research communications
H-imidazo[4,5-b]pyridine
and Hirshfeld surface analysis of 4-allyl-6-bromo-2-(4-chlorophenyl)-4aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France
*Correspondence e-mail: amalhaoudi2017@gmail.com
The title compound, C15H11BrClN3, is built up from a planar imidazo[4,5-b]pyridine unit linked to phenyl and allyl substituents. The allyl substituent is rotated significantly out of the imidazo[4,5-b]pyridine plane, while the benzene ring is inclined by 3.84 (6)° to the ring system. In the crystal, molecules are linked via a pair of weak intermolecular C—H⋯N hydrogen bonds, forming an inversion dimer with an R22(20) ring motif. The dimers are further connected by π–π stacking interactions between the imidazo[4,5-b]pyridine ring systems [centroid–centroid distances = 3.7161 (13) and 3.8478 (13) Å]. The important contributions to the Hirshfeld surface are H⋯H (35.9%), H⋯Cl/Cl⋯H (15.0%), H⋯C/C⋯H (12.4%), H⋯Br/Br⋯H (10.8%), H⋯N/N⋯H (7.5%), C⋯Br/Br⋯C (5.9%), C⋯C (5.5%) and C⋯N/N⋯C (4.0%) contacts.
Keywords: crystal structure; imidazo[4,5-b]pyridine; Hirshfeld surface.
CCDC reference: 1883384
1. Chemical context
Heterocyclic ring systems having an imidazo[4,5-b]pyridine unit can be considered as structural analogues of purines and have shown diverse biological activity depending on the substituents of the heterocyclic ring. Their activities include anticancer (Zhiqiang et al., 2005), tuberculostatic (Bukowski & Janowiec, 1989) and antimitotic (Parthiban et al., 2006) actions. Some imidazo[4,5-b]pyridine derivatives have also been reported as corrosion inhibitors for steel in acidic medium (Bouayad et al., 2018; Sikine et al., 2016), and some of them can be used to treat peptic ulcers, diabetes and mental illness (Scribner et al., 2007; Liang et al., 2007).
As a continuation of our research work devoted to the development of substituted imidazo[4,5-b]pyridine derivatives (Bourichi et al., 2016; Ouzidan et al., 2010a,b,c), we report herein the synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis of the title compound, a new imidazo[4,5-b]pyridine derivative, which was obtained by the reaction of allyl bromide with 6-bromo-2-(4-chlorophenyl)-4H-imidazo[4,5-b]pyridine in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions.
2. Structural commentary
The title compound is built up from an imidazo[4,5-b]pyridine unit linked to phenyl and allyl substituents (Fig. 1). The imidazo[4,5-b]pyridine ring system is planar, with a maximum deviation of 0.016 (2) Å for atom C12. The ring system is inclined by 3.84 (6)° to the benzene C1–C6 ring, with the N2—C7—C6—C1 torsion angle being 3.3 (3)°. The allyl substituent is nearly perpendicular to the imidazo[4,5-b]pyridine plane, as indicated by the C8—N3—C13—C14 torsion angle of −97.3 (2)°. Atoms C6 and C13 are 0.038 (2) and 0.014 (2) Å, respectively, away from the imidazo[4,5-b]pyridine plane.
3. Supramolecular features
In the crystal, molecules are linked via a pair of weak intermolecular C—H⋯N hydrogen bonds [C15—H15A⋯N1i; symmetry code: (i) −x, −y + 1, −z + 1; Table 1], forming an inversion dimer with an (20) ring motif (Fig. 2). The dimers are further connected by π–π stacking interactions between the imidazo[4,5-b]pyridine ring systems. The centroid–centroid distances, Cg1⋯Cg1ii and Cg1⋯Cg2i [symmetry code: (ii) −x + 1, −y + 1, −z + 1], are 3.7161 (13) and 3.8478 (13) Å, respectively, where Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and N3/C8–C12 rings, respectively.
4. Database survey
A non-para-substituated analogue, namely 4-allyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine monohydrate, has been reported (Ouzidan et al., 2010c), and three similar structures, 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al., 2010b), 4-benzyl-6-bromo-2-methoxyphenyl-4H-imidazo[4,5-b]pyridine monohydrate (Ouzidan et al., 2010a) and 4-benzyl-6-bromo-2-(4-chlorophenyl)-4H-imidazo[4,5-b]pyridine (Bourichi et al., 2017), have been also reported.
5. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near atoms N1 and H15A indicate their roles as the respective donors and/or acceptors in the dominant C—H⋯N hydrogen bond (Table 1). The shape index (Fig. 4) clearly suggests that there are π–π interactions, which are shown as adjacent red and blue triangles. The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C, C⋯ N/N⋯C, C⋯Cl/Cl⋯C, N⋯Br/Br⋯N and N⋯N contacts (McKinnon et al., 2007) are illustrated in Figs. 5(a)–(l), together with their relative contributions to the Hirshfeld surface. The contributions are 35.9, 15.0, 12.4, 10.8, 7.5, 5.9, 5.5, 4.0, 1.5, 1.2 and 0.2%, respectively, for H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C, C⋯N/N⋯C, C⋯Cl/Cl⋯C, N⋯Br/Br⋯N and N⋯N contacts. The most important interaction is H⋯H (35.9%), which is reflected as widely scattered points of high density due to the large hydrogen content of the molecule [Fig. 5(b)]. The spike with the tip at de = di = 1.16 Å is due to the short interatomic H⋯H contacts. The H⋯Cl/Cl⋯H contacts (15.0%) have a nearly symmetrical distribution of points and a pair of spikes with tips at de + di = 2.67 Å [Fig. 5(c)]. In the absence of C—H ⋯ π interactions, the H⋯C/C⋯H contacts (12.4%) also have a nearly symmetrical distribution of points with tips at de + di = 2.79 Å [Fig. 5(d)]. The H⋯Br/Br⋯H contacts (10.8%) have a symmetrical distribution of points and a pair of spikes with tips at de + di = 3.00 Å [Fig. 5(e)]. A pair of spikes with tips at de + di = 2.42 Å (Fig. 5f) in the H⋯N/N⋯H contacts (7.5%) arises from the C—H⋯N hydrogen bond (Table 1). The C⋯Br/Br⋯C contacts (5.9%) have a pair of wings with tips at de + di ∼ 3.62 Å [Fig. 5(g)]. The C⋯C contacts (5.5%) have an arrow-shaped distribution of points with the tip at de = di = 1.75 Å [Fig. 5(h)]. The C⋯N/N⋯C contacts (4.0%) have wide spikes with tips at de + di = 3.44 Å [Fig. 5(i)]. The HS representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C and C⋯N/N⋯C contacts [Figs. 6(a)–(h)].
6. Synthesis and crystallization
A mixture of 6-bromo-2-(4-chlorophenyl)-4H-imidazo[4,5-b]pyridine (0.2 g, 0.65 mmol) dissolved in 25 ml of N,N-dimethylformamide (DMF) and potassium carbonate (0.13 g, 0.92 mmol) was stirred for 5 min, and then to a mixture of tetra-n-butylammonium bromide (0.032 g, 0.1 mmol) and allyl bromide (0.094 g, 0.77 mmol) was added. Stirring was continued for 6 h at room temperature. After removing the salts by filtration, DMF was evaporated under reduced pressure, and the solid obtained was dissolved in dichloromethane. The residue was extracted with distilled water and the resulting mixture was chromatographed on a silica-gel column (eluent = ethyl acetate–hexane, 1:3 v/v). Brown single crystals suitable for X-ray diffraction were obtained by evaporation of an ethyl acetate–hexane (1:3 v/v) solution.
7. Refinement
Crystal data, data collection and . All H atoms were positioned geometrically, with C—H = 0.93 or 0.97 Å, and constrained to ride on their parent C atoms, with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1883384
https://doi.org/10.1107/S2056989018017322/is5505sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018017322/is5505Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017322/is5505Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017322/is5505Isup4.cml
Data collection: APEX2 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: APEX2 (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2015).C15H11BrClN3 | Z = 2 |
Mr = 348.63 | F(000) = 348 |
Triclinic, P1 | Dx = 1.641 Mg m−3 |
a = 7.6218 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5238 (5) Å | Cell parameters from 9961 reflections |
c = 11.1093 (7) Å | θ = 2.4–25.8° |
α = 95.739 (3)° | µ = 3.09 mm−1 |
β = 98.880 (3)° | T = 296 K |
γ = 94.979 (3)° | Plate, colourless |
V = 705.66 (8) Å3 | 0.3 × 0.23 × 0.06 mm |
Bruker APEX-II CCD diffractometer | 3226 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.033 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 30.5°, θmin = 1.9° |
Tmin = 0.591, Tmax = 0.746 | h = −10→10 |
31084 measured reflections | k = −12→12 |
4288 independent reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2342P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
4288 reflections | Δρmax = 0.57 e Å−3 |
181 parameters | Δρmin = −0.47 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.17874 (3) | 1.01452 (2) | 0.68946 (2) | 0.05997 (10) | |
Cl1 | 0.27559 (10) | −0.20635 (8) | 0.05226 (6) | 0.07320 (19) | |
N1 | 0.1843 (2) | 0.4932 (2) | 0.37610 (15) | 0.0451 (4) | |
N2 | 0.3231 (2) | 0.36057 (19) | 0.53108 (14) | 0.0408 (3) | |
N3 | 0.3389 (2) | 0.57048 (19) | 0.69517 (14) | 0.0416 (3) | |
C1 | 0.3258 (3) | 0.0867 (2) | 0.36107 (18) | 0.0460 (4) | |
H1 | 0.3669 | 0.0842 | 0.4441 | 0.055* | |
C2 | 0.3317 (3) | −0.0449 (3) | 0.27905 (19) | 0.0502 (5) | |
H2 | 0.3753 | −0.1360 | 0.3063 | 0.060* | |
C3 | 0.2715 (3) | −0.0391 (3) | 0.15560 (19) | 0.0506 (5) | |
C4 | 0.2054 (3) | 0.0941 (3) | 0.11321 (19) | 0.0538 (5) | |
H4 | 0.1664 | 0.0962 | 0.0299 | 0.065* | |
C5 | 0.1979 (3) | 0.2241 (3) | 0.19575 (19) | 0.0493 (5) | |
H5 | 0.1515 | 0.3137 | 0.1678 | 0.059* | |
C6 | 0.2590 (3) | 0.2232 (2) | 0.32120 (17) | 0.0420 (4) | |
C7 | 0.2538 (2) | 0.3616 (2) | 0.40937 (17) | 0.0400 (4) | |
C8 | 0.2942 (2) | 0.5038 (2) | 0.57750 (16) | 0.0390 (4) | |
C9 | 0.2078 (3) | 0.5896 (2) | 0.48503 (17) | 0.0408 (4) | |
C10 | 0.1670 (3) | 0.7408 (2) | 0.51508 (19) | 0.0453 (4) | |
H10 | 0.1095 | 0.7982 | 0.4567 | 0.054* | |
C11 | 0.2162 (3) | 0.8041 (2) | 0.63802 (19) | 0.0444 (4) | |
C12 | 0.3010 (3) | 0.7204 (2) | 0.72501 (18) | 0.0452 (4) | |
H12 | 0.3328 | 0.7673 | 0.8056 | 0.054* | |
C13 | 0.4300 (3) | 0.4809 (3) | 0.78916 (18) | 0.0489 (5) | |
H13A | 0.5192 | 0.5528 | 0.8446 | 0.059* | |
H13B | 0.4916 | 0.4010 | 0.7491 | 0.059* | |
C14 | 0.3080 (3) | 0.4023 (3) | 0.8615 (2) | 0.0550 (5) | |
H14 | 0.3600 | 0.3461 | 0.9228 | 0.066* | |
C15 | 0.1374 (4) | 0.4035 (3) | 0.8484 (3) | 0.0709 (7) | |
H15A | 0.0789 | 0.4579 | 0.7884 | 0.085* | |
H15B | 0.0727 | 0.3499 | 0.8990 | 0.085* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.05960 (16) | 0.03754 (12) | 0.08491 (19) | 0.00970 (9) | 0.01673 (12) | 0.00593 (10) |
Cl1 | 0.0863 (5) | 0.0732 (4) | 0.0594 (3) | 0.0184 (3) | 0.0175 (3) | −0.0136 (3) |
N1 | 0.0482 (9) | 0.0466 (9) | 0.0414 (8) | 0.0074 (7) | 0.0058 (7) | 0.0105 (7) |
N2 | 0.0446 (9) | 0.0398 (8) | 0.0399 (8) | 0.0079 (7) | 0.0079 (7) | 0.0090 (6) |
N3 | 0.0486 (9) | 0.0397 (8) | 0.0383 (8) | 0.0076 (7) | 0.0078 (7) | 0.0100 (6) |
C1 | 0.0462 (11) | 0.0510 (11) | 0.0425 (10) | 0.0094 (9) | 0.0090 (8) | 0.0066 (8) |
C2 | 0.0508 (12) | 0.0515 (12) | 0.0511 (11) | 0.0131 (9) | 0.0133 (9) | 0.0050 (9) |
C3 | 0.0479 (11) | 0.0554 (12) | 0.0489 (11) | 0.0053 (9) | 0.0158 (9) | −0.0042 (9) |
C4 | 0.0542 (12) | 0.0648 (14) | 0.0407 (10) | 0.0030 (10) | 0.0055 (9) | 0.0041 (9) |
C5 | 0.0487 (11) | 0.0521 (12) | 0.0464 (10) | 0.0054 (9) | 0.0033 (9) | 0.0092 (9) |
C6 | 0.0370 (9) | 0.0468 (11) | 0.0426 (9) | 0.0016 (8) | 0.0086 (8) | 0.0058 (8) |
C7 | 0.0369 (9) | 0.0427 (10) | 0.0419 (9) | 0.0040 (8) | 0.0082 (7) | 0.0094 (8) |
C8 | 0.0390 (9) | 0.0395 (9) | 0.0410 (9) | 0.0042 (7) | 0.0095 (7) | 0.0117 (7) |
C9 | 0.0394 (10) | 0.0421 (10) | 0.0441 (9) | 0.0056 (8) | 0.0096 (8) | 0.0145 (8) |
C10 | 0.0441 (10) | 0.0407 (10) | 0.0546 (11) | 0.0079 (8) | 0.0094 (9) | 0.0182 (9) |
C11 | 0.0436 (10) | 0.0347 (9) | 0.0584 (11) | 0.0048 (8) | 0.0161 (9) | 0.0094 (8) |
C12 | 0.0508 (11) | 0.0403 (10) | 0.0458 (10) | 0.0038 (8) | 0.0130 (9) | 0.0054 (8) |
C13 | 0.0532 (12) | 0.0523 (12) | 0.0416 (10) | 0.0121 (9) | 0.0019 (9) | 0.0107 (9) |
C14 | 0.0662 (15) | 0.0521 (12) | 0.0472 (11) | 0.0093 (10) | 0.0024 (10) | 0.0170 (9) |
C15 | 0.0673 (17) | 0.0755 (18) | 0.0765 (17) | 0.0097 (13) | 0.0144 (13) | 0.0348 (14) |
Br1—C11 | 1.886 (2) | C6—C1 | 1.395 (3) |
Cl1—C3 | 1.744 (2) | C6—C5 | 1.401 (3) |
N1—C7 | 1.342 (3) | C7—C6 | 1.464 (3) |
N1—C9 | 1.371 (3) | C8—C9 | 1.431 (3) |
N2—C7 | 1.375 (2) | C9—C10 | 1.373 (3) |
N2—C8 | 1.327 (2) | C10—H10 | 0.9300 |
N3—C8 | 1.352 (2) | C11—C10 | 1.399 (3) |
N3—C12 | 1.355 (3) | C11—C12 | 1.373 (3) |
N3—C13 | 1.477 (2) | C12—H12 | 0.9300 |
C1—H1 | 0.9300 | C13—H13A | 0.9700 |
C1—C2 | 1.381 (3) | C13—H13B | 0.9700 |
C2—H2 | 0.9300 | C13—C14 | 1.480 (3) |
C2—C3 | 1.384 (3) | C14—H14 | 0.9300 |
C4—H4 | 0.9300 | C14—C15 | 1.287 (4) |
C4—C3 | 1.378 (3) | C15—H15A | 0.9300 |
C5—H5 | 0.9300 | C15—H15B | 0.9300 |
C5—C4 | 1.377 (3) | ||
Br1···C14i | 3.624 (2) | N3···H15A | 2.5350 |
Br1···C15i | 3.660 (3) | C1···C11ii | 3.532 (3) |
Br1···C2ii | 3.677 (2) | C1···C12ii | 3.472 (3) |
Br1···C6iii | 3.729 (2) | C5···C13ii | 3.595 (3) |
Br1···H10iv | 3.1682 | C6···C12ii | 3.470 (3) |
Cl1···H12v | 2.8304 | C7···C8ii | 3.512 (3) |
Cl1···H14vi | 3.1002 | C7···C10iii | 3.499 (3) |
Cl1···H15Bvii | 2.9750 | C8···C15 | 3.559 (4) |
N3···C6ii | 3.437 (3) | C9···C9iii | 3.473 (3) |
N1···H5 | 2.6087 | C12···C15 | 3.378 (3) |
N1···H15Aiii | 2.5889 | C5···H13Aii | 2.8677 |
N2···H13B | 2.5360 | C12···H15A | 2.8971 |
N2···H1 | 2.5251 | H12···H13A | 2.4427 |
C7—N1—C9 | 102.65 (16) | N2—C8—C9 | 111.53 (16) |
C8—N2—C7 | 101.17 (15) | N3—C8—C9 | 120.81 (17) |
C8—N3—C12 | 119.16 (16) | N1—C9—C8 | 107.12 (17) |
C8—N3—C13 | 120.08 (16) | N1—C9—C10 | 132.60 (18) |
C12—N3—C13 | 120.76 (16) | C10—C9—C8 | 120.27 (18) |
C6—C1—H1 | 119.5 | C9—C10—C11 | 116.59 (18) |
C2—C1—C6 | 120.95 (19) | C9—C10—H10 | 121.7 |
C2—C1—H1 | 119.5 | C11—C10—H10 | 121.7 |
C1—C2—H2 | 120.5 | C10—C11—Br1 | 120.71 (15) |
C1—C2—C3 | 118.9 (2) | C12—C11—Br1 | 117.03 (16) |
C3—C2—H2 | 120.5 | C12—C11—C10 | 122.18 (18) |
C4—C3—Cl1 | 119.49 (17) | N3—C12—C11 | 120.99 (18) |
C4—C3—C2 | 121.6 (2) | N3—C12—H12 | 119.5 |
C2—C3—Cl1 | 118.93 (18) | C11—C12—H12 | 119.5 |
C5—C4—H4 | 120.4 | N3—C13—H13A | 108.8 |
C5—C4—C3 | 119.2 (2) | N3—C13—H13B | 108.8 |
C3—C4—H4 | 120.4 | N3—C13—C14 | 113.74 (18) |
C6—C5—H5 | 119.5 | H13A—C13—H13B | 107.7 |
C4—C5—C6 | 120.9 (2) | C14—C13—H13A | 108.8 |
C4—C5—H5 | 119.5 | C14—C13—H13B | 108.8 |
C1—C6—C7 | 120.23 (17) | C13—C14—H14 | 116.6 |
C1—C6—C5 | 118.48 (19) | C15—C14—C13 | 126.8 (2) |
C5—C6—C7 | 121.28 (18) | C15—C14—H14 | 116.6 |
N2—C7—C6 | 120.09 (17) | C14—C15—H15A | 120.0 |
N1—C7—N2 | 117.53 (17) | C14—C15—H15B | 120.0 |
N1—C7—C6 | 122.39 (17) | H15A—C15—H15B | 120.0 |
N2—C8—N3 | 127.66 (17) | ||
C9—N1—C7—N2 | −0.3 (2) | C6—C5—C4—C3 | 1.1 (3) |
C9—N1—C7—C6 | −179.75 (17) | C5—C6—C1—C2 | 0.0 (3) |
C7—N1—C9—C8 | 0.5 (2) | C7—C6—C1—C2 | −179.96 (19) |
C7—N1—C9—C10 | 179.6 (2) | C1—C6—C5—C4 | −0.8 (3) |
C8—N2—C7—N1 | 0.0 (2) | C7—C6—C5—C4 | 179.11 (19) |
C8—N2—C7—C6 | 179.45 (17) | N1—C7—C6—C1 | −177.28 (18) |
C7—N2—C8—N3 | −178.58 (19) | N1—C7—C6—C5 | 2.8 (3) |
C7—N2—C8—C9 | 0.3 (2) | N2—C7—C6—C1 | 3.3 (3) |
C12—N3—C8—N2 | 178.81 (19) | N2—C7—C6—C5 | −176.66 (18) |
C12—N3—C8—C9 | 0.0 (3) | N2—C8—C9—N1 | −0.5 (2) |
C13—N3—C8—N2 | −0.5 (3) | N2—C8—C9—C10 | −179.82 (17) |
C13—N3—C8—C9 | −179.29 (18) | N3—C8—C9—N1 | 178.47 (17) |
C8—N3—C12—C11 | 0.8 (3) | N3—C8—C9—C10 | −0.8 (3) |
C13—N3—C12—C11 | −179.93 (19) | N1—C9—C10—C11 | −178.3 (2) |
C8—N3—C13—C14 | −97.3 (2) | C8—C9—C10—C11 | 0.8 (3) |
C12—N3—C13—C14 | 83.4 (2) | C12—C11—C10—C9 | 0.0 (3) |
C6—C1—C2—C3 | 0.6 (3) | Br1—C11—C10—C9 | 176.73 (14) |
C1—C2—C3—Cl1 | −178.98 (17) | Br1—C11—C12—N3 | −177.67 (15) |
C1—C2—C3—C4 | −0.4 (3) | C10—C11—C12—N3 | −0.8 (3) |
C5—C4—C3—Cl1 | 178.14 (17) | N3—C13—C14—C15 | 1.2 (4) |
C5—C4—C3—C2 | −0.5 (3) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) −x, −y+2, −z+1; (v) x, y−1, z−1; (vi) −x+1, −y, −z+1; (vii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15A···N1iii | 0.93 | 2.59 | 3.454 (4) | 155 |
Symmetry code: (iii) −x, −y+1, −z+1. |
Acknowledgements
The support of Tulane University for the Tulane Crystallography Laboratory is gratefully acknowledged.
Funding information
Funding for this research was provided by: NSF-MRI (grant No. 1228232, for the purchase of the diffractometer); Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004, to TH).
References
Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22–34. Google Scholar
Bourichi, S., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170899. Google Scholar
Bourichi, S., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160763. Google Scholar
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bukowski, L. & Janowiec, M. (1989). Pharmazie, 44, 267–269. CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Liang, G. B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558–3561. Web of Science CrossRef PubMed CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Ouzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o947. Web of Science CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o946. Web of Science CrossRef IUCr Journals Google Scholar
Ouzidan, Y., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010c). Acta Cryst. E66, o1903. CrossRef IUCr Journals Google Scholar
Parthiban, S., Kabilan, G. & Aridoss, S. (2006). Eur. J. Med. Chem. 41, 268–275. Google Scholar
Scribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2007). Eur. J. Med. Chem. 42, 1334–1357. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CrossRef CAS Google Scholar
Zhiqiang, G., John Tellew, E., Raymond Gross, S., Brian, D., Jonathan, G., Haddach, M., Kiankarimi, M., Lanier, M. & Bin-Feng, L. (2005). J. Med. Chem. 48, 5104–5107. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.