research communications
H-indazol-1-yl)methyl]-3-phenyl-4,5-dihydroisoxazole
and Hirshfeld surface analysis of 5-[(5-nitro-1aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mboulhaoua@gmail.com
In the title compound, C17H14N4O3, the indazole unit is planar to within 0.0171 (10) Å and makes dihedral angles of 6.50 (6) and 6.79 (4)°, respectively, with the nitro and pendant phenyl groups. The conformation of the oxazole ring is best described as an envelope. In the crystal, oblique stacks along the a-axis direction are formed by π–π stacking interactions between the indazole unit and the pendant phenyl rings of adjacent molecules. The stacks are linked into pairs through C—H⋯O hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (36.3%), O⋯H/H⋯O (23.4%), C⋯H/H⋯C (13.4%) and N⋯H/H⋯N (11.4%) interactions.
Keywords: crystal structure; indazole; oxazole; hydrogen bond; π–π-stacking; Hirshfeld surface analysis.
CCDC reference: 1884538
1. Chemical context
Indazole derivatives are of pharmaceutical interest in a variety of therapeutic areas. They exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999), antiarrhythmic and analgesic activities (Mosti et al., 2000), and antitumor activity and antihypertensive properties (Bouissane et al., 2006; Abbassi et al., 2012). The present work is a continuation of an investigation of indazole derivatives published by our team (Boulhaoua et al., 2015). In this context, we synthesized the title compound by reaction of benzaldoxime with 1-allyl-5-nitro-1H-indazole in a biphasic medium (water–chloroform). We report herein its crystal and molecular structures along with the Hirshfeld surface analysis.
2. Structural commentary
In the title compound (Fig. 1), the indazole portion is planar to within 0.0171 (10) Å (r.m.s. deviation = 0.0095) with atom C6 the furthest from the mean plane. The nitro group is twisted out of this plane by 6.50 (6)° while the pendant phenyl group makes a dihedral angle of 6.79 (4)° with the plane of the indazole unit. A puckering analysis of the oxazole ring gave parameters Q(2) = 0.1499 (12) Å and φ(2) = 325.7 (5)° with the conformation best described as an envelope on C9.
3. Supramolecular features
In the crystal, the molecules form oblique stacks along the a-axis direction through π–π-stacking interactions (Fig. 2) between the five-membered ring of the indazole unit (N1/N2/C1/C6/C7; centroid Cg2) and the pendant phenyl ring (C12–C17; centroid Cg4) of an adjacent molecule [Cg2⋯Cg4(x, − y, − + z) = 3.7302 (7) Å; dihedral angle = 3.00 (6)°] and between the six-membered ring of the indazole unit (C1–C6; centroid Cg3) and the pendant phenyl ring of a second neighbour [Cg3⋯Cg4(−1 + x, − y, − + z) = 3.8286 (7) Å; dihedral angle = 3.65 (6)°]. These stacks are associated into pairs through C7—H7⋯O1 hydrogen bonds (Table 1 and Figs. 2 and 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.39, updates August 2018; Groom et al., 2016) for the 1-methyl-5-nitro-1H-indazole skeleton yielded six hits. In all of these compounds, the indazole rings are planar as in the title compound. In the crystals of all six compounds, molecules are linked by C—H⋯O hydrogen bonds, similar to what is observed in the crystal of the title compound. The N—O bond lengths vary from ca 1.213–1.236 Å and the Caromatic—NO2 bond lengths vary from ca 1.456–1.465 Å. In the title compound, the corresponding bond lengths are 1.229 (2), 1.238 (1) and 1.457 (2) Å, respectively. The Caromatic-bound nitro group and indazole ring are inclined to each other by a dihedral angle of 4.0 (2)° in AKEFIH (Boulhaoua, El Hafi et al., 2016b), 7.0 (9)° in APALOU (Boulhaoua, Essaghouani et al., 2016), 4.6 (4)° in KEHTEZ (Boulhaoua et al., 2017), 19.2 (2)° in PUVSOO (Zaleski et al., 1998), 1.9 (9)° in UJUJOA (Boulhaoua, El Hafi et al., 2016a) and 7.9 (5)° in UJUKOB (Boulhaoua, Abdelahi et al., 2016), compared to 6.5 (6)° in the title compound. Therefore, the various geometrical parameters for the title compound are typical for 1-methyl-5-nitro-1H-indazoles.
5. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface analysis was carried out by using CrystalExplorer17.5 (Turner et al., 2017). The dnorm representation of the Hirshfeld surface reveals the close contacts of the hydrogen-bond donors and acceptors and other close contacts are also evident. The molecular Hirshfeld surfaces were performed using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.191 (red) to 1.051 (blue) Å. The red spots on the surface indicate the intermolecular contacts involved in the hydrogen bonds. In Fig. 4, the identified red spot is attributed to the H⋯O close contacts which are due to the C—H⋯O hydrogen bonds (Table 1).
Fig. 5 shows the two-dimensional fingerprint plot for the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The O⋯H/H⋯O contacts (23.4%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface, de + di ∼2.3 Å are shown two symmetrical points at the top, bottom left and right, which are characteristic of C—H⋯O hydrogen bond. The (di, de) points associated with he H⋯H contacts in this study (36.3%) are characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å. C⋯H/H⋯C and N⋯H/H⋯N interactions (13.4% and 11.4%, respectively) are represented by two symmetrical wings on the left and right sides. In addition, the C⋯C (7.5%), C⋯N/N⋯C (4.7%), O⋯C/C⋯O (2.2%) and O⋯N/N⋯O (0.9%) contacts contribute to the Hirshfeld surface.
A view of the three-dimensional Hirshfeld surface of the title compound plotted over molecular electrostatic potential in the range −0.0698 to 0.0535 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 6. The C—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.
6. Synthesis and crystallization
To a solution of 1-allyl-5-nitro-1H-indazole (0.5 g, 2.46 mmol) and benzaldoxime (4.9 mmol, 0.6 g) in chloroform (20 mL), a solution of sodium hypochlorite 24% (10 mL) was added dropwise to the mixture and stirred at 273 K for 4h. The resulting mixture was washed with water, dried over MgSO4 and the solvent was evaporated under reduced pressure. The residue was then purified by on silica gel using a mixture of hexane/ethyl acetate (v/v = 80/20) as Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 65%).
7. Refinement
Crystal data, data collection and structure . All H atoms were located in a difference-Fourier map and freely refined.
details are summarized in Table 2Supporting information
CCDC reference: 1884538
https://doi.org/10.1107/S2056989018017590/dx2013sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018017590/dx2013Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017590/dx2013Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017590/dx2013Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H14N4O3 | F(000) = 672 |
Mr = 322.32 | Dx = 1.504 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8595 (4) Å | Cell parameters from 9953 reflections |
b = 11.8831 (7) Å | θ = 2.7–29.1° |
c = 15.5716 (9) Å | µ = 0.11 mm−1 |
β = 101.853 (1)° | T = 100 K |
V = 1423.30 (14) Å3 | Block, colourless |
Z = 4 | 0.35 × 0.32 × 0.17 mm |
Bruker SMART APEX CCD diffractometer | 3807 independent reflections |
Radiation source: fine-focus sealed tube | 3116 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.1°, θmin = 2.2° |
φ and ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −16→16 |
Tmin = 0.90, Tmax = 0.98 | l = −21→21 |
26832 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.120 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0692P)2 + 0.3982P] where P = (Fo2 + 2Fc2)/3 |
3807 reflections | (Δ/σ)max < 0.001 |
273 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.65493 (11) | 0.74043 (7) | 0.41423 (5) | 0.0191 (2) | |
O2 | 0.30551 (13) | 0.88196 (8) | −0.02290 (6) | 0.0285 (2) | |
O3 | 0.20589 (12) | 0.71575 (8) | −0.06215 (6) | 0.0245 (2) | |
N1 | 0.69220 (13) | 0.46778 (8) | 0.25680 (7) | 0.0185 (2) | |
N2 | 0.72589 (12) | 0.57977 (8) | 0.27365 (6) | 0.0158 (2) | |
N3 | 0.74782 (13) | 0.82212 (8) | 0.47244 (7) | 0.0174 (2) | |
N4 | 0.30425 (13) | 0.77874 (9) | −0.01243 (7) | 0.0189 (2) | |
C1 | 0.63510 (14) | 0.64559 (10) | 0.20885 (7) | 0.0144 (2) | |
C2 | 0.62565 (15) | 0.76290 (10) | 0.19937 (8) | 0.0169 (2) | |
H2 | 0.685 (2) | 0.8130 (14) | 0.2417 (11) | 0.031 (4)* | |
C3 | 0.51782 (15) | 0.80431 (10) | 0.12540 (8) | 0.0168 (2) | |
H3 | 0.504 (2) | 0.8820 (14) | 0.1145 (10) | 0.024 (4)* | |
C4 | 0.42155 (14) | 0.73017 (10) | 0.06319 (7) | 0.0161 (2) | |
C5 | 0.42849 (14) | 0.61464 (10) | 0.07119 (8) | 0.0158 (2) | |
H5 | 0.357 (2) | 0.5659 (14) | 0.0287 (10) | 0.028 (4)* | |
C6 | 0.53865 (14) | 0.57188 (9) | 0.14574 (8) | 0.0152 (2) | |
C7 | 0.58181 (15) | 0.46238 (10) | 0.18078 (8) | 0.0182 (2) | |
H7 | 0.542 (2) | 0.3910 (13) | 0.1558 (10) | 0.025 (4)* | |
C8 | 0.84131 (15) | 0.61131 (10) | 0.35495 (7) | 0.0171 (2) | |
H8A | 0.9079 (18) | 0.6778 (12) | 0.3442 (9) | 0.016 (3)* | |
H8B | 0.9229 (18) | 0.5481 (12) | 0.3686 (9) | 0.016 (3)* | |
C9 | 0.74607 (15) | 0.63288 (10) | 0.42928 (8) | 0.0168 (2) | |
H9 | 0.6526 (19) | 0.5757 (13) | 0.4289 (10) | 0.020 (4)* | |
C10 | 0.87110 (16) | 0.64689 (10) | 0.51745 (8) | 0.0174 (2) | |
H10A | 0.992 (2) | 0.6201 (13) | 0.5155 (10) | 0.023 (4)* | |
H10B | 0.829 (2) | 0.6065 (13) | 0.5660 (11) | 0.023 (4)* | |
C11 | 0.86519 (14) | 0.77242 (10) | 0.52933 (7) | 0.0153 (2) | |
C12 | 0.97578 (14) | 0.83461 (10) | 0.60166 (7) | 0.0155 (2) | |
C13 | 0.96755 (15) | 0.95199 (10) | 0.60656 (8) | 0.0184 (2) | |
H13 | 0.890 (2) | 0.9941 (14) | 0.5607 (11) | 0.028 (4)* | |
C14 | 1.06651 (16) | 1.00864 (11) | 0.67741 (8) | 0.0213 (3) | |
H14 | 1.060 (2) | 1.0871 (16) | 0.6806 (11) | 0.035 (5)* | |
C15 | 1.17610 (16) | 0.94898 (11) | 0.74367 (8) | 0.0214 (3) | |
H15 | 1.249 (2) | 0.9886 (15) | 0.7961 (11) | 0.034 (4)* | |
C16 | 1.18699 (16) | 0.83273 (11) | 0.73863 (8) | 0.0199 (2) | |
H16 | 1.256 (2) | 0.7904 (14) | 0.7837 (10) | 0.026 (4)* | |
C17 | 1.08704 (15) | 0.77535 (10) | 0.66777 (8) | 0.0177 (2) | |
H17 | 1.0992 (19) | 0.6917 (13) | 0.6650 (10) | 0.024 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0189 (4) | 0.0187 (4) | 0.0176 (4) | 0.0040 (3) | −0.0014 (3) | −0.0028 (3) |
O2 | 0.0362 (6) | 0.0189 (5) | 0.0263 (5) | 0.0060 (4) | −0.0030 (4) | 0.0037 (4) |
O3 | 0.0237 (5) | 0.0280 (5) | 0.0183 (4) | −0.0012 (4) | −0.0041 (4) | −0.0007 (4) |
N1 | 0.0223 (5) | 0.0131 (5) | 0.0202 (5) | −0.0003 (4) | 0.0045 (4) | −0.0004 (4) |
N2 | 0.0183 (5) | 0.0132 (5) | 0.0147 (5) | 0.0014 (3) | 0.0008 (4) | −0.0005 (3) |
N3 | 0.0181 (5) | 0.0178 (5) | 0.0157 (5) | 0.0010 (4) | 0.0021 (4) | −0.0012 (4) |
N4 | 0.0194 (5) | 0.0205 (5) | 0.0159 (5) | 0.0032 (4) | 0.0016 (4) | 0.0003 (4) |
C1 | 0.0145 (5) | 0.0151 (5) | 0.0135 (5) | 0.0005 (4) | 0.0026 (4) | −0.0004 (4) |
C2 | 0.0187 (5) | 0.0146 (5) | 0.0165 (5) | −0.0003 (4) | 0.0017 (4) | −0.0022 (4) |
C3 | 0.0181 (5) | 0.0141 (5) | 0.0181 (6) | 0.0015 (4) | 0.0035 (4) | 0.0002 (4) |
C4 | 0.0146 (5) | 0.0196 (5) | 0.0135 (5) | 0.0024 (4) | 0.0018 (4) | 0.0010 (4) |
C5 | 0.0144 (5) | 0.0178 (5) | 0.0150 (5) | −0.0008 (4) | 0.0024 (4) | −0.0023 (4) |
C6 | 0.0147 (5) | 0.0150 (5) | 0.0162 (5) | −0.0010 (4) | 0.0044 (4) | −0.0019 (4) |
C7 | 0.0195 (6) | 0.0148 (5) | 0.0203 (6) | −0.0016 (4) | 0.0038 (4) | −0.0013 (4) |
C8 | 0.0162 (5) | 0.0184 (5) | 0.0148 (5) | 0.0019 (4) | −0.0010 (4) | −0.0008 (4) |
C9 | 0.0180 (5) | 0.0147 (5) | 0.0169 (5) | 0.0015 (4) | 0.0016 (4) | 0.0011 (4) |
C10 | 0.0216 (6) | 0.0150 (5) | 0.0148 (5) | 0.0027 (4) | 0.0018 (4) | 0.0004 (4) |
C11 | 0.0165 (5) | 0.0151 (5) | 0.0147 (5) | 0.0011 (4) | 0.0039 (4) | 0.0011 (4) |
C12 | 0.0148 (5) | 0.0175 (5) | 0.0145 (5) | 0.0008 (4) | 0.0037 (4) | 0.0013 (4) |
C13 | 0.0174 (5) | 0.0171 (5) | 0.0201 (6) | 0.0007 (4) | 0.0022 (4) | 0.0021 (4) |
C14 | 0.0214 (6) | 0.0175 (6) | 0.0245 (6) | −0.0020 (4) | 0.0034 (5) | −0.0012 (5) |
C15 | 0.0202 (6) | 0.0259 (6) | 0.0179 (6) | −0.0036 (5) | 0.0033 (5) | −0.0020 (5) |
C16 | 0.0188 (6) | 0.0256 (6) | 0.0146 (5) | 0.0005 (5) | 0.0016 (4) | 0.0033 (4) |
C17 | 0.0193 (6) | 0.0178 (5) | 0.0160 (6) | 0.0023 (4) | 0.0039 (4) | 0.0025 (4) |
O1—N3 | 1.4230 (13) | C8—C9 | 1.5238 (16) |
O1—C9 | 1.4603 (14) | C8—H8A | 0.981 (15) |
O2—N4 | 1.2377 (14) | C8—H8B | 0.982 (15) |
O3—N4 | 1.2294 (13) | C9—C10 | 1.5245 (17) |
N1—C7 | 1.3176 (16) | C9—H9 | 1.000 (15) |
N1—N2 | 1.3716 (13) | C10—C11 | 1.5050 (15) |
N2—C1 | 1.3577 (14) | C10—H10A | 1.006 (16) |
N2—C8 | 1.4472 (15) | C10—H10B | 1.007 (16) |
N3—C11 | 1.2840 (15) | C11—C12 | 1.4724 (16) |
N4—C4 | 1.4573 (15) | C12—C17 | 1.3966 (15) |
C1—C2 | 1.4022 (16) | C12—C13 | 1.3991 (16) |
C1—C6 | 1.4147 (15) | C13—C14 | 1.3866 (17) |
C2—C3 | 1.3734 (16) | C13—H13 | 0.976 (16) |
C2—H2 | 0.940 (17) | C14—C15 | 1.3943 (18) |
C3—C4 | 1.4093 (16) | C14—H14 | 0.936 (19) |
C3—H3 | 0.941 (16) | C15—C16 | 1.3873 (18) |
C4—C5 | 1.3785 (16) | C15—H15 | 1.011 (18) |
C5—C6 | 1.3936 (16) | C16—C17 | 1.3941 (17) |
C5—H5 | 0.967 (17) | C16—H16 | 0.941 (16) |
C6—C7 | 1.4248 (16) | C17—H17 | 1.000 (16) |
C7—H7 | 0.959 (16) | ||
N3—O1—C9 | 108.92 (8) | H8A—C8—H8B | 107.8 (11) |
C7—N1—N2 | 106.54 (9) | O1—C9—C8 | 109.07 (9) |
C1—N2—N1 | 111.44 (9) | O1—C9—C10 | 104.66 (9) |
C1—N2—C8 | 129.81 (10) | C8—C9—C10 | 112.09 (10) |
N1—N2—C8 | 118.70 (9) | O1—C9—H9 | 105.0 (9) |
C11—N3—O1 | 109.12 (9) | C8—C9—H9 | 110.8 (9) |
O3—N4—O2 | 122.78 (10) | C10—C9—H9 | 114.6 (9) |
O3—N4—C4 | 118.64 (10) | C11—C10—C9 | 100.86 (9) |
O2—N4—C4 | 118.56 (10) | C11—C10—H10A | 111.8 (9) |
N2—C1—C2 | 131.25 (11) | C9—C10—H10A | 112.0 (9) |
N2—C1—C6 | 106.53 (10) | C11—C10—H10B | 110.9 (9) |
C2—C1—C6 | 122.22 (10) | C9—C10—H10B | 111.9 (9) |
C3—C2—C1 | 117.05 (11) | H10A—C10—H10B | 109.2 (13) |
C3—C2—H2 | 119.7 (10) | N3—C11—C12 | 121.64 (10) |
C1—C2—H2 | 123.2 (10) | N3—C11—C10 | 114.02 (10) |
C2—C3—C4 | 120.28 (11) | C12—C11—C10 | 124.27 (10) |
C2—C3—H3 | 122.1 (10) | C17—C12—C13 | 119.43 (11) |
C4—C3—H3 | 117.6 (10) | C17—C12—C11 | 119.51 (10) |
C5—C4—C3 | 123.69 (11) | C13—C12—C11 | 121.03 (10) |
C5—C4—N4 | 118.31 (10) | C14—C13—C12 | 120.18 (11) |
C3—C4—N4 | 117.97 (10) | C14—C13—H13 | 119.8 (10) |
C4—C5—C6 | 116.40 (10) | C12—C13—H13 | 120.0 (10) |
C4—C5—H5 | 121.9 (10) | C13—C14—C15 | 120.15 (12) |
C6—C5—H5 | 121.6 (10) | C13—C14—H14 | 119.8 (11) |
C5—C6—C1 | 120.36 (10) | C15—C14—H14 | 120.0 (11) |
C5—C6—C7 | 135.26 (11) | C16—C15—C14 | 120.02 (12) |
C1—C6—C7 | 104.35 (10) | C16—C15—H15 | 118.5 (10) |
N1—C7—C6 | 111.14 (10) | C14—C15—H15 | 121.4 (10) |
N1—C7—H7 | 120.5 (9) | C15—C16—C17 | 120.03 (11) |
C6—C7—H7 | 128.3 (9) | C15—C16—H16 | 121.5 (10) |
N2—C8—C9 | 112.99 (10) | C17—C16—H16 | 118.4 (10) |
N2—C8—H8A | 108.6 (8) | C16—C17—C12 | 120.17 (11) |
C9—C8—H8A | 110.9 (8) | C16—C17—H17 | 118.5 (9) |
N2—C8—H8B | 104.8 (8) | C12—C17—H17 | 121.3 (9) |
C9—C8—H8B | 111.4 (8) | ||
C7—N1—N2—C1 | 0.80 (13) | C1—C6—C7—N1 | 0.01 (13) |
C7—N1—N2—C8 | 178.51 (10) | C1—N2—C8—C9 | 86.13 (14) |
C9—O1—N3—C11 | −10.56 (12) | N1—N2—C8—C9 | −91.08 (12) |
N1—N2—C1—C2 | 178.29 (11) | N3—O1—C9—C8 | −104.57 (10) |
C8—N2—C1—C2 | 0.9 (2) | N3—O1—C9—C10 | 15.55 (11) |
N1—N2—C1—C6 | −0.80 (12) | N2—C8—C9—O1 | −73.99 (12) |
C8—N2—C1—C6 | −178.17 (11) | N2—C8—C9—C10 | 170.59 (9) |
N2—C1—C2—C3 | −179.03 (11) | O1—C9—C10—C11 | −13.98 (11) |
C6—C1—C2—C3 | −0.06 (16) | C8—C9—C10—C11 | 104.09 (10) |
C1—C2—C3—C4 | 0.43 (16) | O1—N3—C11—C12 | −176.33 (9) |
C2—C3—C4—C5 | −0.33 (17) | O1—N3—C11—C10 | 0.66 (13) |
C2—C3—C4—N4 | 177.74 (10) | C9—C10—C11—N3 | 8.74 (13) |
O3—N4—C4—C5 | 5.90 (15) | C9—C10—C11—C12 | −174.36 (10) |
O2—N4—C4—C5 | −175.49 (10) | N3—C11—C12—C17 | 172.37 (11) |
O3—N4—C4—C3 | −172.27 (10) | C10—C11—C12—C17 | −4.30 (16) |
O2—N4—C4—C3 | 6.33 (16) | N3—C11—C12—C13 | −5.78 (17) |
C3—C4—C5—C6 | −0.17 (17) | C10—C11—C12—C13 | 177.55 (11) |
N4—C4—C5—C6 | −178.23 (10) | C17—C12—C13—C14 | −1.29 (17) |
C4—C5—C6—C1 | 0.53 (16) | C11—C12—C13—C14 | 176.86 (10) |
C4—C5—C6—C7 | 178.17 (12) | C12—C13—C14—C15 | 0.67 (18) |
N2—C1—C6—C5 | 178.75 (10) | C13—C14—C15—C16 | 0.31 (18) |
C2—C1—C6—C5 | −0.44 (17) | C14—C15—C16—C17 | −0.66 (18) |
N2—C1—C6—C7 | 0.47 (12) | C15—C16—C17—C12 | 0.03 (17) |
C2—C1—C6—C7 | −178.72 (10) | C13—C12—C17—C16 | 0.95 (17) |
N2—N1—C7—C6 | −0.48 (13) | C11—C12—C17—C16 | −177.23 (10) |
C5—C6—C7—N1 | −177.89 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1i | 0.959 (16) | 2.467 (16) | 3.3877 (14) | 160.9 (13) |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249. Web of Science CrossRef CAS PubMed Google Scholar
Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088. Web of Science CrossRef PubMed CAS Google Scholar
Boulhaoua, M., Abdelahi, M. M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160485. Google Scholar
Boulhaoua, M., Benchidmi, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o780–o781. Web of Science CrossRef IUCr Journals Google Scholar
Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016a). IUCrData, 1, x160480. Google Scholar
Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016b). IUCrData, 1, x160567. Google Scholar
Boulhaoua, M., Essaghouani, A., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x160939. Google Scholar
Boulhaoua, M., Essaghouani, A., Lahmidi, S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171091. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963–972. CAS Google Scholar
Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia, Perth. Google Scholar
Zaleski, J., Daszkiewicz, Z. & Kyziol, J. (1998). Acta Cryst. C54, 1687–1689. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.