research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4-allyl-6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202, Fez, Morocco, bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and cUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France
*Correspondence e-mail: amalhaoudi2017@gmail.com

Edited by H. Ishida, Okayama University, Japan (Received 21 November 2018; accepted 6 December 2018; online 1 January 2019)

The title compound, C15H11BrClN3, is built up from a planar imidazo[4,5-b]pyridine unit linked to phenyl and allyl substituents. The allyl substituent is rotated significantly out of the imidazo[4,5-b]pyridine plane, while the benzene ring is inclined by 3.84 (6)° to the ring system. In the crystal, mol­ecules are linked via a pair of weak inter­molecular C—H⋯N hydrogen bonds, forming an inversion dimer with an R22(20) ring motif. The dimers are further connected by ππ stacking inter­actions between the imidazo[4,5-b]pyridine ring systems [centroid–centroid distances = 3.7161 (13) and 3.8478 (13) Å]. The important contributions to the Hirshfeld surface are H⋯H (35.9%), H⋯Cl/Cl⋯H (15.0%), H⋯C/C⋯H (12.4%), H⋯Br/Br⋯H (10.8%), H⋯N/N⋯H (7.5%), C⋯Br/Br⋯C (5.9%), C⋯C (5.5%) and C⋯N/N⋯C (4.0%) contacts.

1. Chemical context

Heterocyclic ring systems having an imidazo[4,5-b]pyridine unit can be considered as structural analogues of purines and have shown diverse biological activity depending on the substituents of the heterocyclic ring. Their activities include anti­cancer (Zhiqiang et al., 2005[Zhiqiang, G., John Tellew, E., Raymond Gross, S., Brian, D., Jonathan, G., Haddach, M., Kiankarimi, M., Lanier, M. & Bin-Feng, L. (2005). J. Med. Chem. 48, 5104-5107.]), tuberculostatic (Bukowski & Janowiec, 1989[Bukowski, L. & Janowiec, M. (1989). Pharmazie, 44, 267-269.]) and anti­mitotic (Parthiban et al., 2006[Parthiban, S., Kabilan, G. & Aridoss, S. (2006). Eur. J. Med. Chem. 41, 268-275.]) actions. Some imidazo[4,5-b]pyridine derivatives have also been reported as corrosion inhibitors for steel in acidic medium (Bouayad et al., 2018[Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22-34.]; Sikine et al., 2016[Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620-4632.]), and some of them can be used to treat peptic ulcers, diabetes and mental illness (Scribner et al., 2007[Scribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2007). Eur. J. Med. Chem. 42, 1334-1357.]; Liang et al., 2007[Liang, G. B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558-3561.]).

[Scheme 1]

As a continuation of our research work devoted to the development of substituted imidazo[4,5-b]pyridine derivatives (Bourichi et al., 2016[Bourichi, S., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160763.]; Ouzidan et al., 2010a[Ouzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o947.],b[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o946.],c[Ouzidan, Y., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010c). Acta Cryst. E66, o1903.]), we report herein the synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis of the title compound, a new imidazo[4,5-b]pyridine derivative, which was obtained by the reaction of allyl bromide with 6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide under mild conditions.

2. Structural commentary

The title compound is built up from an imidazo[4,5-b]pyridine unit linked to phenyl and allyl substituents (Fig. 1[link]). The imidazo[4,5-b]pyridine ring system is planar, with a maximum deviation of 0.016 (2) Å for atom C12. The ring system is inclined by 3.84 (6)° to the benzene C1–C6 ring, with the N2—C7—C6—C1 torsion angle being 3.3 (3)°. The allyl substituent is nearly perpendicular to the imidazo[4,5-b]pyridine plane, as indicated by the C8—N3—C13—C14 torsion angle of −97.3 (2)°. Atoms C6 and C13 are 0.038 (2) and 0.014 (2) Å, respectively, away from the imidazo[4,5-b]pyridine plane.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked via a pair of weak inter­molecular C—H⋯N hydrogen bonds [C15—H15A⋯N1i; symmetry code: (i) −x, −y + 1, −z + 1; Table 1[link]], forming an inversion dimer with an [R_{2}^{2}](20) ring motif (Fig. 2[link]). The dimers are further connected by ππ stacking inter­actions between the imidazo[4,5-b]pyridine ring systems. The centroid–cen­troid distances, Cg1⋯Cg1ii and Cg1⋯Cg2i [symmetry code: (ii) −x + 1, −y + 1, −z + 1], are 3.7161 (13) and 3.8478 (13) Å, respectively, where Cg1 and Cg2 are the centroids of the N1/N2/C7–C9 and N3/C8–C12 rings, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N1i 0.93 2.59 3.454 (4) 155
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A part of the packing diagram of the title compound, viewed down [010]. The weak inter­molecular C—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity.

4. Database survey

A non-para-substituated analogue, namely 4-allyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine monohydrate, has been reported (Ouzidan et al., 2010c[Ouzidan, Y., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010c). Acta Cryst. E66, o1903.]), and three similar structures, 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al., 2010b[Ouzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o946.]), 4-benzyl-6-bromo-2-meth­oxy­phenyl-4H-imidazo[4,5-b]pyridine monohydrate (Ouzidan et al., 2010a[Ouzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o947.]) and 4-benzyl-6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine (Bourichi et al., 2017[Bourichi, S., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170899.]), have been also reported.

5. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of the van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the sum of the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near atoms N1 and H15A indicate their roles as the respective donors and/or acceptors in the dominant C—H⋯N hydrogen bond (Table 1[link]). The shape index (Fig. 4[link]) clearly suggests that there are ππ inter­actions, which are shown as adjacent red and blue triangles. The overall two-dimensional fingerprint plot and those delineated into H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C, C⋯ N/N⋯C, C⋯Cl/Cl⋯C, N⋯Br/Br⋯N and N⋯N contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Figs. 5[link](a)–(l), together with their relative contributions to the Hirshfeld surface. The contributions are 35.9, 15.0, 12.4, 10.8, 7.5, 5.9, 5.5, 4.0, 1.5, 1.2 and 0.2%, respectively, for H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C, C⋯N/N⋯C, C⋯Cl/Cl⋯C, N⋯Br/Br⋯N and N⋯N contacts. The most important inter­action is H⋯H (35.9%), which is reflected as widely scattered points of high density due to the large hydrogen content of the mol­ecule [Fig. 5[link](b)]. The spike with the tip at de = di = 1.16 Å is due to the short inter­atomic H⋯H contacts. The H⋯Cl/Cl⋯H contacts (15.0%) have a nearly symmetrical distribution of points and a pair of spikes with tips at de + di = 2.67 Å [Fig. 5[link](c)]. In the absence of C—H ⋯ π inter­actions, the H⋯C/C⋯H contacts (12.4%) also have a nearly symmetrical distribution of points with tips at de + di = 2.79 Å [Fig. 5[link](d)]. The H⋯Br/Br⋯H contacts (10.8%) have a symmetrical distribution of points and a pair of spikes with tips at de + di = 3.00 Å [Fig. 5[link](e)]. A pair of spikes with tips at de + di = 2.42 Å (Fig. 5[link]f) in the H⋯N/N⋯H contacts (7.5%) arises from the C—H⋯N hydrogen bond (Table 1[link]). The C⋯Br/Br⋯C contacts (5.9%) have a pair of wings with tips at de + di ∼ 3.62 Å [Fig. 5[link](g)]. The C⋯C contacts (5.5%) have an arrow-shaped distribution of points with the tip at de = di = 1.75 Å [Fig. 5[link](h)]. The C⋯N/N⋯C contacts (4.0%) have wide spikes with tips at de + di = 3.44 Å [Fig. 5[link](i)]. The HS representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯Cl/Cl⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, C⋯C and C⋯N/N⋯C contacts [Figs. 6[link](a)–(h)].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.1373 to 1.1294 a.u.
[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over shape index.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all contacts, and delineated into (b) H⋯H, (c) H⋯Cl/Cl⋯H, (d) H⋯C/C⋯H, (e) H⋯Br/Br⋯H, (f) H⋯N/N⋯H, (g) C⋯Br/Br⋯C, (h) C⋯C, (i) C⋯N/N⋯C, (j) C⋯Cl/Cl⋯C, (k) N⋯Br/Br⋯N and (l) N⋯N contacts. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.
[Figure 6]
Figure 6
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯Cl/Cl⋯H, (c) H⋯C/C⋯H, (d) H⋯Br/Br⋯H, (e) H⋯N/N⋯H, (f) C⋯Br/Br⋯C, (g) C⋯C and (h) C⋯N/N⋯C contacts.

6. Synthesis and crystallization

A mixture of 6-bromo-2-(4-chloro­phen­yl)-4H-imidazo[4,5-b]pyridine (0.2 g, 0.65 mmol) dissolved in 25 ml of N,N-di­methyl­formamide (DMF) and potassium carbonate (0.13 g, 0.92 mmol) was stirred for 5 min, and then to a mixture of tetra-n-butyl­ammonium bromide (0.032 g, 0.1 mmol) and allyl bromide (0.094 g, 0.77 mmol) was added. Stirring was continued for 6 h at room temperature. After removing the salts by filtration, DMF was evaporated under reduced pressure, and the solid obtained was dissolved in di­chloro­methane. The residue was extracted with distilled water and the resulting mixture was chromatographed on a silica-gel column (eluent = ethyl acetate–hexane, 1:3 v/v). Brown single crystals suitable for X-ray diffraction were obtained by evaporation of an ethyl acetate–hexane (1:3 v/v) solution.

7. Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically, with C—H = 0.93 or 0.97 Å, and constrained to ride on their parent C atoms, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H11BrClN3
Mr 348.63
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.6218 (5), 8.5238 (5), 11.1093 (7)
α, β, γ (°) 95.739 (3), 98.880 (3), 94.979 (3)
V3) 705.66 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.09
Crystal size (mm) 0.3 × 0.23 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.591, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31084, 4288, 3226
Rint 0.033
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.03
No. of reflections 4288
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.47
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: APEX2 (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2015).

4-Allyl-6-bromo-2-(4-chlorophenyl)-4H-imidazo[4,5-b]pyridine top
Crystal data top
C15H11BrClN3Z = 2
Mr = 348.63F(000) = 348
Triclinic, P1Dx = 1.641 Mg m3
a = 7.6218 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5238 (5) ÅCell parameters from 9961 reflections
c = 11.1093 (7) Åθ = 2.4–25.8°
α = 95.739 (3)°µ = 3.09 mm1
β = 98.880 (3)°T = 296 K
γ = 94.979 (3)°Plate, colourless
V = 705.66 (8) Å30.3 × 0.23 × 0.06 mm
Data collection top
Bruker APEX-II CCD
diffractometer
3226 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 30.5°, θmin = 1.9°
Tmin = 0.591, Tmax = 0.746h = 1010
31084 measured reflectionsk = 1212
4288 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2342P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
4288 reflectionsΔρmax = 0.57 e Å3
181 parametersΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.17874 (3)1.01452 (2)0.68946 (2)0.05997 (10)
Cl10.27559 (10)0.20635 (8)0.05226 (6)0.07320 (19)
N10.1843 (2)0.4932 (2)0.37610 (15)0.0451 (4)
N20.3231 (2)0.36057 (19)0.53108 (14)0.0408 (3)
N30.3389 (2)0.57048 (19)0.69517 (14)0.0416 (3)
C10.3258 (3)0.0867 (2)0.36107 (18)0.0460 (4)
H10.36690.08420.44410.055*
C20.3317 (3)0.0449 (3)0.27905 (19)0.0502 (5)
H20.37530.13600.30630.060*
C30.2715 (3)0.0391 (3)0.15560 (19)0.0506 (5)
C40.2054 (3)0.0941 (3)0.11321 (19)0.0538 (5)
H40.16640.09620.02990.065*
C50.1979 (3)0.2241 (3)0.19575 (19)0.0493 (5)
H50.15150.31370.16780.059*
C60.2590 (3)0.2232 (2)0.32120 (17)0.0420 (4)
C70.2538 (2)0.3616 (2)0.40937 (17)0.0400 (4)
C80.2942 (2)0.5038 (2)0.57750 (16)0.0390 (4)
C90.2078 (3)0.5896 (2)0.48503 (17)0.0408 (4)
C100.1670 (3)0.7408 (2)0.51508 (19)0.0453 (4)
H100.10950.79820.45670.054*
C110.2162 (3)0.8041 (2)0.63802 (19)0.0444 (4)
C120.3010 (3)0.7204 (2)0.72501 (18)0.0452 (4)
H120.33280.76730.80560.054*
C130.4300 (3)0.4809 (3)0.78916 (18)0.0489 (5)
H13A0.51920.55280.84460.059*
H13B0.49160.40100.74910.059*
C140.3080 (3)0.4023 (3)0.8615 (2)0.0550 (5)
H140.36000.34610.92280.066*
C150.1374 (4)0.4035 (3)0.8484 (3)0.0709 (7)
H15A0.07890.45790.78840.085*
H15B0.07270.34990.89900.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.05960 (16)0.03754 (12)0.08491 (19)0.00970 (9)0.01673 (12)0.00593 (10)
Cl10.0863 (5)0.0732 (4)0.0594 (3)0.0184 (3)0.0175 (3)0.0136 (3)
N10.0482 (9)0.0466 (9)0.0414 (8)0.0074 (7)0.0058 (7)0.0105 (7)
N20.0446 (9)0.0398 (8)0.0399 (8)0.0079 (7)0.0079 (7)0.0090 (6)
N30.0486 (9)0.0397 (8)0.0383 (8)0.0076 (7)0.0078 (7)0.0100 (6)
C10.0462 (11)0.0510 (11)0.0425 (10)0.0094 (9)0.0090 (8)0.0066 (8)
C20.0508 (12)0.0515 (12)0.0511 (11)0.0131 (9)0.0133 (9)0.0050 (9)
C30.0479 (11)0.0554 (12)0.0489 (11)0.0053 (9)0.0158 (9)0.0042 (9)
C40.0542 (12)0.0648 (14)0.0407 (10)0.0030 (10)0.0055 (9)0.0041 (9)
C50.0487 (11)0.0521 (12)0.0464 (10)0.0054 (9)0.0033 (9)0.0092 (9)
C60.0370 (9)0.0468 (11)0.0426 (9)0.0016 (8)0.0086 (8)0.0058 (8)
C70.0369 (9)0.0427 (10)0.0419 (9)0.0040 (8)0.0082 (7)0.0094 (8)
C80.0390 (9)0.0395 (9)0.0410 (9)0.0042 (7)0.0095 (7)0.0117 (7)
C90.0394 (10)0.0421 (10)0.0441 (9)0.0056 (8)0.0096 (8)0.0145 (8)
C100.0441 (10)0.0407 (10)0.0546 (11)0.0079 (8)0.0094 (9)0.0182 (9)
C110.0436 (10)0.0347 (9)0.0584 (11)0.0048 (8)0.0161 (9)0.0094 (8)
C120.0508 (11)0.0403 (10)0.0458 (10)0.0038 (8)0.0130 (9)0.0054 (8)
C130.0532 (12)0.0523 (12)0.0416 (10)0.0121 (9)0.0019 (9)0.0107 (9)
C140.0662 (15)0.0521 (12)0.0472 (11)0.0093 (10)0.0024 (10)0.0170 (9)
C150.0673 (17)0.0755 (18)0.0765 (17)0.0097 (13)0.0144 (13)0.0348 (14)
Geometric parameters (Å, º) top
Br1—C111.886 (2)C6—C11.395 (3)
Cl1—C31.744 (2)C6—C51.401 (3)
N1—C71.342 (3)C7—C61.464 (3)
N1—C91.371 (3)C8—C91.431 (3)
N2—C71.375 (2)C9—C101.373 (3)
N2—C81.327 (2)C10—H100.9300
N3—C81.352 (2)C11—C101.399 (3)
N3—C121.355 (3)C11—C121.373 (3)
N3—C131.477 (2)C12—H120.9300
C1—H10.9300C13—H13A0.9700
C1—C21.381 (3)C13—H13B0.9700
C2—H20.9300C13—C141.480 (3)
C2—C31.384 (3)C14—H140.9300
C4—H40.9300C14—C151.287 (4)
C4—C31.378 (3)C15—H15A0.9300
C5—H50.9300C15—H15B0.9300
C5—C41.377 (3)
Br1···C14i3.624 (2)N3···H15A2.5350
Br1···C15i3.660 (3)C1···C11ii3.532 (3)
Br1···C2ii3.677 (2)C1···C12ii3.472 (3)
Br1···C6iii3.729 (2)C5···C13ii3.595 (3)
Br1···H10iv3.1682C6···C12ii3.470 (3)
Cl1···H12v2.8304C7···C8ii3.512 (3)
Cl1···H14vi3.1002C7···C10iii3.499 (3)
Cl1···H15Bvii2.9750C8···C153.559 (4)
N3···C6ii3.437 (3)C9···C9iii3.473 (3)
N1···H52.6087C12···C153.378 (3)
N1···H15Aiii2.5889C5···H13Aii2.8677
N2···H13B2.5360C12···H15A2.8971
N2···H12.5251H12···H13A2.4427
C7—N1—C9102.65 (16)N2—C8—C9111.53 (16)
C8—N2—C7101.17 (15)N3—C8—C9120.81 (17)
C8—N3—C12119.16 (16)N1—C9—C8107.12 (17)
C8—N3—C13120.08 (16)N1—C9—C10132.60 (18)
C12—N3—C13120.76 (16)C10—C9—C8120.27 (18)
C6—C1—H1119.5C9—C10—C11116.59 (18)
C2—C1—C6120.95 (19)C9—C10—H10121.7
C2—C1—H1119.5C11—C10—H10121.7
C1—C2—H2120.5C10—C11—Br1120.71 (15)
C1—C2—C3118.9 (2)C12—C11—Br1117.03 (16)
C3—C2—H2120.5C12—C11—C10122.18 (18)
C4—C3—Cl1119.49 (17)N3—C12—C11120.99 (18)
C4—C3—C2121.6 (2)N3—C12—H12119.5
C2—C3—Cl1118.93 (18)C11—C12—H12119.5
C5—C4—H4120.4N3—C13—H13A108.8
C5—C4—C3119.2 (2)N3—C13—H13B108.8
C3—C4—H4120.4N3—C13—C14113.74 (18)
C6—C5—H5119.5H13A—C13—H13B107.7
C4—C5—C6120.9 (2)C14—C13—H13A108.8
C4—C5—H5119.5C14—C13—H13B108.8
C1—C6—C7120.23 (17)C13—C14—H14116.6
C1—C6—C5118.48 (19)C15—C14—C13126.8 (2)
C5—C6—C7121.28 (18)C15—C14—H14116.6
N2—C7—C6120.09 (17)C14—C15—H15A120.0
N1—C7—N2117.53 (17)C14—C15—H15B120.0
N1—C7—C6122.39 (17)H15A—C15—H15B120.0
N2—C8—N3127.66 (17)
C9—N1—C7—N20.3 (2)C6—C5—C4—C31.1 (3)
C9—N1—C7—C6179.75 (17)C5—C6—C1—C20.0 (3)
C7—N1—C9—C80.5 (2)C7—C6—C1—C2179.96 (19)
C7—N1—C9—C10179.6 (2)C1—C6—C5—C40.8 (3)
C8—N2—C7—N10.0 (2)C7—C6—C5—C4179.11 (19)
C8—N2—C7—C6179.45 (17)N1—C7—C6—C1177.28 (18)
C7—N2—C8—N3178.58 (19)N1—C7—C6—C52.8 (3)
C7—N2—C8—C90.3 (2)N2—C7—C6—C13.3 (3)
C12—N3—C8—N2178.81 (19)N2—C7—C6—C5176.66 (18)
C12—N3—C8—C90.0 (3)N2—C8—C9—N10.5 (2)
C13—N3—C8—N20.5 (3)N2—C8—C9—C10179.82 (17)
C13—N3—C8—C9179.29 (18)N3—C8—C9—N1178.47 (17)
C8—N3—C12—C110.8 (3)N3—C8—C9—C100.8 (3)
C13—N3—C12—C11179.93 (19)N1—C9—C10—C11178.3 (2)
C8—N3—C13—C1497.3 (2)C8—C9—C10—C110.8 (3)
C12—N3—C13—C1483.4 (2)C12—C11—C10—C90.0 (3)
C6—C1—C2—C30.6 (3)Br1—C11—C10—C9176.73 (14)
C1—C2—C3—Cl1178.98 (17)Br1—C11—C12—N3177.67 (15)
C1—C2—C3—C40.4 (3)C10—C11—C12—N30.8 (3)
C5—C4—C3—Cl1178.14 (17)N3—C13—C14—C151.2 (4)
C5—C4—C3—C20.5 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y+2, z+1; (v) x, y1, z1; (vi) x+1, y, z+1; (vii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N1iii0.932.593.454 (4)155
Symmetry code: (iii) x, y+1, z+1.
 

Acknowledgements

The support of Tulane University for the Tulane Crystallography Laboratory is gratefully acknowledged.

Funding information

Funding for this research was provided by: NSF-MRI (grant No. 1228232, for the purchase of the diffractometer); Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004, to TH).

References

First citationBouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). Mor. J. Chem. 6, 22–34.  Google Scholar
First citationBourichi, S., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170899.  Google Scholar
First citationBourichi, S., Kandri Rodi, Y., Ouzidan, Y., Mague, J. T., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160763.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX2, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBukowski, L. & Janowiec, M. (1989). Pharmazie, 44, 267–269.  CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiang, G. B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558–3561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o947.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Obbade, S., Capet, F., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o946.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Rodi, Y. K., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010c). Acta Cryst. E66, o1903.  CrossRef IUCr Journals Google Scholar
First citationParthiban, S., Kabilan, G. & Aridoss, S. (2006). Eur. J. Med. Chem. 41, 268–275.  Google Scholar
First citationScribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, P., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2007). Eur. J. Med. Chem. 42, 1334–1357.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CrossRef CAS Google Scholar
First citationZhiqiang, G., John Tellew, E., Raymond Gross, S., Brian, D., Jonathan, G., Haddach, M., Kiankarimi, M., Lanier, M. & Bin-Feng, L. (2005). J. Med. Chem. 48, 5104–5107.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds