research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Formation and structural characterization of a potassium amidino­guanidinate

CROSSMARK_Color_square_no_text.svg

aChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Zeller, Purdue University, USA (Received 9 November 2018; accepted 12 November 2018; online 16 November 2018)

The first potassium amidino­guanidinate complex, catena-poly[[bis­(μ-1-amidinato-N,N′,N′′,N′′′-tetra­iso­propyl­guanidinato-κ5N1:N1,N2:N2,N4)dipotassium]-μ-1,2-di­meth­oxy­ethane-κ2O:O′], [K2(C14H32N4)2(C4H10O2)]n or [{iPrN= CHN(iPr)N(NiPr)2K}2(μ-DME)]n where DME is 1,2-di­meth­oxy­ethane, has been synthesized and structurally characterized. The title compound was isolated in 76% yield from a reaction of N,N′-diiso­propyl­carbodi­imide with potassium hydride in DME. The single-crystal X-ray structure determination of the title compound revealed a polymeric chain structure comprising cage-like dimeric units, with the amidino­guanidinate ligand displaying a mixed σ-/π-coordination mode.

1. Chemical context

Hetero­allylic N,N′-chelating donor ligands such as amidinate anions [RC(NR)2] and guanidinate anions [R2NC(NR)2] are of significant importance in various fields of organometallic and coordination chemistry. It is generally accepted that both types of N,N′-chelating ligands can be regarded as `steric cyclo­penta­dienyl equivalents' (Bailey & Pace, 2001[Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91-141.]; Collins, 2011[Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.]; Edelmann, 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]). Over the past three decades, amidinato and guanidinato complexes have been synthesized for nearly every metallic element in the Periodic Table ranging from lithium to the f-block elements (Edelmann, 2009[Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.], 2012[Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.], 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]; Trifonov, 2010[Trifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327-1347.]). Important applications of amidinate and guanidinate ligands include the stabilization of unusually low oxidation states (e.g. MgI and FeI) as well as the design of highly active homogeneous catalysts (Collins, 2011[Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.]; Edelmann, 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]; Chen et al., 2018[Chen, C., Jiang, J., Mao, X., Cong, Y., Cui, Y., Pan, X. & Wu, J. (2018). Inorg. Chem. 57, 3158-3168.]). Metal amidinate and guanidinate complexes bearing small aliphatic substituents have also been established as ALD (= atomic layer deposition) and MOCVD (= metal–organic chemical vapor deposition) precursors for the deposition of thin films of metals, metal oxides, metal nitrides etc. (Devi, 2013[Devi, A. (2013). Coord. Chem. Rev. 257, 3332-3384.]). Formally, amidinate anions are nitro­gen analogues of carboxyl­ate anions, while guanidinates are related in the same way to carbamate anions. However, in contrast to the carboxyl­ates and carbamates, the steric properties of amidinates and guanidinates can be tuned over a wide range by employing different substituents at the outer nitro­gen atoms as well as at the central carbon atom of the chelating NCN unit. The most important starting materials in this area are lithium amidinates, which are normally prepared in a straightforward manner by the addition of lithium alkyls to N,N′-diorganocarbodi­imides in a 1:1 molar ratio. Lithium guanidinates are formed in the same manner by adding lithium-N,N-di­alkyl­amides to N,N′-diorganocarbodi­imides (Stalke et al., 1992[Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1-C5.]; Aharonovich et al., 2008[Aharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869-1877.]; Chlupatý et al., 2011[Chlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346-2354.]; Nevoralová et al., 2013[Nevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745-746, 186-189.]; Hong et al., 2013[Hong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312-7322.]). All of these reactions are generally quite straightforward and afford the desired products in high yields. Less investigated are amidin­ate salts of the heavier alkali metals sodium and potassium (Cole et al., 2003[Cole, M. L., Evans, D. J., Junk, P. C. & Smith, M. K. (2003). Chem. Eur. J. 9, 415-424.]; Cole & Junk, 2003[Cole, M. L. & Junk, P. C. (2003). J. Organomet. Chem. 666, 55-62.]; Junk & Cole, 2007[Junk, P. C. & Cole, M. L. (2007). Chem. Commun. pp. 1579-1590.]; Yao et al., 2009[Yao, S., Chan, H.-S., Lam, C.-K. & Lee, H. K. (2009). Inorg. Chem. 48, 9936-9946.]; Dröse et al., 2010[Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010). J. Organomet. Chem. 695, 1953-1956.], Chen et al., 2018[Chen, C., Jiang, J., Mao, X., Cong, Y., Cui, Y., Pan, X. & Wu, J. (2018). Inorg. Chem. 57, 3158-3168.]).

[Scheme 1]

We recently reported in this journal that, under certain conditions, seemingly straightforward reactions of lithium alkyls with N,N′-diorganocarbodi­imides can take a different course, leading to lithium salts of dimerized amidinates ligands (`amidino­guanidinates') (Sroor et al., 2016[Sroor, F. M., Liebing, P., Hrib, C. G., Gräsing, D., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1526-1531.]). These could even become the major reaction products when the N,N′-diorg­ano­carbodi­imides are used in a twofold molar excess. The first complexes comprising amidino­guanidinate ligands included the lithium precursors Li[nBuC(=NR)(NR)C(NR)2] [R = iPr, Cy (= cyclo­hex­yl)] and the holmium(III) complex [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (Sroor et al., 2016[Sroor, F. M., Liebing, P., Hrib, C. G., Gräsing, D., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1526-1531.]). In this contribution, we report the synthesis and structural characterization of the first potassium amidino­guanidinate derivative, polymeric catena-poly[[bis­(μ-1-amidinato-N,N′,N′′,N′′′-tetra­iso­propyl­guanidinato-κ5N1:N1,N2:N2,N4)dipotassium]-μ-1,2-di­meth­oxy­ethane-κ2O:O′] [{iPrN=CHN(iPr)N(NiPr)2K}2(μ-DME)]n.

As illustrated in Fig. 1[link], the title compound was formed when N,N′-diiso­propyl­carbodi­imide was added to a suspension of potassium hydride in 1,2-di­meth­oxy­ethane (DME). With the attempt to prepare the corresponding amidinate K[HC(NiPr)2], the reactants were used in a molar ratio 1:1. After filtration and concentration of the filtrate to a small volume, the product crystallized directly at room temperature and could be isolated as colorless, plate-like, moisture-sensitive crystals in 76% yield (calculated after determination of the crystal structure). The compound was characterized through elemental analysis as well as IR, NMR (1H and 13C) and mass spectra. However, the usual set of analytical and spectroscopic methods did not allow for an unequivocal elucidation of the mol­ecular structure. NMR data clearly indicated the presence of coordinated DME. However, both the 1H and 13C NMR spectra showed two sets of iso-propyl resonances, thereby ruling out the formation of a simple potassium formamidinate salt of the composition `(DME)K[HC(NiPr)2]'. Fortunately, the single crystals obtained directly from the filtered and concentrated reaction solution were suitable for X-ray diffraction analysis. This study confirmed the formation of a new amidino­guanidinate complex through dimerization of N,N′-diiso­propyl­carbodi­imide in the coordination sphere of potassium.

[Figure 1]
Figure 1
Formation of the title compound by reaction of potassium hydride with N,N′-diiso­propyl­carbodi­imide in DME.

2. Structural commentary

The mol­ecular structure of the title compound consists of centrosymmetric dimeric units, being composed of two potassium atoms and two amidino­guanidinate ligands (Fig. 2[link]). The guanidinate unit is attached to potassium in an N,N′-chelating mode, with the K atom in the N3C plane of the guanidinate. The same guanidinate moiety is linked to the symmetry-equivalent K atom in an η3-di­aza­allyl mode, i.e. the metal atom is situated above the N1/C1/N2 plane. The exposed nitro­gen donor of the amidinate backbone (N4) in the title compound is attached to the metal center in a simple monodentate coordination, with the N atom having a perfectly planar environment (sum of bond angles = 360.0°). This is in agreement with the expected sp2 hybridization of atom N4 (cf. Scheme[link]). As a result of the μ-bridging coordination of the amidino­guanidinate ligand, the potassium atom is surrounded by a σ-chelating guanidinate group, a π-di­aza­allyl-coordinated guanidinate group, and a single amidinate nitro­gen atom in a T-shaped fashion. A pseudo-square-planar coordination is completed by one oxygen atom of a μ-κO:κO′-coordinated DME ligand. Through this bridging DME coordination, the dimeric units are inter­connected into a one-dimensional coordination polymer (Fig. 3[link]).

[Figure 2]
Figure 2
Mol­ecular structure of the title compound in the crystal. Displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms omitted for clarity. Symmetry codes: (′) −x, −y, 2 − z; (′′) −x, −1 − y, 2 − z.
[Figure 3]
Figure 3
Illustration of the polymeric chain structure of the title compound, extending along the crystallographic b axis.

An increased tendency towards π-coordination modes is characteristic for the heavier alkali metals and has frequently been observed in other complexes with nitro­gen ligands (e.g. von Bülow et al., 2004[Bülow, R. von, Deuerlein, S., Stey, T., Herbst-Irmer, R., Gornitzka, H. & Stalke, D. (2004). Z. Naturforsch. Teil B, 59, 1471-1479.]; Liebing & Merzweiler, 2015[Liebing, P. & Merzweiler, K. (2015). Z. Anorg. Allg. Chem. 641, 1911-1917.]). However, in potassium amidinates and guanidinates, a symmetric double-chelating coordination is usually preferred over coordination modes with a contribution of the π-electron system (Fig. 4[link]) (Giesbrecht et al., 1999[Giesbrecht, G. R., Shafir, A. & Arnold, J. (1999). J. Chem. Soc. Dalton Trans. pp. 3601-3604.]; Benndorf et al., 2011[Benndorf, P., Preuss, C. & Roesky, P. W. (2011). J. Organomet. Chem. 696, 1150-1155.]). A similar mixed σ-/π-coordination to that in the title compound has been recently observed by us in a potassium di­thio­carbamate (Liebing, 2017[Liebing, P. (2017). Acta Cryst. E73, 1375-1378.]).

[Figure 4]
Figure 4
Coordination modes of 1,3-di­aza­allyl-type ligands (= amidinate or guanidinate) observed in potassium complexes: symmetric double-chelating (A), single-chelating and η3-coordination of the 1,3-di­aza­allyl π-system (B).

The K—N bond lengths to the σ-bonded guanidinate group are 2.793 (2) Å (N1) and 2.814 (2) Å (N2), while the bond to the single amidinate nitro­gen donor (N4) is considerably longer at 2.939 (2) Å. All these values are within the range usually observed for K—N bonds (crystal structures deposited in the CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The K—N distances to the π-coordinated guanidinate group are 2.882 (2) Å (N1) and 2.979 (2) Å (N2), and the corresponding K—C1 separation was determined to be 2.967 (2) Å. The latter value is considerably smaller than in a structurally related potassium di­thio­carbamate [K—C 3.150 (2) Å; Liebing, 2017[Liebing, P. (2017). Acta Cryst. E73, 1375-1378.]].

3. Supra­molecular features

The crystal structure of the title compound does not display any specific inter­actions between the polymeric chains. The closest inter­chain contact is 3.632 (3) Å (C5⋯C14) between the methyl carbon atoms of isopropyl groups.

4. Database survey

For a review article on related alkali metal bis­(ar­yl)formamidinates, see: Junk & Cole (2007[Junk, P. C. & Cole, M. L. (2007). Chem. Commun. pp. 1579-1590.]). For other structurally characterized alkali metal amidinates and guanidinates, see: Giesbrecht et al. (1999[Giesbrecht, G. R., Shafir, A. & Arnold, J. (1999). J. Chem. Soc. Dalton Trans. pp. 3601-3604.]), Stalke et al. (1992[Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1-C5.]), Cole et al. (2003[Cole, M. L., Evans, D. J., Junk, P. C. & Smith, M. K. (2003). Chem. Eur. J. 9, 415-424.]), Aharonovich et al. (2008[Aharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869-1877.]), Chlupatý et al. (2011[Chlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346-2354.]), Cole & Junk (2003[Cole, M. L. & Junk, P. C. (2003). J. Organomet. Chem. 666, 55-62.]), Junk & Cole (2007[Junk, P. C. & Cole, M. L. (2007). Chem. Commun. pp. 1579-1590.]), Benndorf et al. (2011[Benndorf, P., Preuss, C. & Roesky, P. W. (2011). J. Organomet. Chem. 696, 1150-1155.]), Nevoralová et al. (2013[Nevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745-746, 186-189.]) and Hong et al. (2013[Hong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312-7322.]).

5. Synthesis and crystallization

General Procedures: The reaction was carried out under an inert atmosphere of dry argon employing standard Schlenk and glove-box techniques. The solvent di­meth­oxy­ethane (DME) was distilled from sodium/benzo­phenone under nitro­gen atmosphere prior to use. All glassware was oven-dried at 393 K for at least 24 h, assembled while hot, and cooled under high vacuum prior to use. The starting material N,N′-diiso­propyl­carbodi­imide was obtained from Sigma–Aldrich and used as received. Commercially available potassium hydride was freed from protecting paraffin oil by thoroughly washing with n-pentane and stored in a glove-box. The 1H and 13C NMR spectra were recorded in solutions on a Bruker Biospin AVIII 400 MHz spectrometer at 298 K. Chemical shifts are referenced to tetra­methyl­silane. The IR spectrum was measured with a Bruker Optics VERTEX 70v spectrometer, and the electron impact mass spectrum was recorded using a MAT95 spectrometer with an ionization energy of 70 eV. Microanalysis of the title compound was performed using a `vario EL cube' apparatus from Elementar Analysensysteme GmbH. The melting/decomposition point was measured on a Büchi Melting Point B-540 apparatus.

Synthesis of [{iPrN=CHN(iPr)N(NiPr)2K}2(μ-DME)]n: 1.6 mL (1.26 g, 10.0 mmol) of N,N′-diiso­propyl­carbodi­imide were added to a stirred suspension of 0.41 g (10 mmol) of KH in 50 ml of DME. The reaction mixture was stirred for two days and refluxed for an additional 2 h. After cooling to room temperature, all insoluble solid parts were filtered off and the volume of the resulting clear solution was reduced to ca 25 ml. After three days at room temperature, the title compound crystallized as colorless, plate-like crystals suitable for single-crystal X-ray diffraction. Yield: 1.3 g (76%). M.p. 378 K (dec.). C32H68K2N8O2 (M = 675.15 g mol−1): calculated C 56.93, H 10.15, N 16.60; found: C 56.81, H 10.24, N 16.33%. IR (ATR): ν = 2952 m, 2858 m, 2824 w, 1626 m, 1538 s, 1465 m, 1453 m, 1383 m, 1369 m, 1358 m, 1343 m, 1318 m, 1298 m, 1196 m, 1162 m, 1125 m, 1111 m 1048 w, 993 m, 955 w, 946 w, 858 w, 815 w, 674 w, 575 w, 516 w, 442 m 373 w, 338 m, 295 w, 262 m cm−1. 1H NMR (400.1 MHz, THF-d8, 293 K): δ = 7.90 (s, 2H, N—CH=N), 3.47 [sept, 4H, CH(CH3)2], 3.43 (s, 8H, DME), 3.27 (s, 12H, DME), 3.01 [sept, 4H, CH(CH3)2], 1.15 [d, 24H, CH(CH3)2], 0.94 [d, 24H, CH(CH3)2] ppm. 13C NMR (100.6 MHz, THF-d8, 293 K): δ = 166.0 (N—CH=N), 150.0 (N—CN—N), 72.6 (DME), 58.9 (DME), 55.5 [CH(CH3)2], 49.4 [CH(CH3)2], 28.2 [CH(CH3)2], 25.0 [CH(CH3)2] ppm. MS (EI, 70 eV): m/z = 254 (5) [C14H30N4]+, 211 (30) [C14H30N4 − iPr]+, 184 (32), 170 (38), 144 (82), 129 (100).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms attached to C atoms were fixed geometrically and refined using a riding model. CH3 groups were allowed to rotate freely around the C—C vector, and the corresponding C—H distances were constrained to 0.98 Å. C—H distances within CH2 groups were constrained to 0.99 Å, C—H distances within the iPr CH groups to 1.00 Å, and the C—H distance within the amidinate group (i.e. at C2) to 0.95 Å. The Uiso(H) values were set at 1.5Ueq(C) for methyl groups and at 1.2Ueq(C) in all other cases. The reflections (001) and (010) disagreed strongly with the structural model and were therefore omitted from the refinement.

Table 1
Experimental details

Crystal data
Chemical formula [K2(C14H32N4)2(C4H10O2)]
Mr 337.57
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 153
a, b, c (Å) 10.3207 (6), 10.5311 (6), 11.6703 (7)
α, β, γ (°) 71.605 (4), 64.168 (4), 63.516 (4)
V3) 1010.23 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.46 × 0.37 × 0.16
 
Data collection
Diffractometer STOE IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 9148, 3941, 3368
Rint 0.104
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.139, 1.03
No. of reflections 3941
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.68
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[bis(µ-1-amidinato-N,N',N'',N'''-tetraisopropylguanidinato-κ5N1:N1,N2:N2,N4)dipotassium]-µ-1,2-dimethoxyethane-κ2O:O'] top
Crystal data top
[K2(C14H32N4)2(C4H10O2)]Z = 2
Mr = 337.57F(000) = 370
Triclinic, P1Dx = 1.110 Mg m3
a = 10.3207 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5311 (6) ÅCell parameters from 12337 reflections
c = 11.6703 (7) Åθ = 2.0–29.2°
α = 71.605 (4)°µ = 0.27 mm1
β = 64.168 (4)°T = 153 K
γ = 63.516 (4)°Plate, colorless
V = 1010.23 (11) Å30.46 × 0.37 × 0.16 mm
Data collection top
STOE IPDS 2T
diffractometer
3368 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.104
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.4°
area detector scansh = 1212
9148 measured reflectionsk = 1212
3941 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0873P)2]
where P = (Fo2 + 2Fc2)/3
3941 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1180 (2)0.10787 (17)0.76592 (16)0.0246 (4)
C20.2802 (2)0.03149 (19)0.59010 (17)0.0258 (4)
H10.3436610.0373950.5022600.031*
C30.1057 (2)0.1371 (2)0.72593 (19)0.0334 (4)
H20.0338130.1425780.6346150.040*
C40.1524 (3)0.0079 (2)0.7597 (2)0.0423 (5)
H40.2078730.0200530.7046010.051*
H30.2196250.0000430.8501320.051*
H50.0598440.0794020.7459930.051*
C50.2492 (3)0.2737 (3)0.7413 (3)0.0484 (6)
H70.3067450.2781100.6910620.073*
H80.2182360.3574640.7102930.073*
H60.3146950.2732540.8323580.073*
C60.3490 (2)0.0683 (2)0.7999 (2)0.0333 (4)
H90.3899080.0862820.7036530.040*
C70.4370 (3)0.0860 (3)0.8468 (2)0.0436 (5)
H100.5458010.0997280.8212370.065*
H120.4292550.1516240.8084970.065*
H110.3926920.1057960.9408450.065*
C80.3718 (3)0.1705 (3)0.8520 (3)0.0480 (6)
H140.4819830.1538890.8214310.072*
H150.3318570.1530640.9463210.072*
H130.3159810.2699440.8214740.072*
C90.2355 (2)0.22472 (19)0.53339 (18)0.0308 (4)
H160.3495950.2014660.4932390.037*
C100.1732 (3)0.2586 (2)0.4266 (2)0.0446 (5)
H170.2058830.3333630.3600180.067*
H190.0601510.2923780.4621400.067*
H180.2132280.1717780.3886920.067*
C110.1659 (4)0.3553 (2)0.5973 (2)0.0507 (6)
H210.1821350.4374720.5318500.076*
H220.2152960.3373690.6589080.076*
H200.0549800.3761980.6427010.076*
C120.3481 (2)0.2763 (2)0.60265 (19)0.0340 (4)
H230.4144400.2536440.5120210.041*
C130.2278 (3)0.3213 (3)0.6014 (3)0.0536 (6)
H250.2796190.4071850.5596700.080*
H260.1646170.2433160.5536600.080*
H240.1616670.3424680.6900200.080*
C140.4483 (3)0.3951 (2)0.6748 (2)0.0494 (6)
H270.5023640.4803760.6320530.074*
H290.3835440.4183010.7634330.074*
H280.5239420.3635140.6756330.074*
C150.2643 (4)0.5193 (4)1.0541 (3)0.0671 (8)
H320.3441200.4766411.0098500.101*
H310.3128300.6238591.0588110.101*
H300.2068100.4945691.1414250.101*
C160.0442 (3)0.5234 (2)1.0445 (2)0.0473 (6)
H340.0254750.4884971.1278800.057*
H330.0896930.6294851.0607440.057*
N10.02933 (18)0.12443 (17)0.81012 (15)0.0280 (3)
N20.18526 (17)0.09405 (17)0.84450 (15)0.0282 (3)
N30.20814 (18)0.09943 (16)0.62832 (15)0.0265 (3)
N40.26831 (18)0.14760 (16)0.66462 (15)0.0278 (3)
O10.1619 (2)0.46565 (17)0.98535 (16)0.0478 (4)
K10.08968 (5)0.15986 (4)0.94197 (4)0.02868 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (8)0.0230 (8)0.0240 (8)0.0074 (7)0.0036 (7)0.0060 (6)
C20.0208 (8)0.0280 (9)0.0252 (9)0.0077 (7)0.0031 (7)0.0083 (7)
C30.0260 (9)0.0427 (11)0.0315 (10)0.0131 (8)0.0093 (8)0.0056 (8)
C40.0296 (10)0.0456 (12)0.0566 (14)0.0113 (9)0.0133 (10)0.0196 (10)
C50.0423 (13)0.0415 (12)0.0665 (16)0.0096 (10)0.0336 (12)0.0016 (10)
C60.0193 (9)0.0454 (11)0.0331 (10)0.0124 (8)0.0045 (8)0.0089 (8)
C70.0270 (10)0.0482 (12)0.0511 (13)0.0049 (9)0.0141 (10)0.0141 (10)
C80.0339 (11)0.0525 (13)0.0652 (16)0.0197 (10)0.0167 (11)0.0130 (11)
C90.0290 (9)0.0281 (9)0.0306 (10)0.0125 (8)0.0064 (8)0.0013 (7)
C100.0593 (15)0.0372 (11)0.0388 (12)0.0190 (11)0.0221 (11)0.0021 (9)
C110.0791 (18)0.0309 (11)0.0438 (13)0.0248 (12)0.0210 (13)0.0008 (9)
C120.0331 (10)0.0280 (9)0.0324 (10)0.0101 (8)0.0000 (8)0.0118 (7)
C130.0543 (15)0.0539 (14)0.0586 (15)0.0274 (12)0.0031 (13)0.0283 (12)
C140.0427 (12)0.0291 (10)0.0476 (13)0.0001 (9)0.0029 (11)0.0080 (9)
C150.077 (2)0.0673 (18)0.0608 (18)0.0303 (16)0.0307 (16)0.0023 (14)
C160.0517 (14)0.0360 (11)0.0388 (12)0.0176 (10)0.0021 (11)0.0035 (9)
N10.0207 (7)0.0335 (8)0.0283 (8)0.0087 (6)0.0071 (6)0.0064 (6)
N20.0192 (7)0.0338 (8)0.0294 (8)0.0084 (6)0.0057 (6)0.0078 (6)
N30.0257 (7)0.0244 (7)0.0251 (8)0.0092 (6)0.0038 (6)0.0053 (6)
N40.0242 (8)0.0260 (8)0.0284 (8)0.0072 (6)0.0035 (7)0.0090 (6)
O10.0516 (10)0.0365 (8)0.0448 (9)0.0172 (7)0.0098 (8)0.0012 (6)
K10.0274 (2)0.0255 (2)0.0275 (2)0.00806 (16)0.00473 (17)0.00624 (14)
Geometric parameters (Å, º) top
C1—N21.313 (2)C10—H170.9800
C1—N11.321 (2)C10—H190.9800
C1—N31.472 (2)C10—H180.9800
C1—K12.9685 (17)C11—H210.9800
C1—K1i3.2060 (18)C11—H220.9800
C2—N41.279 (2)C11—H200.9800
C2—N31.356 (2)C12—N41.464 (2)
C2—H10.9500C12—C141.511 (3)
C3—N11.450 (2)C12—C131.520 (3)
C3—C41.523 (3)C12—H231.0000
C3—C51.525 (3)C13—H250.9800
C3—H21.0000C13—H260.9800
C4—K13.495 (2)C13—H240.9800
C4—H40.9800C14—H270.9800
C4—H30.9800C14—H290.9800
C4—H50.9800C14—H280.9800
C5—H70.9800C15—O11.414 (4)
C5—H80.9800C15—K13.483 (3)
C5—H60.9800C15—H320.9800
C6—N21.454 (2)C15—H310.9800
C6—C71.523 (3)C15—H300.9800
C6—C81.531 (3)C16—O11.409 (3)
C6—H91.0000C16—C16ii1.502 (5)
C7—H100.9800C16—H340.9900
C7—H120.9800C16—H330.9900
C7—H110.9800N1—K1i2.7931 (16)
C8—H140.9800N1—K12.8809 (16)
C8—H150.9800N2—K1i2.8135 (16)
C8—H130.9800N2—K12.9786 (16)
C9—N31.478 (2)N4—K12.9394 (16)
C9—C111.504 (3)O1—K12.8880 (16)
C9—C101.520 (3)K1—K1i3.4252 (8)
C9—H161.0000
N2—C1—N1120.49 (16)K1—C15—H3272.0
N2—C1—N3120.05 (15)O1—C15—H31109.5
N1—C1—N3119.42 (15)K1—C15—H31160.6
N2—C1—K177.68 (10)H32—C15—H31109.5
N1—C1—K173.27 (10)O1—C15—H30109.5
N3—C1—K1118.28 (10)K1—C15—H3087.3
N2—C1—K1i60.96 (10)H32—C15—H30109.5
N1—C1—K1i60.10 (10)H31—C15—H30109.5
N3—C1—K1i174.37 (11)O1—C16—C16ii108.0 (2)
K1—C1—K1i67.26 (4)O1—C16—H34110.1
N4—C2—N3124.26 (17)C16ii—C16—H34110.1
N4—C2—H1117.9O1—C16—H33110.1
N3—C2—H1117.9C16ii—C16—H33110.1
N1—C3—C4110.43 (17)H34—C16—H33108.4
N1—C3—C5109.08 (17)C1—N1—C3121.64 (16)
C4—C3—C5109.46 (17)C1—N1—K1i95.69 (11)
N1—C3—H2109.3C3—N1—K1i141.98 (12)
C4—C3—H2109.3C1—N1—K180.68 (10)
C5—C3—H2109.3C3—N1—K1115.75 (11)
C3—C4—K187.31 (11)K1i—N1—K174.25 (4)
C3—C4—H4109.5C1—N2—C6121.77 (16)
K1—C4—H4159.9C1—N2—K1i94.96 (11)
C3—C4—H3109.5C6—N2—K1i142.90 (12)
K1—C4—H373.4C1—N2—K176.81 (10)
H4—C4—H3109.5C6—N2—K1117.91 (11)
C3—C4—H5109.5K1i—N2—K172.44 (4)
K1—C4—H552.6C2—N3—C1118.08 (14)
H4—C4—H5109.5C2—N3—C9118.91 (15)
H3—C4—H5109.5C1—N3—C9122.73 (14)
C3—C5—H7109.5C2—N4—C12115.65 (16)
C3—C5—H8109.5C2—N4—K1123.14 (12)
H7—C5—H8109.5C12—N4—K1121.21 (11)
C3—C5—H6109.5C16—O1—C15112.12 (19)
H7—C5—H6109.5C16—O1—K1121.11 (14)
H8—C5—H6109.5C15—O1—K1102.68 (15)
N2—C6—C7110.45 (16)N1i—K1—N2i48.14 (4)
N2—C6—C8109.34 (17)N1i—K1—N1105.75 (4)
C7—C6—C8109.17 (18)N2i—K1—N188.98 (5)
N2—C6—H9109.3N1i—K1—O198.99 (5)
C7—C6—H9109.3N2i—K1—O197.20 (5)
C8—C6—H9109.3N1—K1—O1151.41 (5)
C6—C7—H10109.5N1i—K1—N4152.08 (4)
C6—C7—H12109.5N2i—K1—N4153.54 (5)
H10—C7—H12109.5N1—K1—N470.20 (4)
C6—C7—H11109.5O1—K1—N494.19 (5)
H10—C7—H11109.5N1i—K1—C1107.91 (5)
H12—C7—H11109.5N2i—K1—C1109.93 (5)
C6—C8—H14109.5N1—K1—C126.05 (5)
C6—C8—H15109.5O1—K1—C1150.33 (5)
H14—C8—H15109.5N4—K1—C156.14 (5)
C6—C8—H13109.5N1i—K1—N287.43 (4)
H14—C8—H13109.5N2i—K1—N2107.56 (4)
H15—C8—H13109.5N1—K1—N245.91 (4)
N3—C9—C11111.21 (16)O1—K1—N2151.32 (5)
N3—C9—C10112.21 (15)N4—K1—N269.83 (4)
C11—C9—C10109.47 (18)C1—K1—N225.51 (5)
N3—C9—H16107.9N1i—K1—C1i24.21 (4)
C11—C9—H16107.9N2i—K1—C1i24.08 (4)
C10—C9—H16107.9N1—K1—C1i99.77 (5)
C9—C10—H17109.5O1—K1—C1i96.93 (5)
C9—C10—H19109.5N4—K1—C1i168.88 (4)
H17—C10—H19109.5C1—K1—C1i112.74 (4)
C9—C10—H18109.5N2—K1—C1i99.86 (4)
H17—C10—H18109.5N1i—K1—K1i54.05 (3)
H19—C10—H18109.5N2i—K1—K1i56.01 (3)
C9—C11—H21109.5N1—K1—K1i51.71 (3)
C9—C11—H22109.5O1—K1—K1i149.99 (4)
H21—C11—H22109.5N4—K1—K1i115.82 (3)
C9—C11—H20109.5C1—K1—K1i59.68 (3)
H21—C11—H20109.5N2—K1—K1i51.55 (3)
H22—C11—H20109.5C1i—K1—K1i53.06 (3)
N4—C12—C14109.95 (18)N1i—K1—C1582.81 (6)
N4—C12—C13108.55 (17)N2i—K1—C1598.69 (7)
C14—C12—C13110.70 (19)N1—K1—C15171.13 (7)
N4—C12—H23109.2O1—K1—C1523.33 (6)
C14—C12—H23109.2N4—K1—C15101.16 (7)
C13—C12—H23109.2C1—K1—C15149.29 (7)
C12—C13—H25109.5N2—K1—C15134.07 (6)
C12—C13—H26109.5C1i—K1—C1589.00 (6)
H25—C13—H26109.5K1i—K1—C15136.79 (6)
C12—C13—H24109.5N1i—K1—C4128.35 (5)
H25—C13—H24109.5N2i—K1—C485.06 (5)
H26—C13—H24109.5N1—K1—C443.73 (5)
C12—C14—H27109.5O1—K1—C4108.80 (5)
C12—C14—H29109.5N4—K1—C468.65 (5)
H27—C14—H29109.5C1—K1—C463.44 (5)
C12—C14—H28109.5N2—K1—C487.95 (5)
H27—C14—H28109.5C1i—K1—C4107.77 (5)
H29—C14—H28109.5K1i—K1—C484.16 (4)
O1—C15—K153.99 (12)C15—K1—C4132.11 (6)
O1—C15—H32109.5
N1—C3—C4—K113.87 (15)C7—C6—N2—C1107.2 (2)
C5—C3—C4—K1133.98 (16)C8—C6—N2—C1132.6 (2)
N2—C1—N1—C3178.76 (16)C7—C6—N2—K1i81.9 (2)
N3—C1—N1—C31.1 (2)C8—C6—N2—K1i38.3 (3)
K1—C1—N1—C3114.58 (16)C7—C6—N2—K115.8 (2)
K1i—C1—N1—C3172.45 (19)C8—C6—N2—K1136.00 (15)
N2—C1—N1—K1i8.79 (17)N4—C2—N3—C14.0 (3)
N3—C1—N1—K1i173.54 (12)N4—C2—N3—C9178.04 (16)
K1—C1—N1—K1i72.97 (4)N2—C1—N3—C288.5 (2)
N2—C1—N1—K164.18 (16)N1—C1—N3—C289.2 (2)
N3—C1—N1—K1113.48 (14)K1—C1—N3—C23.3 (2)
K1i—C1—N1—K172.97 (4)N2—C1—N3—C985.4 (2)
C4—C3—N1—C1113.8 (2)N1—C1—N3—C997.0 (2)
C5—C3—N1—C1125.92 (19)K1—C1—N3—C9177.14 (12)
C4—C3—N1—K1i78.5 (2)C11—C9—N3—C2171.40 (18)
C5—C3—N1—K1i41.8 (3)C10—C9—N3—C265.6 (2)
C4—C3—N1—K118.8 (2)C11—C9—N3—C12.4 (3)
C5—C3—N1—K1139.15 (14)C10—C9—N3—C1120.61 (19)
N1—C1—N2—C6176.79 (17)N3—C2—N4—C12176.46 (17)
N3—C1—N2—C60.9 (3)N3—C2—N4—K12.6 (2)
K1—C1—N2—C6114.86 (16)C14—C12—N4—C2129.07 (19)
K1i—C1—N2—C6174.49 (19)C13—C12—N4—C2109.7 (2)
N1—C1—N2—K1i8.72 (17)C14—C12—N4—K151.9 (2)
N3—C1—N2—K1i173.63 (13)C13—C12—N4—K169.4 (2)
K1—C1—N2—K1i70.65 (4)C16ii—C16—O1—C15172.2 (3)
N1—C1—N2—K161.93 (15)C16ii—C16—O1—K166.3 (3)
N3—C1—N2—K1115.72 (14)K1—C15—O1—C16131.5 (2)
K1i—C1—N2—K170.65 (4)
Symmetry codes: (i) x, y, z+2; (ii) x, y1, z+2.
 

Funding information

Financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

References

First citationAharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869–1877.  Web of Science CrossRef CAS Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141.  Web of Science CrossRef CAS Google Scholar
First citationBenndorf, P., Preuss, C. & Roesky, P. W. (2011). J. Organomet. Chem. 696, 1150–1155.  CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBülow, R. von, Deuerlein, S., Stey, T., Herbst-Irmer, R., Gornitzka, H. & Stalke, D. (2004). Z. Naturforsch. Teil B, 59, 1471–1479.  Google Scholar
First citationChen, C., Jiang, J., Mao, X., Cong, Y., Cui, Y., Pan, X. & Wu, J. (2018). Inorg. Chem. 57, 3158–3168.  CrossRef Google Scholar
First citationChlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346–2354.  Google Scholar
First citationCole, M. L., Evans, D. J., Junk, P. C. & Smith, M. K. (2003). Chem. Eur. J. 9, 415–424.  CrossRef Google Scholar
First citationCole, M. L. & Junk, P. C. (2003). J. Organomet. Chem. 666, 55–62.  CrossRef Google Scholar
First citationCollins, S. (2011). Coord. Chem. Rev. 255, 118–138.  Web of Science CrossRef CAS Google Scholar
First citationDevi, A. (2013). Coord. Chem. Rev. 257, 3332–3384.  Web of Science CrossRef CAS Google Scholar
First citationDröse, P., Hrib, C. G. & Edelmann, F. T. (2010). J. Organomet. Chem. 695, 1953–1956.  Google Scholar
First citationEdelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEdelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374.  Web of Science CrossRef CAS Google Scholar
First citationGiesbrecht, G. R., Shafir, A. & Arnold, J. (1999). J. Chem. Soc. Dalton Trans. pp. 3601–3604.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312–7322.  Web of Science CrossRef CAS Google Scholar
First citationJunk, P. C. & Cole, M. L. (2007). Chem. Commun. pp. 1579–1590.  Web of Science CrossRef Google Scholar
First citationLiebing, P. (2017). Acta Cryst. E73, 1375–1378.  CrossRef IUCr Journals Google Scholar
First citationLiebing, P. & Merzweiler, K. (2015). Z. Anorg. Allg. Chem. 641, 1911–1917.  CrossRef Google Scholar
First citationNevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745–746, 186–189.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSroor, F. M., Liebing, P., Hrib, C. G., Gräsing, D., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1526–1531.  CrossRef IUCr Journals Google Scholar
First citationStalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1–C5.  CrossRef CAS Web of Science Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTrifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327–1347.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, S., Chan, H.-S., Lam, C.-K. & Lee, H. K. (2009). Inorg. Chem. 48, 9936–9946.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds