research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 3-meth­­oxy-4-{[5-(4-meth­­oxy­phen­yl)-1,3,4-oxa­diazol-2-yl]meth­­oxy}benzo­nitrile and N-(4-{[5-(4-chloro­phen­yl)-1,3,4-oxa­diazol-2-yl]meth­­oxy}phen­yl)acetamide

CROSSMARK_Color_square_no_text.svg

aDrug Discovery Lab, Department of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, and bPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: profskabilan@gmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 12 November 2018; accepted 25 November 2018; online 30 November 2018)

The title compounds, C18H15N3O4 and C17H14ClN3O3, are heterocyclic 1,3,4-oxa­diazole derivatives which differ from each other in the groups attached to the carbon atoms: a meth­oxy­phenyl ring and a benzo­nitrile group in (I) and a chloro­phenyl ring and an acetamide group in (II). Short intra­molecular C—H⋯O hydrogen bonds occur in both mol­ecules. The crystal structure of (I) features C—H⋯N hydrogen bonds, while in the crystal structure of (II), N—H⋯N, C—H⋯N and C—H⋯O hydrogen bonds are observed.

1. Chemical context

Oxa­diazole is a versatile heterocyclic nucleus, which has attracted a wide attention of the medicinal chemists for the development of new drugs. Compounds containing a heterocyclic ring system are of great importance both medicinally and industrially (Pace & Pierro, 2009[Pace, A. & Pierro, P. (2009). Org. Biomol. Chem. 7, 4337-4348.]). This stable and neutral hetero aromatic nucleus is associated with potent pharmacological activity that can be attributed to the presence of the toxophoric —N=C—O— linkage (Rigo & Couturier, 1985[Rigo, B. & Couturier, D. J. (1985). Heterocycl. Chem. 22, 287-288.]). Furthermore, 1,3,4-oxa­diazole heterocycles are very good bioisosteres of amides and esters, which can contribute substanti­ally in increasing pharmacological activity by participating in hydrogen-bonding inter­actions with the receptors (Guimaraes et al., 2005[Guimarães, C. R. W., Boger, D. L. & Jorgensen, W. L. (2005). J. Am. Chem. Soc. 127, 17377-17384.]). In view of the above importance of the title compounds, we have undertaken single-crystal X-ray diffraction studies for the both compounds and the results are presented here.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of (I)[link] and (II)[link] are illustrated in Figs. 1[link] and 2[link], respectively. In (I)[link], the 4-meth­oxy­phenyl and oxa­diazole (r.m.s. deviation 0.007  Å) rings are almost coplanar with a dihedral angle of 1.4 (1)°. The meth­oxy atoms O4 and C16 are also coplanar with the rings, deviating by 0.080 (1) and 0.020 (1) Å from the mean plane of the phenyl ring, respectively. In (II)[link], the chloro­phenyl ring is almost coplanar with the oxa­diazole ring, the angle between their mean planes being 4.0 (1)°. The whole mol­ecule is almost planar: the r.m.s. deviation is 0.098 Å and the largest deviation from the mean plane of 0.230 (2) Å is observed for atom C17. Such planarity is not observed in (I)[link] since the meth­oxy­phenyl ring and the benzo­nitrile moiety are oriented at a dihedral angle of 66.8 (1)°. This difference can be seen in Fig. 3[link], which shows a superposition of the two mol­ecular structures through the oxa­diazole ring (C7/N1/N2/C8/O1) obtained using Qmol (Gans & Shalloway, 2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The dashed line represent the intra­molecular C—H⋯O inter­action (Table 1[link]).
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The dashed line represents the intra­molecular C—H⋯O inter­action (Table 2[link]).
[Figure 3]
Figure 3
Superposition of oxa­diazole ring system of compound (I)[link] (blue) and compound (II)(red).

The mol­ecular structures of both (1) and (II)[link] are influenced by intra­molecular C—H⋯O inter­actions (Tables 1[link] and 2[link]), which form S(5) ring motifs (Figs. 1[link] and 2[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.50 2.835 (6) 101
C9—H9A⋯N1i 0.97 2.57 3.540 (6) 178
C18—H18A⋯N2ii 0.96 2.60 3.470 (6) 151
C16—H16B⋯O3iii 0.96 2.59 3.094 (7) 113
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z; (iii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.54 2.853 (3) 100
N3—H3⋯N2i 0.86 2.55 3.377 (3) 161
C1—H1⋯O3i 0.93 2.46 3.359 (3) 163
C14—H14⋯N2i 0.93 2.59 3.443 (3) 152
C17—H17C⋯O3ii 0.96 2.56 3.357 (4) 140
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal of compound (I)[link], mol­ecules are associated via C—H⋯O inter­actions into inversion dimers (C16—H16B⋯O3iii, Table 1[link]), generating an R22(30) motif (Fig. 4[link]). Further C—H⋯N hydrogen bonds (C9—H9A⋯N1i, Table 1[link]) link the mol­ecules, forming C(5) chains propagating along [010] (Fig. 5[link]). There is also a weak C—H⋯N inter­action (C18—H18A⋯N2ii, Table 1[link]) that links the mol­ecules, forming C(9) chains propagating in an anti-parallel manner along [110]. These C—H⋯N hydrogen bonds along with the C—H⋯O dimers form a closed cavity shape arrangement consisting of 26 atoms in the unit cell (Fig. 6[link]). In addition, offset ππ inter­actions are observed between the centroids of inversion-related oxa­diazole and 4-meth­oxy­phenyl rings with a centroid–centroid distance of 3.700 (3) Å and a slippage of 1.037 Å.

[Figure 4]
Figure 4
The inversion dimer formed in compound (I)[link] via C—H⋯O inter­actions (dashed lines). For clarity H atoms not involved in these hydrogen bonds have been omitted.
[Figure 5]
Figure 5
The crystal packing of compound (I)[link] viewed down the b axis. The C—H⋯N hydrogen bonds (see Table 1[link]) are shown as dashed lines. For clarity H atoms not involved in these hydrogen bonds have been omitted.
[Figure 6]
Figure 6
The crystal packing of the title compound (I)[link] viewed along the a axis. The C—H⋯N hydrogen bonds and C—H⋯O inter­actions (see Table 1[link]) are shown as dashed lines. For clarity H atoms not involved in these hydrogen bonds have been omitted.

In the crystal of compound (II)[link], mol­ecules are connected by N—H⋯N hydrogen bonds forming C(10) chains, C—H⋯N hydrogen bonds forming C(8) chains and C—H⋯O inter­actions forming C(15) chains (Fig. 7[link]). All these chains propagate along [010] in a helical manner. In addition, C—H⋯O inter­actions involving atoms H17C and O3 are also observed (Table 2[link]). No ππ inter­actions are observed in compound (II)[link] because of the coplanarity between the oxa­diazole and chloro­phenyl rings.

[Figure 7]
Figure 7
The crystal packing of (II)[link] viewed along the c axis. The N—H⋯N, C—H⋯N and C—H⋯O inter­actions (see Table 2[link]) are shown as dashed lines. For clarity H atoms not involved in these hydrogen bonds have been omitted.

4. Synthesis and crystallization

Compound (I)[link] was synthesized from a solution of 4-hy­droxy-3-meth­oxy­benzo­nitrile (1mmol), K2CO3 (3 mmol) in DMF (4 mL), 2-(chloro­meth­yl)-5-(4-meth­oxy­phen­yl)-1,3,4-oxa­diazole and KI (0.5 mmol). The reaction mixture was stirred at room temperature for about 2 h until the starting material had been consumed (TLC monitoring), and then washed with cold water. The solid product was collected by filtration and dried under vacuum. The pure compound was further recrystallized from ethyl acetate/petroleum ether solution (v:v = 1:1).

Compound (II)[link] was synthesized from a solution of N-(4-hy­droxy­phen­yl)acetamide (1mmol), K2CO3 (3 mmol) in ACN (5mL), 2-(chloro­meth­yl)-5-(4-chloro­phen­yl)-1,3,4-oxa­diazole and KI (0.5 mmol). The reaction mixture was stirred under reflux condition for about 16 h, until completion of the reaction (TLC monitoring), then it was diluted with ethyl acetate (30 mL) and washed with saturated NaHCO3 and cold water. The organic layer was separated, dried over anhydrous Na2SO4 and concentrated under vacuum. The pure compound was further recrystallized from an ethyl acetate/petroleum ether solution (v:v = 1:1), giving colourless block-like crystals suitable for X-ray diffraction analysis.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both crystal structures, H atoms were placed in idealized positions and allowed to ride on their parent atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C18H15N3O4 C17H14ClN3O3
Mr 337.33 343.76
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c
Temperature (K) 298 298
a, b, c (Å) 6.0847 (14), 8.5048 (19), 17.286 (4) 42.24 (1), 10.233 (3), 7.496 (2)
α, β, γ (°) 102.668 (7), 90.646 (6), 109.813 (8) 90, 91.016 (11), 90
V3) 817.5 (3) 3239.6 (15)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.26
Crystal size (mm) 0.24 × 0.21 × 0.19 0.22 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 4701, 3593, 1137 8758, 3650, 2733
Rint 0.087 0.117
(sin θ/λ)max−1) 0.650 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.282, 0.95 0.063, 0.182, 1.05
No. of reflections 3593 3650
No. of parameters 228 218
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.33 0.25, −0.36
Computer programs: SMART and SAINT (Bruker, 2002[Bruker (2002). SMART, and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both structures, data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015) and PLATON (Spek, 2009).

3-Methoxy-4-{[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]methoxy}benzonitrile (I) top
Crystal data top
C18H15N3O4Z = 2
Mr = 337.33F(000) = 352
Triclinic, P1Dx = 1.370 Mg m3
a = 6.0847 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5048 (19) ÅCell parameters from 3118 reflections
c = 17.286 (4) Åθ = 3.2–27.4°
α = 102.668 (7)°µ = 0.10 mm1
β = 90.646 (6)°T = 298 K
γ = 109.813 (8)°Block, colourless
V = 817.5 (3) Å30.24 × 0.21 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.087
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.1°
ω and φ scansh = 77
4701 measured reflectionsk = 910
3593 independent reflectionsl = 2214
1137 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.086H-atom parameters constrained
wR(F2) = 0.282 w = 1/[σ2(Fo2) + (0.0956P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
3593 reflectionsΔρmax = 0.49 e Å3
228 parametersΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1843 (5)0.2454 (3)0.36727 (18)0.0573 (8)
O20.1120 (5)0.0785 (3)0.21803 (19)0.0672 (10)
O30.2533 (6)0.2488 (4)0.16208 (19)0.0661 (10)
O40.6234 (7)0.1389 (5)0.6784 (2)0.0999 (13)
N10.5537 (7)0.3888 (5)0.3540 (2)0.0666 (11)
N20.4067 (7)0.3864 (5)0.2876 (2)0.0679 (12)
N31.0776 (8)0.3032 (5)0.0393 (3)0.0818 (14)
C10.3016 (9)0.1713 (6)0.5111 (3)0.0746 (15)
H10.1459300.1319740.4901150.089*
C20.3548 (10)0.1334 (7)0.5810 (3)0.0810 (17)
H20.2355350.0699140.6068520.097*
C30.5834 (10)0.1892 (7)0.6124 (3)0.0737 (15)
C40.7621 (9)0.2890 (7)0.5738 (3)0.0744 (15)
H40.9177810.3294790.5949020.089*
C50.7024 (9)0.3258 (6)0.5045 (3)0.0734 (14)
H50.8205090.3927250.4795180.088*
C60.4759 (7)0.2674 (5)0.4710 (3)0.0534 (11)
C70.4163 (7)0.3047 (5)0.3975 (3)0.0563 (12)
C80.1976 (8)0.3015 (5)0.2998 (3)0.0510 (11)
C90.0194 (8)0.2584 (5)0.2476 (3)0.0617 (13)
H9A0.1326150.2974920.2774730.074*
H9B0.0156210.3146950.2037870.074*
C100.3104 (7)0.0114 (5)0.1662 (3)0.0524 (11)
C110.4371 (8)0.1049 (5)0.1460 (3)0.0559 (12)
H110.3875690.2229490.1671780.067*
C120.6385 (8)0.0239 (6)0.0940 (3)0.0572 (12)
H120.7237850.0874910.0800490.069*
C130.7123 (8)0.1506 (6)0.0632 (2)0.0531 (11)
C140.5881 (7)0.2481 (5)0.0840 (2)0.0545 (12)
H140.6400320.3664550.0632380.065*
C150.3888 (8)0.1680 (5)0.1354 (3)0.0545 (12)
C160.8476 (11)0.1995 (8)0.7151 (4)0.110 (2)
H16A0.9392570.1399190.6849790.165*
H16B0.8425980.1805610.7678600.165*
H16C0.9174170.3204920.7180060.165*
C170.9170 (9)0.2349 (6)0.0064 (3)0.0621 (13)
C180.3336 (9)0.4316 (5)0.1354 (3)0.0741 (15)
H18A0.4547600.4820030.1668870.111*
H18B0.2052010.4711410.1407250.111*
H18C0.3947680.4648010.0804790.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0402 (18)0.0536 (18)0.059 (2)0.0017 (14)0.0116 (15)0.0045 (15)
O20.062 (2)0.0410 (16)0.081 (2)0.0082 (15)0.0299 (18)0.0021 (16)
O30.065 (2)0.0469 (18)0.075 (2)0.0105 (15)0.0204 (18)0.0094 (16)
O40.087 (3)0.126 (3)0.086 (3)0.039 (3)0.016 (2)0.023 (3)
N10.044 (2)0.072 (3)0.061 (3)0.002 (2)0.002 (2)0.003 (2)
N20.059 (3)0.069 (3)0.055 (3)0.000 (2)0.004 (2)0.010 (2)
N30.078 (3)0.074 (3)0.078 (3)0.013 (3)0.027 (3)0.010 (2)
C10.063 (3)0.078 (3)0.068 (3)0.014 (3)0.021 (3)0.009 (3)
C20.066 (4)0.098 (4)0.073 (4)0.015 (3)0.003 (3)0.029 (3)
C30.074 (4)0.083 (4)0.065 (3)0.037 (3)0.007 (3)0.005 (3)
C40.049 (3)0.089 (4)0.070 (4)0.025 (3)0.021 (3)0.010 (3)
C50.047 (3)0.078 (3)0.073 (4)0.009 (3)0.011 (3)0.004 (3)
C60.042 (3)0.049 (2)0.054 (3)0.007 (2)0.005 (2)0.005 (2)
C70.035 (2)0.047 (2)0.064 (3)0.002 (2)0.006 (2)0.013 (2)
C80.054 (3)0.041 (2)0.048 (3)0.012 (2)0.002 (2)0.002 (2)
C90.063 (3)0.041 (2)0.069 (3)0.013 (2)0.020 (3)0.004 (2)
C100.048 (3)0.039 (2)0.059 (3)0.009 (2)0.013 (2)0.002 (2)
C110.062 (3)0.043 (2)0.057 (3)0.014 (2)0.008 (2)0.008 (2)
C120.051 (3)0.058 (3)0.062 (3)0.018 (2)0.005 (2)0.014 (2)
C130.049 (3)0.058 (3)0.041 (2)0.007 (2)0.002 (2)0.007 (2)
C140.055 (3)0.048 (2)0.050 (3)0.009 (2)0.011 (2)0.004 (2)
C150.051 (3)0.045 (2)0.060 (3)0.013 (2)0.013 (2)0.006 (2)
C160.093 (5)0.145 (6)0.077 (4)0.033 (4)0.019 (4)0.015 (4)
C170.063 (3)0.053 (3)0.061 (3)0.013 (2)0.011 (3)0.008 (2)
C180.087 (4)0.049 (3)0.087 (4)0.020 (3)0.006 (3)0.022 (3)
Geometric parameters (Å, º) top
O1—C81.347 (5)C5—H50.9300
O1—C71.381 (5)C6—C71.446 (6)
O2—C101.368 (5)C8—C91.480 (6)
O2—C91.409 (5)C9—H9A0.9700
O3—C151.371 (5)C9—H9B0.9700
O3—C181.426 (5)C10—C111.371 (5)
O4—C31.350 (6)C10—C151.409 (5)
O4—C161.375 (6)C11—C121.383 (6)
N1—C71.274 (5)C11—H110.9300
N1—N21.439 (5)C12—C131.373 (6)
N2—C81.278 (5)C12—H120.9300
N3—C171.146 (5)C13—C141.392 (5)
C1—C21.380 (6)C13—C171.445 (6)
C1—C61.396 (6)C14—C151.369 (5)
C1—H10.9300C14—H140.9300
C2—C31.370 (7)C16—H16A0.9600
C2—H20.9300C16—H16B0.9600
C3—C41.409 (7)C16—H16C0.9600
C4—C51.377 (6)C18—H18A0.9600
C4—H40.9300C18—H18B0.9600
C5—C61.369 (6)C18—H18C0.9600
C8—O1—C7102.6 (3)C8—C9—H9B110.0
C10—O2—C9117.8 (3)H9A—C9—H9B108.4
C15—O3—C18116.4 (3)C11—C10—O2124.7 (4)
C3—O4—C16119.1 (5)C11—C10—C15119.8 (4)
C7—N1—N2106.0 (4)O2—C10—C15115.4 (3)
C8—N2—N1105.4 (4)C10—C11—C12120.2 (4)
C2—C1—C6121.6 (5)C10—C11—H11119.9
C2—C1—H1119.2C12—C11—H11119.9
C6—C1—H1119.2C13—C12—C11119.8 (4)
C1—C2—C3120.0 (5)C13—C12—H12120.1
C1—C2—H2120.0C11—C12—H12120.1
C3—C2—H2120.0C12—C13—C14120.9 (4)
O4—C3—C2116.6 (5)C12—C13—C17120.1 (4)
O4—C3—C4123.8 (5)C14—C13—C17119.0 (4)
C2—C3—C4119.5 (5)C15—C14—C13119.3 (4)
C5—C4—C3118.9 (5)C15—C14—H14120.4
C5—C4—H4120.5C13—C14—H14120.4
C3—C4—H4120.5O3—C15—C14125.3 (4)
C6—C5—C4122.5 (5)O3—C15—C10114.7 (4)
C6—C5—H5118.8C14—C15—C10120.0 (4)
C4—C5—H5118.8O4—C16—H16A109.5
C5—C6—C1117.5 (5)O4—C16—H16B109.5
C5—C6—C7121.9 (5)H16A—C16—H16B109.5
C1—C6—C7120.7 (4)O4—C16—H16C109.5
N1—C7—O1112.4 (4)H16A—C16—H16C109.5
N1—C7—C6128.2 (4)H16B—C16—H16C109.5
O1—C7—C6119.4 (4)N3—C17—C13179.0 (6)
N2—C8—O1113.6 (4)O3—C18—H18A109.5
N2—C8—C9127.0 (4)O3—C18—H18B109.5
O1—C8—C9119.4 (4)H18A—C18—H18B109.5
O2—C9—C8108.3 (3)O3—C18—H18C109.5
O2—C9—H9A110.0H18A—C18—H18C109.5
C8—C9—H9A110.0H18B—C18—H18C109.5
O2—C9—H9B110.0
C7—N1—N2—C80.3 (5)C7—O1—C8—N20.5 (5)
C6—C1—C2—C30.5 (8)C7—O1—C8—C9178.1 (3)
C16—O4—C3—C2176.1 (5)C10—O2—C9—C8178.1 (4)
C16—O4—C3—C45.9 (8)N2—C8—C9—O2114.2 (5)
C1—C2—C3—O4176.3 (5)O1—C8—C9—O264.2 (5)
C1—C2—C3—C41.7 (8)C9—O2—C10—C115.7 (7)
O4—C3—C4—C5176.8 (5)C9—O2—C10—C15176.9 (4)
C2—C3—C4—C51.1 (8)O2—C10—C11—C12178.7 (4)
C3—C4—C5—C60.7 (8)C15—C10—C11—C121.4 (7)
C4—C5—C6—C11.8 (7)C10—C11—C12—C130.4 (7)
C4—C5—C6—C7179.0 (4)C11—C12—C13—C140.6 (7)
C2—C1—C6—C51.2 (7)C11—C12—C13—C17177.4 (4)
C2—C1—C6—C7179.6 (4)C12—C13—C14—C150.6 (7)
N2—N1—C7—O10.7 (5)C17—C13—C14—C15177.5 (4)
N2—N1—C7—C6179.2 (4)C18—O3—C15—C142.0 (7)
C8—O1—C7—N10.8 (5)C18—O3—C15—C10176.9 (4)
C8—O1—C7—C6179.2 (4)C13—C14—C15—O3178.5 (4)
C5—C6—C7—N11.4 (7)C13—C14—C15—C100.4 (7)
C1—C6—C7—N1179.5 (4)C11—C10—C15—O3177.6 (4)
C5—C6—C7—O1178.7 (4)O2—C10—C15—O30.1 (6)
C1—C6—C7—O10.5 (6)C11—C10—C15—C141.4 (7)
N1—N2—C8—O10.1 (5)O2—C10—C15—C14178.9 (4)
N1—N2—C8—C9178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.502.835 (6)101
C9—H9A···N1i0.972.573.540 (6)178
C18—H18A···N2ii0.962.603.470 (6)151
C16—H16B···O3iii0.962.593.094 (7)113
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z; (iii) x+1, y, z+1.
N-(4-{[5-(4-Chlorophenyl)-1,3,4-oxadiazol-2-yl]methoxy}phenyl)acetamide (II) top
Crystal data top
C17H14ClN3O3F(000) = 1424
Mr = 343.76Dx = 1.410 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 42.24 (1) ÅCell parameters from 5528 reflections
b = 10.233 (3) Åθ = 3.3–27.2°
c = 7.496 (2) ŵ = 0.26 mm1
β = 91.016 (11)°T = 298 K
V = 3239.6 (15) Å3Block, colourless
Z = 80.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.117
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.1°
ω and φ scansh = 5254
8758 measured reflectionsk = 1312
3650 independent reflectionsl = 69
2733 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0635P)2 + 1.9656P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
3650 reflectionsΔρmax = 0.25 e Å3
218 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.01226 (2)0.28663 (15)0.00562 (17)0.1223 (5)
O10.85574 (3)0.18095 (14)0.0915 (2)0.0407 (4)
O20.77454 (3)0.07687 (14)0.0967 (2)0.0425 (4)
O30.62394 (4)0.0180 (2)0.2485 (3)0.0729 (6)
N10.86735 (5)0.00435 (19)0.0435 (3)0.0519 (5)
N20.83462 (4)0.00355 (19)0.0042 (3)0.0487 (5)
N30.65271 (4)0.19545 (18)0.3324 (3)0.0446 (4)
H30.6511570.2704290.3833450.053*
C10.91898 (6)0.2770 (3)0.0713 (4)0.0552 (6)
H10.9034050.3321060.1147070.066*
C20.95026 (7)0.3187 (3)0.0652 (4)0.0723 (8)
H20.9558620.4016520.1053450.087*
C30.97283 (6)0.2357 (4)0.0008 (4)0.0742 (9)
C40.96543 (6)0.1127 (4)0.0627 (4)0.0737 (8)
H40.9810490.0586410.1080610.088*
C50.93441 (6)0.0710 (3)0.0564 (4)0.0623 (7)
H50.9290270.0118040.0979270.075*
C60.91116 (5)0.1521 (2)0.0118 (3)0.0462 (5)
C70.87852 (5)0.1050 (2)0.0164 (3)0.0417 (5)
C80.82940 (5)0.1064 (2)0.0735 (3)0.0392 (5)
C90.79968 (5)0.1607 (2)0.1473 (3)0.0395 (5)
H9A0.8013800.1660620.2763090.047*
H9B0.7959080.2478720.1006720.047*
C100.74482 (5)0.11247 (18)0.1555 (3)0.0345 (4)
C110.72024 (5)0.02966 (19)0.1083 (3)0.0376 (4)
H110.7243540.0436690.0392350.045*
C120.68942 (5)0.05388 (19)0.1623 (3)0.0393 (5)
H120.6731140.0027160.1292540.047*
C130.68317 (5)0.16400 (19)0.2665 (3)0.0356 (4)
C140.70774 (5)0.24918 (19)0.3082 (3)0.0377 (4)
H140.7036360.3241390.3740480.045*
C150.73839 (5)0.22421 (19)0.2532 (3)0.0376 (4)
H150.7546040.2824380.2818100.045*
C160.62573 (5)0.1230 (2)0.3258 (3)0.0481 (5)
C170.59772 (6)0.1809 (3)0.4218 (4)0.0633 (7)
H17A0.5791190.1746370.3468400.095*
H17B0.6018960.2710260.4488900.095*
H17C0.5943980.1336760.5305770.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0409 (4)0.1918 (13)0.1346 (10)0.0285 (6)0.0098 (5)0.0347 (9)
O10.0337 (7)0.0388 (7)0.0495 (9)0.0005 (6)0.0009 (6)0.0002 (6)
O20.0347 (7)0.0388 (7)0.0541 (9)0.0004 (6)0.0022 (6)0.0049 (6)
O30.0530 (10)0.0679 (12)0.0983 (15)0.0194 (10)0.0142 (10)0.0212 (11)
N10.0459 (10)0.0484 (11)0.0618 (12)0.0004 (9)0.0093 (9)0.0053 (9)
N20.0445 (10)0.0434 (10)0.0583 (12)0.0042 (8)0.0070 (8)0.0058 (8)
N30.0391 (9)0.0393 (9)0.0554 (11)0.0024 (8)0.0032 (8)0.0038 (8)
C10.0397 (12)0.0612 (15)0.0648 (15)0.0029 (11)0.0036 (11)0.0073 (12)
C20.0495 (15)0.085 (2)0.082 (2)0.0147 (14)0.0027 (14)0.0151 (17)
C30.0378 (13)0.112 (3)0.0733 (19)0.0085 (15)0.0046 (12)0.0051 (18)
C40.0419 (13)0.097 (2)0.083 (2)0.0130 (15)0.0095 (13)0.0038 (17)
C50.0491 (13)0.0675 (16)0.0708 (17)0.0051 (12)0.0107 (12)0.0023 (13)
C60.0377 (11)0.0514 (12)0.0495 (12)0.0033 (10)0.0006 (9)0.0048 (10)
C70.0389 (11)0.0408 (11)0.0453 (11)0.0062 (9)0.0024 (8)0.0030 (9)
C80.0394 (10)0.0375 (10)0.0407 (10)0.0029 (8)0.0008 (8)0.0062 (8)
C90.0372 (10)0.0380 (10)0.0433 (11)0.0016 (8)0.0000 (8)0.0017 (8)
C100.0357 (10)0.0328 (9)0.0349 (9)0.0008 (8)0.0011 (7)0.0032 (7)
C110.0414 (10)0.0306 (9)0.0407 (10)0.0013 (8)0.0034 (8)0.0029 (8)
C120.0356 (10)0.0363 (10)0.0458 (11)0.0044 (8)0.0033 (8)0.0015 (8)
C130.0344 (10)0.0338 (9)0.0385 (10)0.0017 (8)0.0009 (8)0.0034 (8)
C140.0430 (11)0.0306 (9)0.0393 (10)0.0014 (8)0.0002 (8)0.0023 (8)
C150.0376 (10)0.0329 (9)0.0423 (11)0.0061 (8)0.0027 (8)0.0011 (8)
C160.0398 (11)0.0518 (13)0.0529 (13)0.0011 (10)0.0007 (9)0.0055 (10)
C170.0422 (13)0.0750 (18)0.0729 (17)0.0050 (12)0.0125 (12)0.0086 (14)
Geometric parameters (Å, º) top
Cl1—C31.746 (3)C5—C61.390 (3)
O1—C81.354 (2)C5—H50.9300
O1—C71.366 (2)C6—C71.461 (3)
O2—C101.386 (2)C8—C91.488 (3)
O2—C91.412 (2)C9—H9A0.9700
O3—C161.222 (3)C9—H9B0.9700
N1—C71.292 (3)C10—C111.381 (3)
N1—N21.419 (3)C10—C151.387 (3)
N2—C81.288 (3)C11—C121.392 (3)
N3—C161.359 (3)C11—H110.9300
N3—C131.423 (3)C12—C131.399 (3)
N3—H30.8600C12—H120.9300
C1—C21.390 (4)C13—C141.387 (3)
C1—C61.391 (4)C14—C151.390 (3)
C1—H10.9300C14—H140.9300
C2—C31.376 (4)C15—H150.9300
C2—H20.9300C16—C171.516 (3)
C3—C41.375 (5)C17—H17A0.9600
C4—C51.380 (4)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C8—O1—C7102.84 (16)O2—C9—H9A110.1
C10—O2—C9115.84 (15)C8—C9—H9A110.1
C7—N1—N2105.90 (18)O2—C9—H9B110.1
C8—N2—N1105.93 (18)C8—C9—H9B110.1
C16—N3—C13128.78 (19)H9A—C9—H9B108.4
C16—N3—H3115.6C11—C10—O2115.99 (17)
C13—N3—H3115.6C11—C10—C15119.16 (19)
C2—C1—C6119.5 (2)O2—C10—C15124.84 (18)
C2—C1—H1120.3C10—C11—C12121.27 (18)
C6—C1—H1120.3C10—C11—H11119.4
C3—C2—C1119.2 (3)C12—C11—H11119.4
C3—C2—H2120.4C11—C12—C13119.49 (18)
C1—C2—H2120.4C11—C12—H12120.3
C4—C3—C2122.1 (3)C13—C12—H12120.3
C4—C3—Cl1118.5 (3)C14—C13—C12118.97 (19)
C2—C3—Cl1119.4 (3)C14—C13—N3117.19 (18)
C3—C4—C5118.8 (3)C12—C13—N3123.84 (18)
C3—C4—H4120.6C13—C14—C15120.99 (18)
C5—C4—H4120.6C13—C14—H14119.5
C4—C5—C6120.4 (3)C15—C14—H14119.5
C4—C5—H5119.8C10—C15—C14120.03 (18)
C6—C5—H5119.8C10—C15—H15120.0
C5—C6—C1120.0 (2)C14—C15—H15120.0
C5—C6—C7119.0 (2)O3—C16—N3122.8 (2)
C1—C6—C7120.9 (2)O3—C16—C17121.7 (2)
N1—C7—O1112.35 (19)N3—C16—C17115.5 (2)
N1—C7—C6128.0 (2)C16—C17—H17A109.5
O1—C7—C6119.63 (19)C16—C17—H17B109.5
N2—C8—O1112.97 (18)H17A—C17—H17B109.5
N2—C8—C9130.30 (19)C16—C17—H17C109.5
O1—C8—C9116.72 (17)H17A—C17—H17C109.5
O2—C9—C8107.97 (17)H17B—C17—H17C109.5
C7—N1—N2—C80.6 (3)C7—O1—C8—N20.2 (2)
C6—C1—C2—C30.5 (5)C7—O1—C8—C9178.65 (17)
C1—C2—C3—C40.6 (5)C10—O2—C9—C8179.63 (16)
C1—C2—C3—Cl1179.1 (2)N2—C8—C9—O28.3 (3)
C2—C3—C4—C50.7 (5)O1—C8—C9—O2173.06 (16)
Cl1—C3—C4—C5178.9 (2)C9—O2—C10—C11179.13 (17)
C3—C4—C5—C60.1 (5)C9—O2—C10—C152.1 (3)
C4—C5—C6—C11.1 (4)O2—C10—C11—C12178.85 (18)
C4—C5—C6—C7179.9 (2)C15—C10—C11—C122.3 (3)
C2—C1—C6—C51.3 (4)C10—C11—C12—C130.1 (3)
C2—C1—C6—C7179.9 (2)C11—C12—C13—C142.3 (3)
N2—N1—C7—O10.8 (3)C11—C12—C13—N3178.20 (19)
N2—N1—C7—C6179.2 (2)C16—N3—C13—C14172.9 (2)
C8—O1—C7—N10.6 (2)C16—N3—C13—C127.6 (4)
C8—O1—C7—C6179.32 (18)C12—C13—C14—C152.1 (3)
C5—C6—C7—N13.4 (4)N3—C13—C14—C15178.33 (19)
C1—C6—C7—N1175.5 (2)C11—C10—C15—C142.5 (3)
C5—C6—C7—O1176.6 (2)O2—C10—C15—C14178.79 (18)
C1—C6—C7—O14.6 (3)C13—C14—C15—C100.2 (3)
N1—N2—C8—O10.3 (2)C13—N3—C16—O34.4 (4)
N1—N2—C8—C9178.9 (2)C13—N3—C16—C17175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.932.542.853 (3)100
N3—H3···N2i0.862.553.377 (3)161
C1—H1···O3i0.932.463.359 (3)163
C14—H14···N2i0.932.593.443 (3)152
C17—H17C···O3ii0.962.563.357 (4)140
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: s_selvanayagam@rediffmail.com.

Funding information

This work was supported by the Government of India funded by the Ministry of Science & Technology, Department of Biotechnology (DBT) (Sanctioned No. BT/PR16268/NER/95/183/2015).

References

First citationBruker (2002). SMART, and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuimarães, C. R. W., Boger, D. L. & Jorgensen, W. L. (2005). J. Am. Chem. Soc. 127, 17377–17384.  Google Scholar
First citationPace, A. & Pierro, P. (2009). Org. Biomol. Chem. 7, 4337–4348.  CrossRef Google Scholar
First citationRigo, B. & Couturier, D. J. (1985). Heterocycl. Chem. 22, 287–288.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds