research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a second monoclinic polymorph of 3-meth­­oxy­benzoic acid with Z′ = 1

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
*Correspondence e-mail: arafath_sustche90@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 November 2018; accepted 28 November 2018; online 1 January 2019)

A new polymorphic form of the title compound, C8H8O3, is described in the centrosymmetric monoclinic space group P21/c with Z′ = 1 as compared to the first polymorph, which crystallizes with two conformers (Z′ = 2) in the asymmetric unit in the same space group. In the crystal of the second polymorph, inversion dimers linked by O—H⋯O hydrogen bonds occur and these are linked into zigzag chains, propagating along the b-axis direction by C—H⋯O links. The crystal structure also features a weak ππ inter­action, with a centroid-to-centroid distance of 3.8018 (6) Å. The second polymorph of the title compound is less stable than the reported first polymorph, as indicated by its smaller calculated lattice energy.

1. Chemical context

Meth­oxy­benzoic acid, also called anisic acid, consists of three isomers with mol­ecular formula C8H8O3: the crystal structures of 2- and 4-meth­oxy­benzoic acids with Z′ = 1 have been reported (Parvez, 1987[Parvez, M. (1987). Acta Cryst. C43, 2243-2245.]; Etter et al., 1988[Etter, M. C., Urbańczyk-Lipkowska, Z., Fish, P. A., Panunto, T. W., Baures, P. W. & Frye, J. S. (1988). J. Crystallogr. Spectrosc. Res. 18, 311-325.]; Bryan, 1967[Bryan, R. F. (1967). J. Chem. Soc. B, pp. 1311-1316.]; Colapietro & Domenicano, 1978[Colapietro, M. & Domenicano, A. (1978). Acta Cryst. B34, 3277-3280.]; Fausto et al., 1997[Fausto, R., Matos-Beja, A. & Paixão, J. A. (1997). J. Mol. Struct. 435, 207-218.]; Hathwar et al., 2011[Hathwar, V. R., Thakur, T. S., Row, T. N. G. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 616-623.]) and polymorphism has not been observed for these two isomers in the Cambridge Structural Database (CSD) (Version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) to date. In this article, we report a second polymorphic form (Iβ) of 3-meth­oxy­benzoic acid with Z′ = 1 and compare its properties with those of the previously reported first polymorphic form (Iα). Polymorph Iα crystallizes in the monoclinic space group P21/n with a = 13.8034 (17) Å, b = 5.0275 (5) Å, c = 21.446 (3) Å and β = 99.320 (13)° (Raffo et al., 2014[Raffo, P. A., Rossi, L., Alborés, P., Baggio, R. F. & Cukiernik, F. D. (2014). J. Mol. Struct. 1070, 86-93.]; refcode EFINEO). The asymmetric unit of Iα consists of two mol­ecules with different conformations (Z′ = 2), which are connected into a homodimer through strong O—H⋯O hydrogen bonds. As described below, these two conformers (A and B) differ in the orientation of the meth­oxy group and its relative position from the —OH group. DFT calculations suggest that the A conformer of Iα is more energetically stable than the B conformer (Pereira Silva et al., 2015[Pereira Silva, P. S., Castro, R. A. E., Melro, E., Silva, M. R., Maria, T. M. R., Canotilho, J. & Eusébio, M. E. S. (2015). J. Therm. Anal. Calorim. 120, 667-677.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of Iβ (Fig. 1[link]) consists of a unique 3-meth­oxy­benzoic acid mol­ecule (Z′ = 1). The mol­ecule is almost planar with a maximum deviation of 0.107 (1) Å at atom O1. The mol­ecules of Iβ adopt a similar conformation (overlay r.m.s.d. = 0.052 Å) as compared to the conformer A of Iα (Raffo et al., 2014[Raffo, P. A., Rossi, L., Alborés, P., Baggio, R. F. & Cukiernik, F. D. (2014). J. Mol. Struct. 1070, 86-93.]). The carboxyl group (O1/O2/C7/H1O2) of Iβ is close to coplanar with the attached phenyl ring (C1–C6) as indicated by the dihedral angle of 5.6 (7)°. The C8—O3—C3—C2 torsion angle of Iβ is −176.63 (7)° as compared to −176.75 (11) and −1.4 (2)° for conformers A and B, respectively, of Iα.

[Figure 1]
Figure 1
The mol­ecular structure of Iβ with 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal of Iβ, two inversion-related mol­ecules are joined into a homodimer with an R22(8) graph-set motif via strong pairwise O—H⋯O hydrogen bonds (Fig. 2[link], Table 1[link]). The homodimers are linked by weak C—H⋯O hydrogen bonds between two meth­oxy groups into zigzag chains with R22(6) graph-set motifs, which propagate along the b-axis direction. The [010] chains are stacked along the a axis into corrugated sheets parallel to the ab plane via weak ππ inter­actions with a centroid-to-centroid distance of 3.8018 (6) Å (symmetry codes: x − 1, y, z and x + 1, y, z) and slippage of 1.676 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1i 1.008 (19) 1.626 (19) 2.6295 (9) 173.3 (17)
C8—H8A⋯O3ii 0.98 2.56 3.4016 (11) 144
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x, -y+1, -z+2.
[Figure 2]
Figure 2
Partial crystal packing of Iβ. Dashed lines represent the hydrogen-bonds. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

4. Hirshfeld surface analysis

The Hirshfeld surfaces mapped with normalized contact distance dnorm and the two-dimensional fingerprint plots for Iβ were generated using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The large and small red spots on the Hirshfeld surface mapped with dnorm (Fig. 3[link]) correspond to the O2—H1O2⋯O1 and C8—H8A⋯O3 hydrogen bonds, respectively. The H⋯O distances are 1.09 and 0.16 Å shorter than the sum of van der Waals radii of H and O atoms (2.72 Å). The H⋯H contact is the most populated contact and contributes 42.3% of the total inter­molecular contacts, followed by H⋯O/O⋯H (32.9%), H⋯C/C⋯H (11.4%) and C⋯C (8.1%) contacts (Fig. 4[link]). The tips of pseudo-mirrored sharp spikes at de + di ≃ 1.6 Å represent the shortest H⋯O/O⋯H contacts, corresponding to the O2—H1O2⋯O1 hydrogen-bond. The absence of significant C—H⋯π inter­action in the crystal structure of Iβ is indicated by the absence of characteristic `wings' in the fingerprint plot of H⋯C/C⋯H contacts. The C⋯C contacts include the weak ππ inter­action, which appears as a unique `triangle' focused at dedi ≃ 1.8 Å. The ππ inter­action is illustrated as a unique pattern of red and blue `triangles' on the shape-index surface and a flat region on the curvedness surface of the phenyl ring (see supporting Figures S1 and S2).

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm of the central mol­ecule of Iβ hydrogen bonded to two neighbouring mol­ecules.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots of Iβ for different inter­molecular contacts giving their percentages of contribution to the Hirshfeld surface. di and de are the distances from the Hirshfeld surface to the nearest atom inter­ior and exterior, respectively, to the surface.

5. Lattice energy calculation

The lattice energies of polymorphs Iα and Iβ were calculated using PIXEL software (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.]) at default settings. The calculated lattice energy of Iα (107.5 kJ mol−1) is larger than that of Iβ (98.5 kJ mol−1) and this comparison is in agreement with the report of Pereira Silva et al. (2015[Pereira Silva, P. S., Castro, R. A. E., Melro, E., Silva, M. R., Maria, T. M. R., Canotilho, J. & Eusébio, M. E. S. (2015). J. Therm. Anal. Calorim. 120, 667-677.]), in which Iα is more stable than Iβ under ambient conditions.

6. Database survey

For the structure of 2-meth­oxy­benzoic acid (refcodes FUFBOX and FUFBOX01, respectively), see: Parvez (1987[Parvez, M. (1987). Acta Cryst. C43, 2243-2245.]) and Etter et al. (1988[Etter, M. C., Urbańczyk-Lipkowska, Z., Fish, P. A., Panunto, T. W., Baures, P. W. & Frye, J. S. (1988). J. Crystallogr. Spectrosc. Res. 18, 311-325.]). For the structure of 4-meth­oxy­benzoic acid (refcodes ANISIC, ANISIC01, ANISIC02 and ANISIC04, respectively), see: Bryan (1967[Bryan, R. F. (1967). J. Chem. Soc. B, pp. 1311-1316.]), Colapietro & Domenicano (1978[Colapietro, M. & Domenicano, A. (1978). Acta Cryst. B34, 3277-3280.]), Fausto et al. (1997[Fausto, R., Matos-Beja, A. & Paixão, J. A. (1997). J. Mol. Struct. 435, 207-218.]) and Hathwar et al. (2011[Hathwar, V. R., Thakur, T. S., Row, T. N. G. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 616-623.]). For the previous structure of 3-meth­oxy­benzoic acid (refcodes EFINEO and EFINEO01, respectively), see: Raffo et al. (2014[Raffo, P. A., Rossi, L., Alborés, P., Baggio, R. F. & Cukiernik, F. D. (2014). J. Mol. Struct. 1070, 86-93.]) and Pereira Silva et al. (2015[Pereira Silva, P. S., Castro, R. A. E., Melro, E., Silva, M. R., Maria, T. M. R., Canotilho, J. & Eusébio, M. E. S. (2015). J. Therm. Anal. Calorim. 120, 667-677.]).

7. Synthesis and crystallization

Single crystals of Iβ were obtained from an unsuccessful attempt of co-crystallization between 3-meth­oxy­benzoic acid and hexa­methyl­ene­tetra­mine. Colourless plate-like crystals were obtained from slow evaporation of a methano­lic mixture of 3-meth­oxy­benzoic acid and hexa­methyl­ene­tetra­mine in equimolar ratio at room temperature.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O-bound H atom was located from the difference-Fourier map and refined freely [O2—H1O2 = 1.01 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model (AFIX 137) was applied to the methyl group.

Table 2
Experimental details

Crystal data
Chemical formula C8H8O3
Mr 152.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 3.8018 (4), 15.6027 (16), 11.9755 (12)
β (°) 90.889 (2)
V3) 710.28 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.56 × 0.22 × 0.12
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.881, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 9395, 2550, 2049
Rint 0.023
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.04
No. of reflections 2550
No. of parameters 105
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

3-Methoxybenzoic acid top
Crystal data top
C8H8O3F(000) = 320
Mr = 152.14Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8018 (4) ÅCell parameters from 3889 reflections
b = 15.6027 (16) Åθ = 2.6–32.4°
c = 11.9755 (12) ŵ = 0.11 mm1
β = 90.889 (2)°T = 100 K
V = 710.28 (13) Å3Plate, colourless
Z = 40.56 × 0.22 × 0.12 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
2550 independent reflections
Radiation source: fine-focus sealed tube2049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 32.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 55
Tmin = 0.881, Tmax = 0.987k = 2123
9395 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1229P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2550 reflectionsΔρmax = 0.40 e Å3
105 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20200 (18)0.96657 (4)0.88546 (5)0.02247 (16)
O20.04494 (18)0.88699 (4)1.01876 (5)0.02142 (16)
H1O20.091 (5)0.9451 (12)1.0523 (16)0.068 (5)*
O30.17686 (17)0.58676 (4)0.92170 (5)0.01959 (15)
C10.2204 (2)0.81461 (6)0.86862 (7)0.01512 (16)
C20.1573 (2)0.73618 (6)0.91952 (7)0.01515 (16)
H2A0.05040.73410.99060.018*
C30.2516 (2)0.66069 (5)0.86565 (7)0.01517 (16)
C40.4082 (2)0.66360 (6)0.76109 (7)0.01698 (17)
H4A0.47380.61210.72450.020*
C50.4674 (2)0.74261 (6)0.71099 (7)0.01847 (18)
H5A0.57270.74470.63960.022*
C60.3755 (2)0.81821 (6)0.76329 (7)0.01759 (17)
H6A0.41690.87180.72830.021*
C70.1244 (2)0.89573 (6)0.92491 (7)0.01636 (17)
C80.2877 (2)0.50822 (6)0.87173 (7)0.01985 (18)
H8A0.22290.46010.91980.030*
H8B0.54340.50910.86280.030*
H8C0.17260.50170.79840.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0301 (3)0.0151 (3)0.0223 (3)0.0001 (2)0.0063 (2)0.0011 (2)
O20.0285 (3)0.0176 (3)0.0184 (3)0.0009 (2)0.0077 (2)0.0004 (2)
O30.0254 (3)0.0134 (3)0.0202 (3)0.0012 (2)0.0073 (2)0.0000 (2)
C10.0147 (3)0.0151 (4)0.0156 (3)0.0003 (3)0.0006 (2)0.0005 (3)
C20.0151 (3)0.0165 (4)0.0139 (3)0.0002 (3)0.0018 (2)0.0004 (3)
C30.0146 (3)0.0150 (4)0.0159 (3)0.0000 (3)0.0013 (2)0.0001 (3)
C40.0161 (3)0.0190 (4)0.0160 (3)0.0008 (3)0.0025 (3)0.0026 (3)
C50.0175 (4)0.0231 (4)0.0149 (4)0.0005 (3)0.0035 (3)0.0001 (3)
C60.0182 (4)0.0183 (4)0.0164 (4)0.0009 (3)0.0023 (3)0.0021 (3)
C70.0164 (3)0.0170 (4)0.0157 (3)0.0006 (3)0.0008 (3)0.0001 (3)
C80.0217 (4)0.0141 (4)0.0238 (4)0.0017 (3)0.0033 (3)0.0029 (3)
Geometric parameters (Å, º) top
O1—C71.2394 (10)C3—C41.3956 (12)
O2—C71.3110 (10)C4—C51.3909 (12)
O2—H1O21.01 (2)C4—H4A0.9500
O3—C31.3666 (10)C5—C61.3829 (12)
O3—C81.4301 (10)C5—H5A0.9500
C1—C21.3896 (12)C6—H6A0.9500
C1—C61.4019 (11)C8—H8A0.9800
C1—C71.4823 (12)C8—H8B0.9800
C2—C31.3925 (12)C8—H8C0.9800
C2—H2A0.9500
C7—O2—H1O2109.8 (11)C6—C5—H5A119.4
C3—O3—C8116.94 (7)C4—C5—H5A119.4
C2—C1—C6120.52 (8)C5—C6—C1119.09 (8)
C2—C1—C7120.47 (7)C5—C6—H6A120.5
C6—C1—C7119.01 (8)C1—C6—H6A120.5
C1—C2—C3119.62 (7)O1—C7—O2122.85 (8)
C1—C2—H2A120.2O1—C7—C1121.76 (7)
C3—C2—H2A120.2O2—C7—C1115.39 (7)
O3—C3—C2115.43 (7)O3—C8—H8A109.5
O3—C3—C4124.26 (7)O3—C8—H8B109.5
C2—C3—C4120.31 (8)H8A—C8—H8B109.5
C5—C4—C3119.34 (8)O3—C8—H8C109.5
C5—C4—H4A120.3H8A—C8—H8C109.5
C3—C4—H4A120.3H8B—C8—H8C109.5
C6—C5—C4121.13 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O1i1.008 (19)1.626 (19)2.6295 (9)173.3 (17)
C8—H8A···O3ii0.982.563.4016 (11)144
Symmetry codes: (i) x, y+2, z+2; (ii) x, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: F-8816-2012.

§Thomson Reuters ResearcherID: A-5525-2009.

Funding information

QAW thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Individual Grant (1001/PFIZIK/8011080). HCK thanks the Malaysian Government for a MyBrain15 scholarship.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryan, R. F. (1967). J. Chem. Soc. B, pp. 1311–1316.  Google Scholar
First citationColapietro, M. & Domenicano, A. (1978). Acta Cryst. B34, 3277–3280.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C., Urbańczyk-Lipkowska, Z., Fish, P. A., Panunto, T. W., Baures, P. W. & Frye, J. S. (1988). J. Crystallogr. Spectrosc. Res. 18, 311–325.  CrossRef Google Scholar
First citationFausto, R., Matos-Beja, A. & Paixão, J. A. (1997). J. Mol. Struct. 435, 207–218.  CrossRef Google Scholar
First citationGavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Thakur, T. S., Row, T. N. G. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 616–623.  Web of Science CrossRef CAS Google Scholar
First citationParvez, M. (1987). Acta Cryst. C43, 2243–2245.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPereira Silva, P. S., Castro, R. A. E., Melro, E., Silva, M. R., Maria, T. M. R., Canotilho, J. & Eusébio, M. E. S. (2015). J. Therm. Anal. Calorim. 120, 667–677.  CrossRef Google Scholar
First citationRaffo, P. A., Rossi, L., Alborés, P., Baggio, R. F. & Cukiernik, F. D. (2014). J. Mol. Struct. 1070, 86–93.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds