research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 5-[(5-nitro-1H-indazol-1-yl)meth­yl]-3-phenyl-4,5-di­hydro­isoxazole

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mboulhaoua@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 19 November 2018; accepted 12 December 2018; online 1 January 2019)

In the title compound, C17H14N4O3, the indazole unit is planar to within 0.0171 (10) Å and makes dihedral angles of 6.50 (6) and 6.79 (4)°, respectively, with the nitro and pendant phenyl groups. The conformation of the oxazole ring is best described as an envelope. In the crystal, oblique stacks along the a-axis direction are formed by ππ stacking inter­actions between the indazole unit and the pendant phenyl rings of adjacent mol­ecules. The stacks are linked into pairs through C—H⋯O hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (36.3%), O⋯H/H⋯O (23.4%), C⋯H/H⋯C (13.4%) and N⋯H/H⋯N (11.4%) inter­actions.

1. Chemical context

Indazole derivatives are of pharmaceutical inter­est in a variety of therapeutic areas. They exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999[Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217-3220.]), anti­arrhythmic and analgesic activities (Mosti et al., 2000[Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963-972.]), and anti­tumor activity and anti­hypertensive properties (Bouissane et al., 2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]; Abbassi et al., 2012[Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.]). The present work is a continuation of an investigation of indazole derivatives published by our team (Boulhaoua et al., 2015[Boulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780-o781.]). In this context, we synthesized the title compound by reaction of benzaldoxime with 1-allyl-5-nitro-1H-indazole in a biphasic medium (water–chloro­form). We report herein its crystal and mol­ecular structures along with the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the indazole portion is planar to within 0.0171 (10) Å (r.m.s. deviation = 0.0095) with atom C6 the furthest from the mean plane. The nitro group is twisted out of this plane by 6.50 (6)° while the pendant phenyl group makes a dihedral angle of 6.79 (4)° with the plane of the indazole unit. A puckering analysis of the oxazole ring gave parameters Q(2) = 0.1499 (12) Å and φ(2) = 325.7 (5)° with the conformation best described as an envelope on C9.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, the mol­ecules form oblique stacks along the a-axis direction through ππ-stacking inter­actions (Fig. 2[link]) between the five-membered ring of the indazole unit (N1/N2/C1/C6/C7; centroid Cg2) and the pendant phenyl ring (C12–C17; centroid Cg4) of an adjacent mol­ecule [Cg2⋯Cg4(x, [{3\over 2}] − y, −[{1\over 2}] + z) = 3.7302 (7) Å; dihedral angle = 3.00 (6)°] and between the six-membered ring of the indazole unit (C1–C6; centroid Cg3) and the pendant phenyl ring of a second neighbour [Cg3⋯Cg4(−1 + x, [{3\over 2}] − y, −[{1\over 2}] + z) = 3.8286 (7) Å; dihedral angle = 3.65 (6)°]. These stacks are associated into pairs through C7—H7⋯O1 hydrogen bonds (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.959 (16) 2.467 (16) 3.3877 (14) 160.9 (13)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of the inter­molecular C—H⋯O hydrogen bonds (black dashed lines) and ππ-stacking inter­actions (orange dashed lines) [symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (iii) x, −y + [{3\over 2}], z − [{1\over 2}]; (iv) x − 1, −y + [{3\over 2}], z − [{1\over 2}]; Cg2, Cg3 and Cg4 are the centroids of the C1/C6/C7/N1/N2, C1–C6 and C12–C17 rings, respectively].
[Figure 3]
Figure 3
Packing viewed along the a-axis direction. A portion of the inter­molecular inter­actions, depicted as in Fig. 2[link], is shown.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, updates August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-methyl-5-nitro-1H-indazole skeleton yielded six hits. In all of these compounds, the indazole rings are planar as in the title compound. In the crystals of all six compounds, mol­ecules are linked by C—H⋯O hydrogen bonds, similar to what is observed in the crystal of the title compound. The N—O bond lengths vary from ca 1.213–1.236 Å and the Caromatic—NO2 bond lengths vary from ca 1.456–1.465 Å. In the title compound, the corresponding bond lengths are 1.229 (2), 1.238 (1) and 1.457 (2) Å, respectively. The Caromatic-bound nitro group and indazole ring are inclined to each other by a dihedral angle of 4.0 (2)° in AKEFIH (Boulhaoua, El Hafi et al., 2016b[Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016b). IUCrData, 1, x160567.]), 7.0 (9)° in APALOU (Boulhaoua, Essaghouani et al., 2016[Boulhaoua, M., Essaghouani, A., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160939.]), 4.6 (4)° in KEHTEZ (Boulhaoua et al., 2017[Boulhaoua, M., Essaghouani, A., Lahmidi, S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171091.]), 19.2 (2)° in PUVSOO (Zaleski et al., 1998[Zaleski, J., Daszkiewicz, Z. & Kyziol, J. (1998). Acta Cryst. C54, 1687-1689.]), 1.9 (9)° in UJUJOA (Boulhaoua, El Hafi et al., 2016a[Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016a). IUCrData, 1, x160480.]) and 7.9 (5)° in UJUKOB (Boulhaoua, Abdelahi et al., 2016[Boulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485.]), compared to 6.5 (6)° in the title compound. Therefore, the various geometrical parameters for the title compound are typical for 1-methyl-5-nitro-1H-indazoles.

5. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface analysis was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.]). The dnorm representation of the Hirshfeld surface reveals the close contacts of the hydrogen-bond donors and acceptors and other close contacts are also evident. The mol­ecular Hirshfeld surfaces were performed using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.191 (red) to 1.051 (blue) Å. The red spots on the surface indicate the inter­molecular contacts involved in the hydrogen bonds. In Fig. 4[link], the identified red spot is attributed to the H⋯O close contacts which are due to the C—H⋯O hydrogen bonds (Table 1[link]).

[Figure 4]
Figure 4
Hirshfeld surface mapped over dnorm to visualize the inter­molecular inter­actions.

Fig. 5[link] shows the two-dimensional fingerprint plot for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The O⋯H/H⋯O contacts (23.4%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, de + di ∼2.3 Å are shown two symmetrical points at the top, bottom left and right, which are characteristic of C—H⋯O hydrogen bond. The (di, de) points associated with he H⋯H contacts in this study (36.3%) are characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å. C⋯H/H⋯C and N⋯H/H⋯N inter­actions (13.4% and 11.4%, respectively) are represented by two symmetrical wings on the left and right sides. In addition, the C⋯C (7.5%), C⋯N/N⋯C (4.7%), O⋯C/C⋯O (2.2%) and O⋯N/N⋯O (0.9%) contacts contribute to the Hirshfeld surface.

[Figure 5]
Figure 5
The fingerprint plot for the title compound.

A view of the three-dimensional Hirshfeld surface of the title compound plotted over mol­ecular electrostatic potential in the range −0.0698 to 0.0535 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 6[link]. The C—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 6]
Figure 6
A view of the three-dimensional Hirshfeld surface plotted over mol­ecular electrostatic potential in the range −0.0698 to 0.0535 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory.

6. Synthesis and crystallization

To a solution of 1-allyl-5-nitro-1H-indazole (0.5 g, 2.46 mmol) and benzaldoxime (4.9 mmol, 0.6 g) in chloro­form (20 mL), a solution of sodium hypochlorite 24% (10 mL) was added dropwise to the mixture and stirred at 273 K for 4h. The resulting mixture was washed with water, dried over MgSO4 and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexa­ne/ethyl acetate (v/v = 80/20) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 65%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference-Fourier map and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C17H14N4O3
Mr 322.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 7.8595 (4), 11.8831 (7), 15.5716 (9)
β (°) 101.853 (1)
V3) 1423.30 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.35 × 0.32 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.90, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 26832, 3807, 3116
Rint 0.032
(sin θ/λ)max−1) 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 1.05
No. of reflections 3807
No. of parameters 273
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.49, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5-[(5-Nitro-1H-indazol-1-yl)methyl]-3-phenyl-4,5-dihydroisoxazole top
Crystal data top
C17H14N4O3F(000) = 672
Mr = 322.32Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8595 (4) ÅCell parameters from 9953 reflections
b = 11.8831 (7) Åθ = 2.7–29.1°
c = 15.5716 (9) ŵ = 0.11 mm1
β = 101.853 (1)°T = 100 K
V = 1423.30 (14) Å3Block, colourless
Z = 40.35 × 0.32 × 0.17 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3807 independent reflections
Radiation source: fine-focus sealed tube3116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 2.2°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1616
Tmin = 0.90, Tmax = 0.98l = 2121
26832 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.120All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.3982P]
where P = (Fo2 + 2Fc2)/3
3807 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65493 (11)0.74043 (7)0.41423 (5)0.0191 (2)
O20.30551 (13)0.88196 (8)0.02290 (6)0.0285 (2)
O30.20589 (12)0.71575 (8)0.06215 (6)0.0245 (2)
N10.69220 (13)0.46778 (8)0.25680 (7)0.0185 (2)
N20.72589 (12)0.57977 (8)0.27365 (6)0.0158 (2)
N30.74782 (13)0.82212 (8)0.47244 (7)0.0174 (2)
N40.30425 (13)0.77874 (9)0.01243 (7)0.0189 (2)
C10.63510 (14)0.64559 (10)0.20885 (7)0.0144 (2)
C20.62565 (15)0.76290 (10)0.19937 (8)0.0169 (2)
H20.685 (2)0.8130 (14)0.2417 (11)0.031 (4)*
C30.51782 (15)0.80431 (10)0.12540 (8)0.0168 (2)
H30.504 (2)0.8820 (14)0.1145 (10)0.024 (4)*
C40.42155 (14)0.73017 (10)0.06319 (7)0.0161 (2)
C50.42849 (14)0.61464 (10)0.07119 (8)0.0158 (2)
H50.357 (2)0.5659 (14)0.0287 (10)0.028 (4)*
C60.53865 (14)0.57188 (9)0.14574 (8)0.0152 (2)
C70.58181 (15)0.46238 (10)0.18078 (8)0.0182 (2)
H70.542 (2)0.3910 (13)0.1558 (10)0.025 (4)*
C80.84131 (15)0.61131 (10)0.35495 (7)0.0171 (2)
H8A0.9079 (18)0.6778 (12)0.3442 (9)0.016 (3)*
H8B0.9229 (18)0.5481 (12)0.3686 (9)0.016 (3)*
C90.74607 (15)0.63288 (10)0.42928 (8)0.0168 (2)
H90.6526 (19)0.5757 (13)0.4289 (10)0.020 (4)*
C100.87110 (16)0.64689 (10)0.51745 (8)0.0174 (2)
H10A0.992 (2)0.6201 (13)0.5155 (10)0.023 (4)*
H10B0.829 (2)0.6065 (13)0.5660 (11)0.023 (4)*
C110.86519 (14)0.77242 (10)0.52933 (7)0.0153 (2)
C120.97578 (14)0.83461 (10)0.60166 (7)0.0155 (2)
C130.96755 (15)0.95199 (10)0.60656 (8)0.0184 (2)
H130.890 (2)0.9941 (14)0.5607 (11)0.028 (4)*
C141.06651 (16)1.00864 (11)0.67741 (8)0.0213 (3)
H141.060 (2)1.0871 (16)0.6806 (11)0.035 (5)*
C151.17610 (16)0.94898 (11)0.74367 (8)0.0214 (3)
H151.249 (2)0.9886 (15)0.7961 (11)0.034 (4)*
C161.18699 (16)0.83273 (11)0.73863 (8)0.0199 (2)
H161.256 (2)0.7904 (14)0.7837 (10)0.026 (4)*
C171.08704 (15)0.77535 (10)0.66777 (8)0.0177 (2)
H171.0992 (19)0.6917 (13)0.6650 (10)0.024 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0189 (4)0.0187 (4)0.0176 (4)0.0040 (3)0.0014 (3)0.0028 (3)
O20.0362 (6)0.0189 (5)0.0263 (5)0.0060 (4)0.0030 (4)0.0037 (4)
O30.0237 (5)0.0280 (5)0.0183 (4)0.0012 (4)0.0041 (4)0.0007 (4)
N10.0223 (5)0.0131 (5)0.0202 (5)0.0003 (4)0.0045 (4)0.0004 (4)
N20.0183 (5)0.0132 (5)0.0147 (5)0.0014 (3)0.0008 (4)0.0005 (3)
N30.0181 (5)0.0178 (5)0.0157 (5)0.0010 (4)0.0021 (4)0.0012 (4)
N40.0194 (5)0.0205 (5)0.0159 (5)0.0032 (4)0.0016 (4)0.0003 (4)
C10.0145 (5)0.0151 (5)0.0135 (5)0.0005 (4)0.0026 (4)0.0004 (4)
C20.0187 (5)0.0146 (5)0.0165 (5)0.0003 (4)0.0017 (4)0.0022 (4)
C30.0181 (5)0.0141 (5)0.0181 (6)0.0015 (4)0.0035 (4)0.0002 (4)
C40.0146 (5)0.0196 (5)0.0135 (5)0.0024 (4)0.0018 (4)0.0010 (4)
C50.0144 (5)0.0178 (5)0.0150 (5)0.0008 (4)0.0024 (4)0.0023 (4)
C60.0147 (5)0.0150 (5)0.0162 (5)0.0010 (4)0.0044 (4)0.0019 (4)
C70.0195 (6)0.0148 (5)0.0203 (6)0.0016 (4)0.0038 (4)0.0013 (4)
C80.0162 (5)0.0184 (5)0.0148 (5)0.0019 (4)0.0010 (4)0.0008 (4)
C90.0180 (5)0.0147 (5)0.0169 (5)0.0015 (4)0.0016 (4)0.0011 (4)
C100.0216 (6)0.0150 (5)0.0148 (5)0.0027 (4)0.0018 (4)0.0004 (4)
C110.0165 (5)0.0151 (5)0.0147 (5)0.0011 (4)0.0039 (4)0.0011 (4)
C120.0148 (5)0.0175 (5)0.0145 (5)0.0008 (4)0.0037 (4)0.0013 (4)
C130.0174 (5)0.0171 (5)0.0201 (6)0.0007 (4)0.0022 (4)0.0021 (4)
C140.0214 (6)0.0175 (6)0.0245 (6)0.0020 (4)0.0034 (5)0.0012 (5)
C150.0202 (6)0.0259 (6)0.0179 (6)0.0036 (5)0.0033 (5)0.0020 (5)
C160.0188 (6)0.0256 (6)0.0146 (5)0.0005 (5)0.0016 (4)0.0033 (4)
C170.0193 (6)0.0178 (5)0.0160 (6)0.0023 (4)0.0039 (4)0.0025 (4)
Geometric parameters (Å, º) top
O1—N31.4230 (13)C8—C91.5238 (16)
O1—C91.4603 (14)C8—H8A0.981 (15)
O2—N41.2377 (14)C8—H8B0.982 (15)
O3—N41.2294 (13)C9—C101.5245 (17)
N1—C71.3176 (16)C9—H91.000 (15)
N1—N21.3716 (13)C10—C111.5050 (15)
N2—C11.3577 (14)C10—H10A1.006 (16)
N2—C81.4472 (15)C10—H10B1.007 (16)
N3—C111.2840 (15)C11—C121.4724 (16)
N4—C41.4573 (15)C12—C171.3966 (15)
C1—C21.4022 (16)C12—C131.3991 (16)
C1—C61.4147 (15)C13—C141.3866 (17)
C2—C31.3734 (16)C13—H130.976 (16)
C2—H20.940 (17)C14—C151.3943 (18)
C3—C41.4093 (16)C14—H140.936 (19)
C3—H30.941 (16)C15—C161.3873 (18)
C4—C51.3785 (16)C15—H151.011 (18)
C5—C61.3936 (16)C16—C171.3941 (17)
C5—H50.967 (17)C16—H160.941 (16)
C6—C71.4248 (16)C17—H171.000 (16)
C7—H70.959 (16)
N3—O1—C9108.92 (8)H8A—C8—H8B107.8 (11)
C7—N1—N2106.54 (9)O1—C9—C8109.07 (9)
C1—N2—N1111.44 (9)O1—C9—C10104.66 (9)
C1—N2—C8129.81 (10)C8—C9—C10112.09 (10)
N1—N2—C8118.70 (9)O1—C9—H9105.0 (9)
C11—N3—O1109.12 (9)C8—C9—H9110.8 (9)
O3—N4—O2122.78 (10)C10—C9—H9114.6 (9)
O3—N4—C4118.64 (10)C11—C10—C9100.86 (9)
O2—N4—C4118.56 (10)C11—C10—H10A111.8 (9)
N2—C1—C2131.25 (11)C9—C10—H10A112.0 (9)
N2—C1—C6106.53 (10)C11—C10—H10B110.9 (9)
C2—C1—C6122.22 (10)C9—C10—H10B111.9 (9)
C3—C2—C1117.05 (11)H10A—C10—H10B109.2 (13)
C3—C2—H2119.7 (10)N3—C11—C12121.64 (10)
C1—C2—H2123.2 (10)N3—C11—C10114.02 (10)
C2—C3—C4120.28 (11)C12—C11—C10124.27 (10)
C2—C3—H3122.1 (10)C17—C12—C13119.43 (11)
C4—C3—H3117.6 (10)C17—C12—C11119.51 (10)
C5—C4—C3123.69 (11)C13—C12—C11121.03 (10)
C5—C4—N4118.31 (10)C14—C13—C12120.18 (11)
C3—C4—N4117.97 (10)C14—C13—H13119.8 (10)
C4—C5—C6116.40 (10)C12—C13—H13120.0 (10)
C4—C5—H5121.9 (10)C13—C14—C15120.15 (12)
C6—C5—H5121.6 (10)C13—C14—H14119.8 (11)
C5—C6—C1120.36 (10)C15—C14—H14120.0 (11)
C5—C6—C7135.26 (11)C16—C15—C14120.02 (12)
C1—C6—C7104.35 (10)C16—C15—H15118.5 (10)
N1—C7—C6111.14 (10)C14—C15—H15121.4 (10)
N1—C7—H7120.5 (9)C15—C16—C17120.03 (11)
C6—C7—H7128.3 (9)C15—C16—H16121.5 (10)
N2—C8—C9112.99 (10)C17—C16—H16118.4 (10)
N2—C8—H8A108.6 (8)C16—C17—C12120.17 (11)
C9—C8—H8A110.9 (8)C16—C17—H17118.5 (9)
N2—C8—H8B104.8 (8)C12—C17—H17121.3 (9)
C9—C8—H8B111.4 (8)
C7—N1—N2—C10.80 (13)C1—C6—C7—N10.01 (13)
C7—N1—N2—C8178.51 (10)C1—N2—C8—C986.13 (14)
C9—O1—N3—C1110.56 (12)N1—N2—C8—C991.08 (12)
N1—N2—C1—C2178.29 (11)N3—O1—C9—C8104.57 (10)
C8—N2—C1—C20.9 (2)N3—O1—C9—C1015.55 (11)
N1—N2—C1—C60.80 (12)N2—C8—C9—O173.99 (12)
C8—N2—C1—C6178.17 (11)N2—C8—C9—C10170.59 (9)
N2—C1—C2—C3179.03 (11)O1—C9—C10—C1113.98 (11)
C6—C1—C2—C30.06 (16)C8—C9—C10—C11104.09 (10)
C1—C2—C3—C40.43 (16)O1—N3—C11—C12176.33 (9)
C2—C3—C4—C50.33 (17)O1—N3—C11—C100.66 (13)
C2—C3—C4—N4177.74 (10)C9—C10—C11—N38.74 (13)
O3—N4—C4—C55.90 (15)C9—C10—C11—C12174.36 (10)
O2—N4—C4—C5175.49 (10)N3—C11—C12—C17172.37 (11)
O3—N4—C4—C3172.27 (10)C10—C11—C12—C174.30 (16)
O2—N4—C4—C36.33 (16)N3—C11—C12—C135.78 (17)
C3—C4—C5—C60.17 (17)C10—C11—C12—C13177.55 (11)
N4—C4—C5—C6178.23 (10)C17—C12—C13—C141.29 (17)
C4—C5—C6—C10.53 (16)C11—C12—C13—C14176.86 (10)
C4—C5—C6—C7178.17 (12)C12—C13—C14—C150.67 (18)
N2—C1—C6—C5178.75 (10)C13—C14—C15—C160.31 (18)
C2—C1—C6—C50.44 (17)C14—C15—C16—C170.66 (18)
N2—C1—C6—C70.47 (12)C15—C16—C17—C120.03 (17)
C2—C1—C6—C7178.72 (10)C13—C12—C17—C160.95 (17)
N2—N1—C7—C60.48 (13)C11—C12—C17—C16177.23 (10)
C5—C6—C7—N1177.89 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.959 (16)2.467 (16)3.3877 (14)160.9 (13)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAbbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485.  Google Scholar
First citationBoulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780–o781.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016a). IUCrData, 1, x160480.  Google Scholar
First citationBoulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016b). IUCrData, 1, x160567.  Google Scholar
First citationBoulhaoua, M., Essaghouani, A., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160939.  Google Scholar
First citationBoulhaoua, M., Essaghouani, A., Lahmidi, S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171091.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963–972.  CAS Google Scholar
First citationPatel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth.  Google Scholar
First citationZaleski, J., Daszkiewicz, Z. & Kyziol, J. (1998). Acta Cryst. C54, 1687–1689.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds