research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,6-bis­­(pyridin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine

CROSSMARK_Color_square_no_text.svg

aGroup of Theoretical and Structural Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Łódź, Pomorska 163/165, 90-236, Łódź, Poland, and bDepartment of Theoretical Chemistry, University of Białystok, Ciołkowskiego, 1K, 15-245 Białystok, Poland
*Correspondence e-mail: kinga.raj@chemia.uni.lodz.pl

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 20 November 2018; accepted 11 December 2018; online 1 January 2019)

The structure of the title compound, C12H10N6, at 100 K has monoclinic (P21/n) symmetry. Crystals were obtained as a yellow solid by reduction of 3,6-bis­(pyridin-2-yl)-1,2,4,5-tetra­zine. The structure displays inter­molecular hydrogen bonding of the N—H⋯N type, ordering mol­ecules into infinite ribbons extending along the [100] direction.

1. Chemical context

s-Tetra­zines represent a class of heterocyclic compounds. The substitution of four nitro­gen atoms in a six-membered benzene-like ring results in strong π-electron deficiency and concentration of negative charge on the heteroatoms. As a result of these properties, s-tetra­zines are used in organic synthesis (Saracoglu, 2007[Saracoglu, N. (2007). Tetrahedron, 63, 4199-4236.]; Šečkutė & Deveraj et al., 2013[Šečkutė, J. & Devaraj, N. K. (2013). Curr. Opin. Chem. Biol. 17, 761-767.]; Churakov et al., 2004[Churakov, A. M. & Tartakovsky, V. A. (2004). Chem. Rev. 104, 2601-2616.]) as well as bridging ligands in metal complexes (Kaim, 2002[Kaim, W. (2002). Coord. Chem. Rev. 230, 127-139.]; Clavier & Audebert, 2010[Clavier, G. & Audebert, P. (2010). Chem. Rev. 110, 3299-3314.]). Moreover, their derivatives are often among biologically active compounds (Saghatforoush et al., 2016[Saghatforoush, L., Khoshtarkib, Z., Amani, V., Bakhtiari, A., Hakimi, M. & Keypour, H. (2016). J. Solid State Chem. 233, 311-319.]) and play an important role in anti-inflammatory (Kamal et al., 2006[Kamal, M. D., Hassan, A. G., Money, E., Hanan, A. M. & Bahira, H. (2006). Arch. Pharm. Chem. Life Sci. 339, 133.]), anti­cancer, anti­viral drugs (Rao & Hu, 2006[Rao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702-3705.]; Neunhoeffer et al., 1984[Neunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, Vol. 3, 1st ed , edited by A. R. Katritzky and C. W. Rees, p. 531. Oxford: Pergamon Press.]) or as insecticidal products (Sauer et al.,1996[Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, Vol. 6, 2nd ed., edited by A. J. Boulton, C. W. Rees and E. F. V. Scriven, pp. 901-955. Oxford: Pergamon.]; Brooker et al., 1987[Brooker, P. J., Parsons, J. H., Reid, J. & West, P. (1987). Pestic. Sci. 18, 179-190.]).

[Scheme 1]

The title compound 3,6-bis­(pyridin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine (I)[link] was obtained as a yellow solid by reduction of 3,6-bis­(pyridin-2-yl)-1,2,4,5-tetra­zine (II) during its crystallization with 2-mercapto­pyridine N-oxide (III) in ethanol solution (Fig. 1[link]).

[Figure 1]
Figure 1
Mol­ecular formulae of: 3,6-bis­(pyridin-2-yl)-1,4-di­hydro-1,2,4,5-tetra­zine (I)[link], 3,6-bis­(pyridin-2-yl)-1,2,4,5-tetra­zine (II) and 2-mercapto­pyridine N-oxide (III).

2. Structural commentary

Compound (I)[link] crystallizes in the monoclinic space group P21/n. The atomic labelling scheme is shown in Fig. 2[link]. In (I)[link], being a reduced form of (II), there are two hydrogen atoms at the 1 and 4 positions and two 2-pyridyl substituents at the 3 and 6 positions.

[Figure 2]
Figure 2
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

The C—C bond lengths are within the expected values known for aromatic systems (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). However, there is a fluctuation of bond distances involving nitro­gen atoms. The N—N bonds within the central (A) ring are of almost equal length, being 1.4285 (15) and 1.4306 (16) Å. The C6—N1 and C3—N4 [1.3953 (17) and 1.4051 (17) Å] bond lengths are longer than those for C6—N5 and C3—N2 [1.2848 (17) Å, 1.2809 (18) Å], respectively. This is the result of the protonation of the N1 and N4 atoms. The C—N bond lengths in the B and C rings are comparable within 3σ, varying from 1.3384 (18) Å to 1.3416 (17) Å.

The central tetra­zine ring (A) shows a boat conformation with pseudo-symmetry mirror planes passing through bonds N2—C3 and N5—C6 [ΔCs = 1.30 (16)°] and atoms N1, N4 [ΔCs = 2.00 (14)°]. In this conformation, hydrogen atoms are located in the equatorial positions of the ring and the N—H bonds are directed to the bottom of the boat (compare torsion angles in Table 1[link]). The planes of the aromatic pirydyl rings (B and C) are not to parallel to each other. The dihedral angles between these rings and central tetra­zine ring are 22.43 (7)° (A and B) and 25.71 (6)° (A and C). The dihedral angle between rings B and C is 27.13 (7)°. The overall mol­ecular structure could be recognized as a butterfly-like conformation as shown in Fig. 3[link].

Table 1
Selected torsion angles (°)

N2—C3—N4—H4 164.1 (13) C3—N2—N1—H1 −168.4 (12)
C6—N5—N4—H4 −165.2 (14) N5—C6—N1—H1 164.3 (13)
[Figure 3]
Figure 3
The butterfly-like mol­ecular conformation of (I)[link].

3. Supra­molecular features

The crystal packing of (I)[link] is mainly determined by inter­molecular hydrogen bonds of the N—H⋯N type (Table 2[link]). Firstly, two similar hydrogen bonds (N1—H1⋯N5 and N4—H4⋯N2) between the 1,2,4,5-tetra­zine rings of neighbouring mol­ecules form a chain with an R22(6) ring motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) (see Fig. 4[link]). As a result, the mol­ecules are ordered into infinite ribbons extending along the [100] direction. This parallel arrangement of the ribbons is additionally stabilized by further inter­actions between adjacent mol­ecules [N5⋯C33(1 − x, 1 − y, 1 − z) = 3.2418 (18) Å and C34⋯C61(1 − x, 1 − y, 1 − z) = 3.3334 (19) Å], as shown in Fig. 5[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2i 0.89 (2) 2.56 (2) 3.3017 (16) 142.5 (17)
N1—H1⋯N5ii 0.880 (17) 2.415 (17) 3.1321 (16) 138.9 (15)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.
[Figure 4]
Figure 4
N—H ⋯ N hydrogen bonds between rings of 1,2,4,5-tetra­zine of adjacent mol­ecules forming a chain of cyclic dimers.
[Figure 5]
Figure 5
A view of the unit-cell packing, showing the ribbon-like arrangement of mol­ecules. Short C⋯N and C⋯C inter­molecular contacts between adjacent mol­ecular ribbons are shown as dashed blue lines.

4. Database survey

A search of the Cambridge Structure Database (CSD version 5.39, update of February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) results in 76 deriv­atives of 3,6-bis­(pyridin-2-yl)-1,2,4,5-tetra­zine, among them compound (II) (refcode JUMXAQ; Klein et al., 1998[Klein, A., McInnes, E. J. L., Scheiring, T. & Zališ, S. (1998). Faraday Trans. 94, 2979-2984.]), which is the oxidated form of (I). Even tought (II) crystallizes in the smae monoclinic space group as (I), its molecular and crystal structures show completely different features.

5. Synthesis and crystallization

Crystals suitable for X-ray measurements were obtained from a commercially available reagent (Aldrich Chemical Co.) and used without further purification. 0.5 mmol of 3,6-bis­(pyridin-2-yl)-1,2,4,5-tetra­zine and 0.5 mmol of 2-mercapto­pyridine N-oxide (in a 1:1 molar ratio) were mixed in ethanol (4 ml). The resulting solution was warmed to 343 K and then kept at room temperature. Within two weeks, after slow evaporation of the solvent, two kinds of crystal were obtained in a crystallizer. X-ray studies confirmed that the pink crystals were of the known structure (II), while the yellow crystals were identified as being of a previously unreported structure, i.e. (I)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms of aromatic rings were introduced in calculated positions with idealized geometry and constrained using a rigid body model with isotropic displacement parameters equal to 1.2 the equivalent displacement parameters of the parent atoms. The H atoms of the NH groups, in 1,2,4,5-tetra­zine ring, were located in a difference Fourier map and freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C12H10N6
Mr 238.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.4603 (1), 12.7845 (3), 15.6474 (4)
β (°) 97.281 (2)
V3) 1083.49 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.78
Crystal size (mm) 0.11 × 0.10 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.958, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8686, 2004, 1767
Rint 0.027
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.12
No. of reflections 2004
No. of parameters 171
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3,6-Bis(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazine top
Crystal data top
C12H10N6F(000) = 496
Mr = 238.26Dx = 1.461 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.4603 (1) ÅCell parameters from 3734 reflections
b = 12.7845 (3) Åθ = 4.5–76.4°
c = 15.6474 (4) ŵ = 0.78 mm1
β = 97.281 (2)°T = 100 K
V = 1083.49 (4) Å3Plate, yellow
Z = 40.11 × 0.10 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, Atlas
diffractometer
2004 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1767 reflections with I > 2σ(I)
Detector resolution: 10.4052 pixels mm-1Rint = 0.027
ω scansθmax = 68.5°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlisPRO; Rigaku OD, 2015)
h = 66
Tmin = 0.958, Tmax = 1.000k = 1514
8686 measured reflectionsl = 1817
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.051P)2 + 0.2596P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2004 reflectionsΔρmax = 0.14 e Å3
171 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N50.3304 (2)0.59460 (9)0.30162 (7)0.0159 (3)
N10.7587 (2)0.61063 (9)0.30346 (7)0.0167 (3)
N660.7195 (2)0.45247 (9)0.18218 (7)0.0178 (3)
N40.3800 (2)0.66133 (9)0.37517 (7)0.0162 (3)
N20.7969 (2)0.61146 (9)0.39548 (7)0.0166 (3)
N360.4117 (2)0.70258 (9)0.54575 (7)0.0196 (3)
C30.6017 (2)0.63816 (10)0.42759 (9)0.0151 (3)
C310.6094 (2)0.65389 (10)0.52161 (8)0.0159 (3)
C60.5274 (2)0.57389 (10)0.26787 (8)0.0150 (3)
C610.5133 (2)0.50651 (10)0.19059 (8)0.0153 (3)
C620.2981 (2)0.49884 (11)0.13279 (8)0.0183 (3)
H620.16080.53970.13940.022*
C650.7096 (2)0.38393 (10)0.11717 (9)0.0191 (3)
H650.84970.34440.11160.023*
C640.5020 (3)0.36871 (11)0.05778 (9)0.0194 (3)
H640.50200.31950.01400.023*
C340.6135 (3)0.69920 (11)0.69170 (9)0.0201 (3)
H340.61060.71670.74930.024*
C320.8134 (3)0.62397 (11)0.57895 (9)0.0196 (3)
H320.94600.58950.55960.024*
C630.2943 (3)0.42869 (11)0.06517 (9)0.0201 (3)
H630.15390.42190.02520.024*
C330.8137 (3)0.64675 (11)0.66537 (9)0.0215 (3)
H330.94650.62720.70540.026*
C350.4179 (3)0.72475 (11)0.62978 (9)0.0211 (3)
H350.28320.75930.64760.025*
H10.886 (3)0.5796 (14)0.2850 (11)0.022 (4)*
H40.253 (4)0.6611 (15)0.4051 (13)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N50.0158 (5)0.0169 (5)0.0144 (5)0.0008 (4)0.0001 (4)0.0012 (4)
N10.0134 (5)0.0221 (6)0.0148 (5)0.0014 (5)0.0020 (4)0.0020 (4)
N660.0154 (5)0.0182 (6)0.0198 (6)0.0000 (4)0.0025 (4)0.0009 (4)
N40.0138 (5)0.0196 (6)0.0150 (6)0.0025 (4)0.0007 (4)0.0025 (4)
N20.0159 (5)0.0191 (6)0.0145 (5)0.0009 (4)0.0003 (4)0.0013 (4)
N360.0174 (6)0.0229 (6)0.0181 (6)0.0010 (4)0.0009 (4)0.0024 (4)
C30.0138 (6)0.0136 (6)0.0173 (7)0.0002 (5)0.0001 (5)0.0003 (5)
C310.0161 (6)0.0144 (6)0.0170 (7)0.0025 (5)0.0015 (5)0.0009 (5)
C60.0137 (6)0.0149 (6)0.0162 (6)0.0006 (5)0.0007 (5)0.0022 (5)
C610.0151 (6)0.0144 (6)0.0166 (6)0.0010 (5)0.0032 (5)0.0015 (5)
C620.0153 (6)0.0211 (7)0.0185 (7)0.0017 (5)0.0018 (5)0.0005 (5)
C650.0168 (6)0.0175 (6)0.0236 (7)0.0007 (5)0.0055 (5)0.0018 (5)
C640.0223 (7)0.0183 (6)0.0181 (7)0.0027 (5)0.0049 (5)0.0025 (5)
C340.0253 (7)0.0193 (7)0.0155 (6)0.0053 (5)0.0017 (5)0.0006 (5)
C320.0180 (7)0.0204 (7)0.0203 (7)0.0013 (5)0.0019 (5)0.0023 (5)
C630.0175 (6)0.0237 (7)0.0183 (7)0.0024 (5)0.0005 (5)0.0002 (5)
C330.0212 (7)0.0231 (7)0.0190 (7)0.0019 (5)0.0024 (5)0.0038 (5)
C350.0209 (7)0.0226 (7)0.0202 (7)0.0000 (5)0.0040 (5)0.0033 (5)
Geometric parameters (Å, º) top
N5—C61.2848 (17)C61—C621.3926 (18)
N5—N41.4306 (16)C62—C631.385 (2)
N1—C61.3953 (17)C62—H620.9300
N1—N21.4285 (15)C65—C641.386 (2)
N1—H10.880 (19)C65—H650.9300
N66—C651.3384 (18)C64—C631.386 (2)
N66—C611.3416 (17)C64—H640.9300
N4—C31.4051 (17)C34—C351.387 (2)
N4—H40.88 (2)C34—C331.389 (2)
N2—C31.2809 (18)C34—H340.9300
N36—C351.3412 (18)C32—C331.383 (2)
N36—C311.3415 (18)C32—H320.9300
C3—C311.4800 (18)C63—H630.9300
C31—C321.3922 (19)C33—H330.9300
C6—C611.4786 (18)C35—H350.9300
C6—N5—N4111.75 (11)C63—C62—H62120.9
C6—N1—N2114.45 (10)C61—C62—H62120.9
C6—N1—H1115.4 (12)N66—C65—C64123.53 (12)
N2—N1—H1108.3 (12)N66—C65—H65118.2
C65—N66—C61117.28 (12)C64—C65—H65118.2
C3—N4—N5113.90 (10)C65—C64—C63118.36 (13)
C3—N4—H4111.4 (13)C65—C64—H64120.8
N5—N4—H4110.1 (13)C63—C64—H64120.8
C3—N2—N1112.02 (11)C35—C34—C33118.16 (13)
C35—N36—C31116.93 (12)C35—C34—H34120.9
N2—C3—N4121.69 (12)C33—C34—H34120.9
N2—C3—C31120.37 (12)C33—C32—C31118.30 (13)
N4—C3—C31117.75 (12)C33—C32—H32120.9
N36—C31—C32123.55 (12)C31—C32—H32120.9
N36—C31—C3114.85 (12)C62—C63—C64119.26 (13)
C32—C31—C3121.54 (12)C62—C63—H63120.4
N5—C6—N1121.95 (12)C64—C63—H63120.4
N5—C6—C61119.77 (12)C32—C33—C34119.21 (13)
N1—C6—C61118.25 (11)C32—C33—H33120.4
N66—C61—C62123.33 (12)C34—C33—H33120.4
N66—C61—C6115.02 (11)N36—C35—C34123.82 (13)
C62—C61—C6121.63 (12)N36—C35—H35118.1
C63—C62—C61118.13 (12)C34—C35—H35118.1
N2—C3—N4—H4164.1 (13)C3—N2—N1—H1168.4 (12)
C6—N5—N4—H4165.2 (14)N5—C6—N1—H1164.3 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.89 (2)2.56 (2)3.3017 (16)142.5 (17)
N1—H1···N5ii0.880 (17)2.415 (17)3.1321 (16)138.9 (15)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Funding information

Funding for this research was provided by: Narodowe Centrum Nauki (grant No. 2015/19/B/ST4/01773); EFRD in Operational Programme Development of Eastern Poland 2007–2013, the Oxford Diffraction SuperNova DualSource diffractometer (award No. POPW.01.03.00-20-004/11).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBrooker, P. J., Parsons, J. H., Reid, J. & West, P. (1987). Pestic. Sci. 18, 179–190.  CrossRef Google Scholar
First citationChurakov, A. M. & Tartakovsky, V. A. (2004). Chem. Rev. 104, 2601–2616.  CrossRef Google Scholar
First citationClavier, G. & Audebert, P. (2010). Chem. Rev. 110, 3299–3314.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaim, W. (2002). Coord. Chem. Rev. 230, 127–139.  CrossRef CAS Google Scholar
First citationKamal, M. D., Hassan, A. G., Money, E., Hanan, A. M. & Bahira, H. (2006). Arch. Pharm. Chem. Life Sci. 339, 133.  Google Scholar
First citationKlein, A., McInnes, E. J. L., Scheiring, T. & Zališ, S. (1998). Faraday Trans. 94, 2979–2984.  CrossRef CAS Google Scholar
First citationNeunhoeffer, H. (1984). Comprehensive Heterocyclic Chemistry, Vol. 3, 1st ed , edited by A. R. Katritzky and C. W. Rees, p. 531. Oxford: Pergamon Press.  Google Scholar
First citationRao, G. W. & Hu, W. X. (2006). Bioorg. Med. Chem. Lett. 16, 3702–3705.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2015). CrysAlisPRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaghatforoush, L., Khoshtarkib, Z., Amani, V., Bakhtiari, A., Hakimi, M. & Keypour, H. (2016). J. Solid State Chem. 233, 311–319.  CrossRef Google Scholar
First citationSaracoglu, N. (2007). Tetrahedron, 63, 4199–4236.  CrossRef Google Scholar
First citationSauer, J. (1996). Comprehensive Heterocyclic Chemistry, Vol. 6, 2nd ed., edited by A. J. Boulton, C. W. Rees and E. F. V. Scriven, pp. 901–955. Oxford: Pergamon.  Google Scholar
First citationŠečkutė, J. & Devaraj, N. K. (2013). Curr. Opin. Chem. Biol. 17, 761–767.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds