research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a chalcone derivative: (E)-3-(4-fluoro­phen­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, and dDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
*Correspondence e-mail: chidankumar@gmail.com, arafath_sustche90@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 22 November 2018; accepted 10 December 2018; online 1 January 2019)

The mol­ecular structure of the title chalcone derivative, C15H10FNO3, is nearly planar and the mol­ecule adopts a trans configuration with respect to the C=C double bond. The nitro group is nearly coplanar with the attached benzene ring, which is nearly parallel to the second benzene ring. In the crystal, mol­ecules are connected by pairs of weak inter­molecular C—H⋯O hydrogen bonds into inversion dimers. The dimers are further linked by another C—H⋯O hydrogen bond and a C—H⋯F hydrogen bond into sheets parallel to (104). ππ inter­actions occur between the sheets, with a centroid–centroid distance of 3.8860 (11) Å. Hirshfeld surface analysis was used to investigate and qu­antify the inter­molecular inter­actions.

1. Chemical context

Non-linear optics (NLO) is the study of inter­actions between intense light and matter, in which the dielectric polarization responds non-linearly to the electric field of the light. This non-linearity leads to frequency-mixing processes (second-, third- and high-harmonic generations), the optical Kerr effect etc (Boulanger & Zyss, 2006[Boulanger, B. & Zyss, J. (2006). International Tables for Crystallography, Vol. D, ch. 1.7, 178-219.]). Chalcone is one of the NLO materials and is known for its high NLO coefficients and good crystallizability (Prabhu et al., 2013[Prabhu, A. N., Jayarama, A., Subrahmanya Bhat, K., Manjunatha, K. B., Umesh, G. & Upadhyaya, V. (2013). Indian J. Mater. Sci. 2013, 1-5.]). Donor–acceptor substituted chalcone derivatives consist of two substituted phenyl rings covalently bonded to the ends of a α,β-unsaturated propenone bridge (C=C—C=O), which provides the necessary configuration for intra­molecular charge transfer to show NLO properties (Fun et al., 2011[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o2651-o2652.]). However, organic chalcone derivatives with a low melting point are at a disadvantage for applications as optical instruments. In a contin­uation of our ongoing studies on non-linear optical properties of various chalcone derivatives (Chandra Shekhara Shetty et al., 2017[Chandra Shekhara Shetty, T., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306-317.]; Ekbote et al., 2017[Ekbote, A., Patil, P. S., Maidur, S. R., Chia, T. S. & Quah, C. K. (2017). Dyes Pigments, 139, 720-729.]; Kwong et al., 2018[Kwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur, S. R., Patil, P. S., Quah, C. K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349-360.]), we report herein the synthesis, structure determination and Hirshfeld surface analysis of the title compound.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title chalcone derivative consists of a unique mol­ecule, containing two para-substituted phenyl rings and an enone connecting bridge (Fig. 1[link]). The mol­ecule adopts a trans configuration with respect to the C8=C9 olefinic double bond, as indicated by the C7—C8—C9—C10 torsion angle of −179.96 (15)°. The C7=O3 carbonyl group adopts an s-cis configuration with respect to the C8=C9 double bond as indicated by O3—C7—C8—C9 torsion angle of −0.8 (3)°. The mol­ecule (excluding H atoms) is nearly planar with a maximum deviation of 0.103 (2) Å at atom O1 of the terminal nitro group. The nitro group is nearly coplanar with the attached C1–C6 benzene ring as indicated by the small dihedral angle of 7.9 (2)°. The C1–C6 and C10–C15 benzene rings make a small dihedral angle of 4.27 (8)° with each other.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labels and 30% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, mol­ecules are connected by pairs of weak C—H⋯O hydrogen bonds (C11—H11A⋯O3ii; symmetry code as in Table 1[link]) into inversion dimers with an R22(14) ring motif. These dimers are further linked by C—H⋯O and C—H⋯F hydrogen bonds (C15—H15A⋯O1iii and C4—H4A⋯F1i; Table 1[link]) into two-dimensional sheets parallel to (104) (Fig. 2[link]). Weak ππ inter­actions occur between the sheets [Cg1⋯Cg1iv,v and Cg2⋯Cg2iv,v = 3.8860 (11) Å, where Cg1 and Cg2 are the centroids of C1–C6 and C10–C15 benzene rings, respectively; symmetry codes: (iv) x − 1, y, z; (v) x + 1, y, z] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F1i 0.93 2.53 3.183 (2) 128
C11—H11A⋯O3ii 0.93 2.43 3.329 (2) 161
C15—H15A⋯O1iii 0.93 2.58 3.489 (2) 166
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z+1; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
A partial packing diagram of the title compound, showing a two-dimensional sheet formed by C—H⋯O and C—H⋯F hydrogen bonds (dotted lines). H atoms not involved in hydrogen bonding are omitted for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) −x + 2, −y + 1, −z + 1; (iii) −x, y − [{1\over 2}], −z + [{3\over 2}].]
[Figure 3]
Figure 3
A partial packing diagram of the title compound, showing three separated sheets parallel to (104). The inter­molecular ππ inter­actions between adjacent sheets are represented as red and blue dashed lines, involving Cg1⋯Cg1 and Cg2⋯Cg2, respectively. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

4. Hirshfeld surface analysis

The Hirsheld surfaces mapped with normalized contact distance dnorm and electrostatic potentials, and the two-dimensional fingerprint plot were generated using CrystalExplorer (Version 17.5; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The darkest red spots on the Hirshfeld surface mapped with dnorm [Fig. 4[link](a)] correspond to the C11—H11A⋯O3 hydrogen bond. The C4—H4A⋯F1 and C15—H15A⋯O1 hydrogen bonds are indicated as two pairs of lighter red spots on the dnorm surface. The H12A⋯F1 contact, with its H⋯F distance shorter than the sum of van der Waals radii by 0.01 Å, appears as two tiny red spots on the dnorm surface. The donor and acceptor of a hydrogen bond with positive and negative electrostatic potentials, respectively, are represented as blue and red regions on the Hirshfeld surface mapped with electrostatic potential [Fig. 4[link](b)]. The electrostatic potential of the F atom is less negative as compared to the O atoms of nitro and carbonyl groups, as indicated by the lighter red region. The H⋯O/O⋯H contacts are the most populated contacts and contribute 30.2% of the total inter­molecular contacts, followed by H⋯H (20.6%), H⋯C/C⋯H (18.0%), H⋯F/F⋯H (13.1%) and C⋯C (10.1%) contacts (Fig. 5[link]). The shortest H⋯O/O⋯H and H⋯F/F⋯H contacts are represented as the tips of the pseudo-mirrored sharp spikes and blunt peaks at de + di ≃ 2.3 and 2.4 Å, respectively, which correspond to the C11—H11A⋯O3 and C4—H4A⋯F1 hydrogen bonds. The characteristic `wings' are missing in the fingerprint plot of H⋯C/C⋯H contacts, indicating the absence of any significant C—H⋯π inter­actions in the crystal. The C⋯C contacts, including the inter­molecular ππ inter­actions, appear as a unique `triangle' focused at dedi ≃ 1.8 Å. The presence of significant ππ inter­actions is supported by the unique pattern of red and blue `triangles' on the shape-index surface (Fig. 6[link]), and the flat regions on the curvedness surface (Fig. 7[link]) of the benzene rings.

[Figure 4]
Figure 4
The Hirshfeld surfaces mapped with (a) dnorm and (b) electrostatic potential for the central mol­ecule of the title compound surrounded by six neighbouring mol­ecules.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title compound for different inter­molecular contacts and their percentage contributions to the Hirshfeld surface. di and de are the distances from the Hirshfeld surface to the nearest atom inter­ior and exterior, respectively, to the surface.
[Figure 6]
Figure 6
(a) Front and (b) rear views of the Hirshfeld surface mapped over shape-index for the title compound. The dashed-line circles highlight unique patterns of red and blue `triangles'.
[Figure 7]
Figure 7
(a) Front and (b) rear views of the Hirshfeld surface mapped over curvedness.

5. Database survey

The bond lengths and bond angles of the title compound are comparable with those in two similar structures, viz., (E)-1-(4-nitro­phen­yl)-3-phenyl­prop-2-en-1-one (refcode BUDXOO; Jing, 2009a[Jing, L.-H. (2009a). Acta Cryst. E65, o2510.]) and (E)-3-(4-fluoro­phen­yl)-1-phenyl­prop-2-en-1-one (refcode BUDYOP; Jing, 2009b[Jing, L.-H. (2009b). Acta Cryst. E65, o2515.]) found in the Cambridge Structural Database (Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The mol­ecular conformations of these two structures are nearly planar, with small dihedral angles of 5.00 (6) and 10.60 (11)°, respectively, between the phenyl rings.

6. Synthesis and crystallization

4-Nitro­aceto­phenone (1.65 g, 0.01 mol) and 4-fluoro­benzaldehyde (1.24 g, 0.01 mol) were dissolved in methanol (20 ml). A catalytic amount of NaOH was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 6 h at room temperature. The progress of the reaction was monitored by TLC. The formed crude product was filtered, washed repeatedly with distilled water and recrystallized from ethanol to obtain the title chalcone derivative. Yellowish single-crystals suitable for X-ray diffraction were obtained from an acetone solution by slow evaporation at room temperature.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C15H10FNO3
Mr 271.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 3.8860 (5), 13.2324 (16), 24.199 (3)
β (°) 91.963 (2)
V3) 1243.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.49 × 0.35 × 0.31
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.794, 0.926
No. of measured, independent and observed [I > 2σ(I)] reflections 10823, 2418, 1922
Rint 0.026
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.138, 1.04
No. of reflections 2418
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(E)-3-(4-Fluorophenyl)-1-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C15H10FNO3F(000) = 560
Mr = 271.24Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8860 (5) ÅCell parameters from 4607 reflections
b = 13.2324 (16) Åθ = 2.3–30.4°
c = 24.199 (3) ŵ = 0.11 mm1
β = 91.963 (2)°T = 296 K
V = 1243.6 (3) Å3Block, yellow
Z = 40.49 × 0.35 × 0.31 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2418 independent reflections
Radiation source: fine-focus sealed tube1922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 44
Tmin = 0.794, Tmax = 0.926k = 1615
10823 measured reflectionsl = 2929
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.072P)2 + 0.3042P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2418 reflectionsΔρmax = 0.21 e Å3
181 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.7362 (4)0.01394 (9)0.57883 (5)0.0899 (5)
O10.1032 (4)0.85915 (12)0.77829 (6)0.0784 (5)
O20.0898 (6)0.97163 (12)0.72386 (8)0.1026 (7)
O30.7296 (4)0.61266 (9)0.55381 (5)0.0665 (4)
N10.0476 (4)0.88363 (12)0.73723 (6)0.0578 (4)
C10.3037 (4)0.63109 (12)0.68456 (6)0.0460 (4)
H1A0.29950.56380.69550.055*
C20.1758 (4)0.70499 (13)0.71878 (6)0.0479 (4)
H2A0.08570.68800.75270.057*
C30.1848 (4)0.80391 (12)0.70162 (6)0.0443 (4)
C40.3144 (5)0.83206 (12)0.65149 (7)0.0502 (4)
H4A0.31570.89950.64070.060*
C50.4418 (4)0.75795 (12)0.61790 (6)0.0474 (4)
H5A0.53110.77570.58410.057*
C60.4388 (4)0.65682 (11)0.63385 (6)0.0397 (4)
C70.5886 (4)0.58109 (12)0.59466 (6)0.0437 (4)
C80.5671 (4)0.47246 (12)0.60636 (7)0.0465 (4)
H8A0.46090.45010.63800.056*
C90.6995 (4)0.40594 (13)0.57171 (6)0.0461 (4)
H9A0.80200.43320.54090.055*
C100.7052 (4)0.29630 (12)0.57557 (6)0.0441 (4)
C110.8374 (4)0.24150 (13)0.53176 (7)0.0498 (4)
H11A0.92110.27600.50150.060*
C120.8463 (5)0.13763 (14)0.53240 (8)0.0573 (5)
H12A0.93140.10150.50290.069*
C130.7264 (5)0.08894 (13)0.57778 (7)0.0571 (5)
C140.5966 (5)0.13871 (13)0.62234 (7)0.0571 (5)
H14A0.51880.10320.65260.069*
C150.5851 (4)0.24251 (13)0.62076 (7)0.0504 (4)
H15A0.49580.27760.65030.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1376 (12)0.0406 (6)0.0943 (9)0.0055 (6)0.0442 (9)0.0029 (6)
O10.1010 (11)0.0756 (10)0.0608 (8)0.0045 (8)0.0352 (8)0.0084 (7)
O20.1626 (18)0.0471 (9)0.1018 (12)0.0065 (9)0.0579 (12)0.0095 (8)
O30.0962 (10)0.0503 (7)0.0550 (7)0.0027 (7)0.0350 (7)0.0017 (6)
N10.0665 (10)0.0540 (10)0.0534 (9)0.0024 (7)0.0107 (7)0.0086 (7)
C10.0552 (10)0.0401 (9)0.0430 (8)0.0028 (7)0.0065 (7)0.0049 (6)
C20.0546 (9)0.0502 (10)0.0395 (8)0.0036 (7)0.0103 (7)0.0030 (7)
C30.0465 (9)0.0449 (9)0.0417 (8)0.0009 (7)0.0050 (7)0.0049 (7)
C40.0622 (10)0.0374 (8)0.0515 (9)0.0012 (7)0.0107 (8)0.0028 (7)
C50.0580 (10)0.0443 (9)0.0406 (8)0.0030 (7)0.0110 (7)0.0055 (7)
C60.0409 (8)0.0398 (8)0.0386 (8)0.0025 (6)0.0027 (6)0.0008 (6)
C70.0469 (9)0.0449 (9)0.0397 (8)0.0027 (7)0.0056 (6)0.0004 (6)
C80.0502 (9)0.0438 (9)0.0459 (8)0.0013 (7)0.0098 (7)0.0018 (7)
C90.0475 (9)0.0464 (9)0.0447 (8)0.0016 (7)0.0061 (7)0.0018 (7)
C100.0424 (8)0.0450 (9)0.0450 (8)0.0008 (7)0.0056 (7)0.0011 (7)
C110.0562 (10)0.0493 (10)0.0449 (9)0.0016 (7)0.0155 (7)0.0020 (7)
C120.0689 (11)0.0505 (10)0.0538 (10)0.0072 (8)0.0206 (9)0.0059 (8)
C130.0689 (12)0.0398 (9)0.0634 (11)0.0028 (8)0.0151 (9)0.0014 (8)
C140.0711 (12)0.0503 (10)0.0512 (10)0.0003 (8)0.0194 (8)0.0073 (8)
C150.0586 (10)0.0494 (10)0.0443 (9)0.0032 (7)0.0147 (7)0.0024 (7)
Geometric parameters (Å, º) top
F1—C131.362 (2)C7—C81.468 (2)
O1—N11.2147 (19)C8—C91.331 (2)
O2—N11.221 (2)C8—H8A0.9300
O3—C71.2204 (19)C9—C101.454 (2)
N1—C31.473 (2)C9—H9A0.9300
C1—C21.385 (2)C10—C111.397 (2)
C1—C61.393 (2)C10—C151.398 (2)
C1—H1A0.9300C11—C121.375 (2)
C2—C31.374 (2)C11—H11A0.9300
C2—H2A0.9300C12—C131.369 (3)
C3—C41.381 (2)C12—H12A0.9300
C4—C51.377 (2)C13—C141.374 (2)
C4—H4A0.9300C14—C151.375 (2)
C5—C61.393 (2)C14—H14A0.9300
C5—H5A0.9300C15—H15A0.9300
C6—C71.510 (2)
O1—N1—O2122.95 (16)C9—C8—C7120.02 (14)
O1—N1—C3118.80 (16)C9—C8—H8A120.0
O2—N1—C3118.24 (15)C7—C8—H8A120.0
C2—C1—C6120.53 (14)C8—C9—C10128.67 (15)
C2—C1—H1A119.7C8—C9—H9A115.7
C6—C1—H1A119.7C10—C9—H9A115.7
C3—C2—C1118.60 (14)C11—C10—C15118.08 (15)
C3—C2—H2A120.7C11—C10—C9118.33 (14)
C1—C2—H2A120.7C15—C10—C9123.59 (14)
C2—C3—C4122.43 (15)C12—C11—C10121.34 (15)
C2—C3—N1119.47 (14)C12—C11—H11A119.3
C4—C3—N1118.09 (15)C10—C11—H11A119.3
C5—C4—C3118.43 (15)C13—C12—C11118.06 (16)
C5—C4—H4A120.8C13—C12—H12A121.0
C3—C4—H4A120.8C11—C12—H12A121.0
C4—C5—C6120.95 (14)F1—C13—C12118.38 (16)
C4—C5—H5A119.5F1—C13—C14118.37 (16)
C6—C5—H5A119.5C12—C13—C14123.25 (17)
C5—C6—C1119.06 (14)C13—C14—C15118.00 (15)
C5—C6—C7117.17 (13)C13—C14—H14A121.0
C1—C6—C7123.78 (14)C15—C14—H14A121.0
O3—C7—C8121.43 (15)C14—C15—C10121.26 (15)
O3—C7—C6118.36 (14)C14—C15—H15A119.4
C8—C7—C6120.20 (13)C10—C15—H15A119.4
C6—C1—C2—C30.0 (3)C1—C6—C7—C86.1 (2)
C1—C2—C3—C40.4 (3)O3—C7—C8—C90.8 (3)
C1—C2—C3—N1179.54 (15)C6—C7—C8—C9179.99 (15)
O1—N1—C3—C27.6 (2)C7—C8—C9—C10179.96 (15)
O2—N1—C3—C2172.67 (18)C8—C9—C10—C11175.31 (17)
O1—N1—C3—C4171.54 (17)C8—C9—C10—C154.6 (3)
O2—N1—C3—C48.2 (3)C15—C10—C11—C120.8 (3)
C2—C3—C4—C50.6 (3)C9—C10—C11—C12179.15 (16)
N1—C3—C4—C5179.74 (15)C10—C11—C12—C131.0 (3)
C3—C4—C5—C60.3 (3)C11—C12—C13—F1179.66 (17)
C4—C5—C6—C10.1 (3)C11—C12—C13—C140.4 (3)
C4—C5—C6—C7179.16 (15)F1—C13—C14—C15179.50 (17)
C2—C1—C6—C50.3 (2)C12—C13—C14—C150.5 (3)
C2—C1—C6—C7178.91 (15)C13—C14—C15—C100.7 (3)
C5—C6—C7—O36.1 (2)C11—C10—C15—C140.1 (3)
C1—C6—C7—O3173.10 (16)C9—C10—C15—C14179.98 (16)
C5—C6—C7—C8174.65 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F1i0.932.533.183 (2)128
C11—H11A···O3ii0.932.433.329 (2)161
C15—H15A···O1iii0.932.583.489 (2)166
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: F-8816-2012.

§Thomson Reuters ResearcherID: A-5525-2009.

Funding information

QAW thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Individual Grant (1001/PFIZIK/8011080). HCK thanks the Malaysian Government for a MyBrain15 scholarship.

References

First citationBoulanger, B. & Zyss, J. (2006). International Tables for Crystallography, Vol. D, ch. 1.7, 178–219.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra Shekhara Shetty, T., Chidan Kumar, C. S., Gagan Patel, K. N., Chia, T. S., Dharmaprakash, S. M., Ramasami, P., Umar, Y., Chandraju, S. & Quah, C. K. (2017). J. Mol. Struct. 1143, 306–317.  Web of Science CrossRef Google Scholar
First citationEkbote, A., Patil, P. S., Maidur, S. R., Chia, T. S. & Quah, C. K. (2017). Dyes Pigments, 139, 720–729.  CrossRef Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o2651–o2652.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJing, L.-H. (2009a). Acta Cryst. E65, o2510.  CrossRef IUCr Journals Google Scholar
First citationJing, L.-H. (2009b). Acta Cryst. E65, o2515.  CrossRef IUCr Journals Google Scholar
First citationKwong, H. C., Rakesh, M. S., Chidan Kumar, C. S., Maidur, S. R., Patil, P. S., Quah, C. K., Win, Y.-F., Parlak, C. & Chandraju, S. (2018). Z. Kristallogr. Cryst. Mater. 233, 349–360.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrabhu, A. N., Jayarama, A., Subrahmanya Bhat, K., Manjunatha, K. B., Umesh, G. & Upadhyaya, V. (2013). Indian J. Mater. Sci. 2013, 1–5.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds