3—C9—C10 | 112.21 (15) | N4—K1—N2 | 69.83 (4) |
C11—C9—C10 | 109.47 (18) | C1—K1—N2 | 25.51 (5) |
N3—C9—H16 | 107.9 | N1i—K1—C1i | 24.21 (4) |
C11—C9—H16 | 107.9 | N2i—K1—C1i | 24.08 (4) |
C10—C9—H16 | 107.9 | N1—K1—C1i | 99.77 (5) |
C9—C10—H17 | 109.5 | O1—K1—C1i | 96.93 (5) |
C9—C10—H19 | 109.5 | N4—K1—C1i | 168.88 (4) |
H17—C10—H19 | 109.5 | C1—K1—C1i | 112.74 (4) |
C9—C10—H18 | 109.5 | N2—K1—C1i | 99.86 (4) |
H17—C10—H18 | 109.5 | N1i—K1—K1i | 54.05 (3) |
H19—C10—H18 | 109.5 | N2i—K1—K1i | 56.01 (3) |
C9—C11—H21 | 109.5 | N1—K1—K1i | 51.71 (3) |
C9—C11—H22 | 109.5 | O1—K1—K1i | 149.99 (4) |
H21—C11—H22 | 109.5 | N4—K1—K1i | 115.82 (3) |
C9—C11—H20 | 109.5 | C1—K1—K1i | 59.68 (3) |
H21—C11—H20 | 109.5 | N2—K1—K1i | 51.55 (3) |
H22—C11—H20 | 109.5 | C1i—K1—K1i | 53.06 (3) |
N4—C12—C14 | 109.95 (18) | N1i—K1—C15 | 82.81 (6) |
N4—C12—C13 | 108.55 (17) | N2i—K1—C15 | 98.69 (7) |
C14—C12—C13 | 110.70 (19) | N1—K1—C15 | 171.13 (7) |
N4—C12—H23 | 109.2 | O1—K1—C15 | 23.33 (6) |
C14—C12—H23 | 109.2 | N4—K1—C15 | 101.16 (7) |
C13—C12—H23 | 109.2 | C1—K1—C15 | 149.29 (7) |
C12—C13—H25 | 109.5 | N2—K1—C15 | 134.07 (6) |
C12—C13—H26 | 109.5 | C1i—K1—C15 | 89.00 (6) |
H25—C13—H26 | 109.5 | K1i—K1—C15 | 136.79 (6) |
C12—C13—H24 | 109.5 | N1i—K1—C4 | 128.35 (5) |
H25—C13—H24 | 109.5 | N2i—K1—C4 | 85.06 (5) |
H26—C13—H24 | 109.5 | N1—K1—C4 | 43.73 (5) |
C12—C14—H27 | 109.5 | O1—K1—C4 | 108.80 (5) |
C12—C14—H29 | 109.5 | N4—K1—C4 | 68.65 (5) |
H27—C14—H29 | 109.5 | C1—K1—C4 | 63.44 (5) |
C12—C14—H28 | 109.5 | N2—K1—C4 | 87.95 (5) |
H27—C14—H28 | 109.5 | C1i—K1—C4 | 107.77 (5) |
H29—C14—H28 | 109.5 | K1i—K1—C4 | 84.16 (4) |
O1—C15—K1 | 53.99 (12) | C15—K1—C4 | 132.11 (6) |
O1—C15—H32 | 109.5 | ||
N1—C3—C4—K1 | −13.87 (15) | C7—C6—N2—C1 | −107.2 (2) |
C5—C3—C4—K1 | −133.98 (16) | C8—C6—N2—C1 | 132.6 (2) |
N2—C1—N1—C3 | −178.76 (16) | C7—C6—N2—K1i | 81.9 (2) |
N3—C1—N1—C3 | −1.1 (2) | C8—C6—N2—K1i | −38.3 (3) |
K1—C1—N1—C3 | −114.58 (16) | C7—C6—N2—K1 | −15.8 (2) |
K1i—C1—N1—C3 | 172.45 (19) | C8—C6—N2—K1 | −136.00 (15) |
N2—C1—N1—K1i | 8.79 (17) | N4—C2—N3—C1 | 4.0 (3) |
N3—C1—N1—K1i | −173.54 (12) | N4—C2—N3—C9 | 178.04 (16) |
K1—C1—N1—K1i | 72.97 (4) | N2—C1—N3—C2 | 88.5 (2) |
N2—C1—N1—K1 | −64.18 (16) | N1—C1—N3—C2 | −89.2 (2) |
N3—C1—N1—K1 | 113.48 (14) | K1—C1—N3—C2 | −3.3 (2) |
K1i—C1—N1—K1 | −72.97 (4) | N2—C1—N3—C9 | −85.4 (2) |
C4—C3—N1—C1 | 113.8 (2) | N1—C1—N3—C9 | 97.0 (2) |
C5—C3—N1—C1 | −125.92 (19) | K1—C1—N3—C9 | −177.14 (12) |
C4—C3—N1—K1i | −78.5 (2) | C11—C9—N3—C2 | −171.40 (18) |
C5—C3—N1—K1i | 41.8 (3) | C10—C9—N3—C2 | 65.6 (2) |
C4—C3—N1—K1 | 18.8 (2) | C11—C9—N3—C1 | 2.4 (3) |
C5—C3—N1—K1 | 139.15 (14) | C10—C9—N3—C1 | −120.61 (19) |
N1—C1—N2—C6 | 176.79 (17) | N3—C2—N4—C12 | 176.46 (17) |
N3—C1—N2—C6 | −0.9 (3) | N3—C2—N4—K1 | −2.6 (2) |
K1—C1—N2—C6 | 114.86 (16) | C14—C12—N4—C2 | 129.07 (19) |
K1i—C1—N2—C6 | −174.49 (19) | C13—C12—N4—C2 | −109.7 (2) |
N1—C1—N2—K1i | −8.72 (17) | C14—C12—N4—K1 | −51.9 (2) |
N3—C1—N2—K1i | 173.63 (13) | C13—C12—N4—K1 | 69.4 (2) |
K1—C1—N2—K1i | −70.65 (4) | C16ii—C16—O1—C15 | −172.2 (3) |
N1—C1—N2—K1 | 61.93 (15) | C16ii—C16—O1—K1 | 66.3 (3) |
N3—C1—N2—K1 | −115.72 (14) | K1—C15—O1—C16 | −131.5 (2) |
K1i—C1—N2—K1 | 70.65 (4) |
Symmetry codes: (i) −x, −y, −z+2; (ii) −x, −y−1, −z+2. |
Funding information
Financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.
References
Aharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869–1877. Web of Science CrossRef CAS Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141. Web of Science CrossRef CAS Google Scholar
Benndorf, P., Preuss, C. & Roesky, P. W. (2011). J. Organomet. Chem. 696, 1150–1155. CrossRef Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bülow, R. von, Deuerlein, S., Stey, T., Herbst-Irmer, R., Gornitzka, H. & Stalke, D. (2004). Z. Naturforsch. Teil B, 59, 1471–1479. Google Scholar
Chen, C., Jiang, J., Mao, X., Cong, Y., Cui, Y., Pan, X. & Wu, J. (2018). Inorg. Chem. 57, 3158–3168. CrossRef Google Scholar
Chlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346–2354. Google Scholar
Cole, M. L., Evans, D. J., Junk, P. C. & Smith, M. K. (2003). Chem. Eur. J. 9, 415–424. CrossRef Google Scholar
Cole, M. L. & Junk, P. C. (2003). J. Organomet. Chem. 666, 55–62. CrossRef Google Scholar
Collins, S. (2011). Coord. Chem. Rev. 255, 118–138. Web of Science CrossRef CAS Google Scholar
Devi, A. (2013). Coord. Chem. Rev. 257, 3332–3384. Web of Science CrossRef CAS Google Scholar
Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010). J. Organomet. Chem. 695, 1953–1956. Google Scholar
Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268. Web of Science CrossRef PubMed CAS Google Scholar
Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672. Web of Science CrossRef CAS PubMed Google Scholar
Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374. Web of Science CrossRef CAS Google Scholar
Giesbrecht, G. R., Shafir, A. & Arnold, J. (1999). J. Chem. Soc. Dalton Trans. pp. 3601–3604. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312–7322. Web of Science CrossRef CAS Google Scholar
Junk, P. C. & Cole, M. L. (2007). Chem. Commun. pp. 1579–1590. Web of Science CrossRef Google Scholar
Liebing, P. (2017). Acta Cryst. E73, 1375–1378. CrossRef IUCr Journals Google Scholar
Liebing, P. & Merzweiler, K. (2015). Z. Anorg. Allg. Chem. 641, 1911–1917. CrossRef Google Scholar
Nevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745–746, 186–189. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sroor, F. M., Liebing, P., Hrib, C. G., Gräsing, D., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1526–1531. CrossRef IUCr Journals Google Scholar
Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1–C5. CrossRef CAS Web of Science Google Scholar
Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Trifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327–1347. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yao, S., Chan, H.-S., Lam, C.-K. & Lee, H. K. (2009). Inorg. Chem. 48, 9936–9946. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.