research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Conformational dimorphism of 2,2′-methyl­enebis(isoindoline-1,3-dione)

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, and dDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
*Correspondence e-mail: chiatzeshyang@gmail.com, arafath_sustche90@yahoo.com

Edited by J. Jasinsk, Keene State College, USA (Received 22 November 2018; accepted 10 December 2018; online 1 January 2019)

In this study, a new monoclinic polymorph (space group C2/c) of 2,2′-methyl­enebis(isoindoline-1,3-dione), C17H10N2O4, is reported and compared to the previously reported triclinic polymorph (space group P[\overline{1}]). Similarly, both polymorphs consist of a unique mol­ecule in the asymmetric unit (Z′ = 1). The mol­ecular conformations of the two polymorphs are very similar, as shown by the r.m.s. deviation of 0.368 Å (excluding all H atoms). The inter­molecular inter­actions of both polymorphs are described along with the Hirshfeld surface analysis, and the lattice energies are calculated.

1. Chemical context

Phthalimide (or isoindoline-1,3-dione) derivatives with five-membered N-heterocycles have been proven to exhibit significant biological and pharmaceutical activities, and have also been used as dyes and heat-resistant polymers in industry (Chidan Kumar et al., 2015[Chidan Kumar, C. S., Loh, W.-S., Chandraju, S., Win, Y.-F., Tan, W. K., Quah, C. K. & Fun, H.-K. (2015). PLoS One, 10, e0119440.]; Then et al., 2018[Then, L. Y., Kwong, H. C., Quah, C. K., Chidan Kumar, C. S., Chia, T. S., Wong, Q. A., Chandraju, S., Karthick, T., Win, Y.-F., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Z. Kristallogr. 233, 803-816.]). The first reported crystal structure of 2,2′-methyl­enebis(isoindoline-1,3-dione) (1α; Jiang et al., 2007[Jiang, Z., Wang, J.-D., Lin, M.-J., Chen, N.-S. & Huang, J.-L. (2007). Acta Cryst. E63, o4385.]) crystallizes in the centrosymmetric triclinic space group P[\overline{1}] [a = 7.6660 (9) Å, b = 9.5810 (8) Å, c = 10.2780 (6) Å, α = 104.325 (3)°, β = 99.768 (4)°, γ = 96.030 (3)°, Z = 2, Z′ = 1 and V = 712.23 (11) Å3; Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode SINDID]. In this article, we report the second polymorphic form (1β) of 2,2′-methyl­enebis(isoindoline-1,3-dione) with Z′ = 1 and compare its properties with those of 1α. According to the Online Dictionary of Crystallography, polymorphism is the phenomenon in which the same chemical compound exhibits different crystal structures (IUCr, 2018[IUCr (2018). https://reference.iucr.org/dictionary/Polymorphism (accessed 22/11/2018).]).

[Scheme 1]

2. Structural commentary

The asymmetric units of polymorphs 1α and 1β (Fig. 1[link]) each contain a unique mol­ecule of 2,2′-methyl­enebis(isoindoline-1,3-dione), which consists of two phthalimide groups and a methyl­ene bridge. The phthalimide groups are nearly planar with maximum deviations of 0.029 (1) and 0.059 (1) Å for 1α, and 0.040 (4) and 0.064 (3) Å for 1β. There are two degrees of freedom to characterize the mol­ecular conformations of 1α and 1β: these are the torsion angles C1—N1—C9—N2 [106.7 (1) and 117.4 (3)°, respectively] and N1—C9—N2—C10 [109.2 (1) and 117.6 (3)°, respectively]. Generally, the mol­ecule of 1β deviates only slightly from that of 1α, as indicated by a r.m.s. deviation of 0.368 Å (excluding all H atoms) (Fig. 2[link]). The mean planes of the phthalimide rings for 1β make a dihedral angle of 76.12 (8)°, which is smaller than that of 88.96 (4)° observed in polymorph 1α. The calculated density and Kitaigorodskii packing index (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) for 1β (1.469 Mg m−3 and 70.0%) are slightly higher than those observed for 1α (1.428 Mg m−3 and 69.0%).

[Figure 1]
Figure 1
Mol­ecular structure of 1β with atom labels and 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
An overlay diagram for the mol­ecules of 1α (red) and 1β (blue).

3. Supra­molecular features

The crystal packing of 1α features weak inter­molecular C—H⋯O hydrogen bonds and ππ inter­actions between neighboring phthalimide units. In the crystal structure of 1β (Fig. 3[link]), the mol­ecules are connected by weak inter­molecular C—H⋯O hydrogen bonds (Table 1[link]), forming a three-dimensional network. The crystal structure of 1β also features weak ππ inter­actions between two C2–C7 phenyl rings (symmetry code: −x, −y + 1, −z) and between N1/C1/C2/C7/C8 and C11–C16 rings (symmetry codes: −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}] and −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]), with centroid-to-centroid distances of 3.664 (3) and 3.938 (3) Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯O3i 0.93 2.43 3.150 (6) 134
C4—H4A⋯O4ii 0.93 2.60 3.300 (5) 133
C15—H15A⋯O2iii 0.93 2.46 3.271 (7) 146
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A partial crystal packing diagram of 1β viewed along the b axis. Dashed lines represent weak inter­molecular C—H⋯O hydrogen bonds. Hydrogen atoms which are not involved in hydrogen bonding are omitted for clarity.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis and two-dimensional fingerprint plots were performed using CrystalExplorer version 17.5 (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]; Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]; Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The H⋯O/O⋯H contact is the most populated contact and contributes 38.2 and 34.4% of the total inter­molecular contacts of 1α and 1β (Fig. 4[link]), respectively. The large red spots on the Hirshfeld surface mapped over dnorm for 1β (Fig. 5[link]) correspond to the inter­molecular C3—H3A⋯O3 and C15—H15A⋯O2 hydrogen-bonds. The tips of the pseudo-mirrored sharp spikes at de + di ≃ 2.32 Å represent the shortest H⋯O/O⋯H contacts, corresponding to the inter­molecular C3—H3A⋯O3 hydrogen-bond. The H⋯H contact is the second most populated contact and contributes 25.4 and 26.5% of the total inter­molecular contacts of 1α and 1β, respectively. The shortest H⋯H contacts of 1α (symmetry code: −x, −y, −z + 1) and 1β (symmetry code: −x, y, −z − [{1\over 2}]) are illustrated as two sharp tips along the diagonal of their two-dimensional fingerprint plots at dedi ≃ 1.06 and 1.21 Å [Fig. 4[link](c)], respectively. The percentages of contribution of H⋯C/C⋯H, O⋯C/C⋯O and C⋯C contacts to the Hirshfeld surface are 20.6, 3.3 and 8.9%, respectively, for 1α, and 20.8, 7.9 and 6.7%, respectively, for 1β (Fig. 4[link]). The absence of significant C—H⋯π inter­actions in the crystal structure of 1β is indicated by the absence of characteristic `wings' in the fingerprint plot of H⋯C/C⋯H contacts [Fig. 4[link](d)]. The C⋯C contacts appear as a unique `triangle' focused at dedi ≃ 1.75 Å [Fig. 4[link](f)]. The inter­molecular ππ inter­actions are illustrated as unique patterns of red and blue `triangles' on the shape-index surface (Fig. 6[link]), and flat regions on the curvedness surface (Fig. 7[link]), of the C2–C7, N1/C1/C2/C7/C8 and C11–C16 rings.

[Figure 4]
Figure 4
The two-dimensional fingerprint plots of 1β for (a) all, (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯C/C⋯H, (e) O⋯C/C⋯O and (f) C⋯C contacts. di and de are the distances from the Hirshfeld surface to the nearest atom inter­ior and exterior, respectively, to the surface.
[Figure 5]
Figure 5
The Hirshfeld surface mapped over dnorm for the mol­ecule in the asymmetric unit of 1β hydrogen-bonded to two neighbouring mol­ecules.
[Figure 6]
Figure 6
The Hirshfeld surface mapped over shape-index for 1β.
[Figure 7]
Figure 7
The Hirshfeld surface mapped over curvedness for 1β.

5. Lattice energy calculation

The C—H bond lengths in 1α and 1β were normalized to 1.08 Å and the lattice energies were calculated by using the CLP-PIXEL software package (Gavezzotti, 2003[Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344-2353.], 2008[Gavezzotti, A. (2008). Mol. Phys. 106, 1473-1485.]). The calculated lattice energy of 1α (130.3 kJ mol−1) is slightly larger than for 1β (128.5 kJ mol−1), indicating that 1α is slightly more stable than 1β under ambient conditions.

6. Synthesis and crystallization

Single crystals of 1β were obtained from an unsuccessful synthesis of 2-{[(3-iodo­pyridin-4-yl)amino]­meth­yl}isoindoline-1,3-dione by reacting N-(bromo­meth­yl)phthalimide (1 mmol) and 4-amino-3-iodo­pyridine (1 mmol) in N,N-di­methyl­formamide (8 ml) with the presence of a catalytic amount of anhydrous potassium carbonate. The reaction solution was stirred for about 2 h at room temperature. Once the reaction was complete, the resultant mixture was poured into a beaker of ice-cooled water to obtain a precipitate (Then et al., 2018[Then, L. Y., Kwong, H. C., Quah, C. K., Chidan Kumar, C. S., Chia, T. S., Wong, Q. A., Chandraju, S., Karthick, T., Win, Y.-F., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Z. Kristallogr. 233, 803-816.]), which was then filtered, washed with distilled water and dried. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

7. Refinement

Crystal data, data collection and structure refinement details of 1β are summarized in Table 2[link]. All H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C17H10N2O4
Mr 306.27
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 26.296 (5), 7.9996 (15), 16.987 (4)
β (°) 129.165 (10)
V3) 2770.5 (10)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.44 × 0.13 × 0.02
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.649, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29675, 2444, 1213
Rint 0.128
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.158, 1.02
No. of reflections 2444
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2,2'-Methylenebis(isoindoline-1,3-dione) top
Crystal data top
C17H10N2O4F(000) = 1264
Mr = 306.27Dx = 1.469 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.296 (5) ÅCell parameters from 1601 reflections
b = 7.9996 (15) Åθ = 2.4–26.4°
c = 16.987 (4) ŵ = 0.11 mm1
β = 129.165 (10)°T = 296 K
V = 2770.5 (10) Å3Block, colourless
Z = 80.44 × 0.13 × 0.02 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed tube1213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.128
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3131
Tmin = 0.649, Tmax = 0.745k = 99
29675 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.5204P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2444 reflectionsΔρmax = 0.14 e Å3
208 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05520 (11)0.9015 (3)0.12678 (18)0.0786 (8)
O20.20385 (12)0.6374 (3)0.11771 (17)0.0769 (8)
O30.32974 (11)0.7796 (3)0.34998 (18)0.0817 (8)
O40.15774 (12)0.6563 (3)0.34093 (18)0.0765 (8)
N10.14191 (12)0.7785 (3)0.14765 (19)0.0563 (8)
N20.23369 (12)0.7434 (3)0.32431 (19)0.0577 (8)
C10.07580 (16)0.8101 (4)0.0966 (3)0.0595 (9)
C20.04023 (16)0.7104 (4)0.0028 (2)0.0547 (9)
C30.02562 (16)0.6944 (4)0.0726 (2)0.0620 (10)
H3A0.05540.75530.07180.074*
C40.04608 (18)0.5854 (5)0.1492 (3)0.0777 (11)
H4A0.09080.57060.20140.093*
C50.0021 (2)0.4972 (5)0.1507 (3)0.0798 (12)
H5A0.01760.42220.20330.096*
C60.06535 (19)0.5173 (5)0.0753 (3)0.0697 (10)
H6A0.09550.46000.07680.084*
C70.08469 (15)0.6259 (4)0.0011 (2)0.0531 (9)
C80.15090 (17)0.6749 (4)0.0923 (2)0.0568 (9)
C90.19381 (15)0.8576 (5)0.2405 (2)0.0671 (10)
H9A0.17520.93990.25780.081*
H9B0.22160.91650.23050.081*
C100.30011 (17)0.7197 (5)0.3748 (3)0.0625 (10)
C110.32396 (17)0.6090 (4)0.4617 (2)0.0591 (9)
C120.38561 (19)0.5506 (5)0.5381 (3)0.0765 (11)
H12A0.42140.57880.54180.092*
C130.3923 (2)0.4479 (6)0.6095 (3)0.0930 (14)
H13A0.43360.40710.66280.112*
C140.3398 (3)0.4050 (5)0.6036 (3)0.0956 (14)
H14A0.34580.33410.65220.115*
C150.2779 (2)0.4654 (5)0.5263 (3)0.0784 (11)
H15A0.24200.43710.52220.094*
C160.27123 (18)0.5674 (4)0.4564 (3)0.0607 (9)
C170.21289 (18)0.6552 (4)0.3696 (3)0.0590 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0699 (17)0.0814 (19)0.0879 (18)0.0089 (14)0.0514 (15)0.0122 (15)
O20.0556 (16)0.101 (2)0.0781 (17)0.0107 (14)0.0441 (14)0.0021 (15)
O30.0572 (16)0.107 (2)0.0841 (18)0.0104 (14)0.0462 (15)0.0008 (15)
O40.0587 (16)0.094 (2)0.0815 (17)0.0156 (14)0.0465 (14)0.0159 (14)
N10.0423 (17)0.072 (2)0.0512 (17)0.0008 (14)0.0278 (15)0.0056 (15)
N20.0450 (18)0.073 (2)0.0508 (17)0.0036 (15)0.0279 (15)0.0004 (15)
C10.054 (2)0.064 (3)0.063 (2)0.0040 (19)0.038 (2)0.003 (2)
C20.051 (2)0.058 (2)0.056 (2)0.0022 (18)0.0348 (19)0.0027 (18)
C30.049 (2)0.068 (3)0.058 (2)0.0026 (18)0.029 (2)0.007 (2)
C40.060 (2)0.093 (3)0.062 (3)0.010 (2)0.030 (2)0.003 (2)
C50.089 (3)0.093 (3)0.063 (3)0.020 (3)0.050 (3)0.010 (2)
C60.076 (3)0.082 (3)0.060 (2)0.001 (2)0.047 (2)0.002 (2)
C70.048 (2)0.067 (2)0.048 (2)0.0001 (18)0.0316 (18)0.0034 (18)
C80.049 (2)0.067 (2)0.059 (2)0.0068 (19)0.036 (2)0.0113 (19)
C90.059 (2)0.072 (3)0.057 (2)0.0047 (19)0.030 (2)0.001 (2)
C100.052 (2)0.075 (3)0.061 (2)0.008 (2)0.036 (2)0.012 (2)
C110.054 (2)0.067 (2)0.049 (2)0.0031 (19)0.029 (2)0.0094 (19)
C120.070 (3)0.080 (3)0.063 (3)0.009 (2)0.034 (2)0.008 (2)
C130.091 (3)0.090 (3)0.063 (3)0.022 (3)0.032 (3)0.003 (2)
C140.135 (4)0.070 (3)0.077 (3)0.010 (3)0.065 (3)0.001 (2)
C150.103 (3)0.065 (3)0.075 (3)0.010 (2)0.060 (3)0.012 (2)
C160.069 (2)0.057 (2)0.051 (2)0.009 (2)0.036 (2)0.0096 (19)
C170.063 (2)0.059 (2)0.060 (2)0.014 (2)0.041 (2)0.0183 (19)
Geometric parameters (Å, º) top
O1—C11.201 (4)C5—H5A0.9300
O2—C81.207 (3)C6—C71.365 (4)
O3—C101.195 (4)C6—H6A0.9300
O4—C171.203 (4)C7—C81.476 (4)
N1—C81.381 (4)C9—H9A0.9700
N1—C11.391 (4)C9—H9B0.9700
N1—C91.425 (4)C10—C111.480 (5)
N2—C171.386 (4)C11—C121.369 (4)
N2—C101.389 (4)C11—C161.372 (4)
N2—C91.441 (4)C12—C131.380 (5)
C1—C21.473 (4)C12—H12A0.9300
C2—C31.362 (4)C13—C141.363 (5)
C2—C71.366 (4)C13—H13A0.9300
C3—C41.364 (5)C14—C151.382 (5)
C3—H3A0.9300C14—H14A0.9300
C4—C51.369 (5)C15—C161.358 (5)
C4—H4A0.9300C15—H15A0.9300
C5—C61.394 (5)C16—C171.470 (5)
C8—N1—C1111.6 (3)N1—C9—N2113.7 (3)
C8—N1—C9124.3 (3)N1—C9—H9A108.8
C1—N1—C9123.8 (3)N2—C9—H9A108.8
C17—N2—C10111.8 (3)N1—C9—H9B108.8
C17—N2—C9125.1 (3)N2—C9—H9B108.8
C10—N2—C9122.9 (3)H9A—C9—H9B107.7
O1—C1—N1124.6 (3)O3—C10—N2125.0 (4)
O1—C1—C2130.0 (3)O3—C10—C11129.2 (3)
N1—C1—C2105.4 (3)N2—C10—C11105.8 (3)
C3—C2—C7122.1 (3)C12—C11—C16121.5 (4)
C3—C2—C1129.0 (3)C12—C11—C10130.7 (4)
C7—C2—C1108.9 (3)C16—C11—C10107.8 (3)
C2—C3—C4117.3 (3)C11—C12—C13117.0 (4)
C2—C3—H3A121.4C11—C12—H12A121.5
C4—C3—H3A121.4C13—C12—H12A121.5
C3—C4—C5121.3 (3)C14—C13—C12121.6 (4)
C3—C4—H4A119.4C14—C13—H13A119.2
C5—C4—H4A119.4C12—C13—H13A119.2
C4—C5—C6121.5 (4)C13—C14—C15120.8 (4)
C4—C5—H5A119.3C13—C14—H14A119.6
C6—C5—H5A119.3C15—C14—H14A119.6
C7—C6—C5116.2 (3)C16—C15—C14117.7 (4)
C7—C6—H6A121.9C16—C15—H15A121.1
C5—C6—H6A121.9C14—C15—H15A121.1
C6—C7—C2121.6 (3)C15—C16—C11121.4 (4)
C6—C7—C8130.6 (3)C15—C16—C17129.8 (4)
C2—C7—C8107.7 (3)C11—C16—C17108.8 (3)
O2—C8—N1124.1 (3)O4—C17—N2124.6 (3)
O2—C8—C7129.7 (3)O4—C17—C16129.6 (4)
N1—C8—C7106.2 (3)N2—C17—C16105.8 (3)
C8—N1—C1—O1177.0 (3)C17—N2—C9—N167.9 (4)
C9—N1—C1—O13.1 (5)C10—N2—C9—N1117.6 (3)
C8—N1—C1—C22.8 (3)C17—N2—C10—O3178.7 (3)
C9—N1—C1—C2176.7 (3)C9—N2—C10—O36.2 (5)
O1—C1—C2—C31.7 (6)C17—N2—C10—C111.4 (3)
N1—C1—C2—C3178.5 (3)C9—N2—C10—C11173.8 (3)
O1—C1—C2—C7179.8 (4)O3—C10—C11—C122.6 (6)
N1—C1—C2—C70.0 (3)N2—C10—C11—C12177.4 (3)
C7—C2—C3—C42.1 (5)O3—C10—C11—C16177.6 (4)
C1—C2—C3—C4176.2 (3)N2—C10—C11—C162.5 (4)
C2—C3—C4—C50.7 (5)C16—C11—C12—C130.0 (5)
C3—C4—C5—C61.2 (6)C10—C11—C12—C13179.8 (3)
C4—C5—C6—C71.7 (5)C11—C12—C13—C140.7 (6)
C5—C6—C7—C20.3 (5)C12—C13—C14—C151.0 (6)
C5—C6—C7—C8179.1 (3)C13—C14—C15—C160.5 (6)
C3—C2—C7—C61.6 (5)C14—C15—C16—C110.3 (5)
C1—C2—C7—C6177.0 (3)C14—C15—C16—C17177.0 (3)
C3—C2—C7—C8178.8 (3)C12—C11—C16—C150.6 (5)
C1—C2—C7—C82.5 (3)C10—C11—C16—C15179.6 (3)
C1—N1—C8—O2175.4 (3)C12—C11—C16—C17177.2 (3)
C9—N1—C8—O21.5 (5)C10—C11—C16—C172.6 (4)
C1—N1—C8—C74.3 (3)C10—N2—C17—O4179.2 (3)
C9—N1—C8—C7178.1 (3)C9—N2—C17—O44.2 (5)
C6—C7—C8—O25.1 (6)C10—N2—C17—C160.2 (3)
C2—C7—C8—O2175.5 (3)C9—N2—C17—C16175.2 (3)
C6—C7—C8—N1175.3 (3)C15—C16—C17—O40.0 (6)
C2—C7—C8—N14.1 (3)C11—C16—C17—O4177.6 (3)
C8—N1—C9—N269.4 (4)C15—C16—C17—N2179.3 (3)
C1—N1—C9—N2117.4 (3)C11—C16—C17—N21.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O3i0.932.433.150 (6)134
C4—H4A···O4ii0.932.603.300 (5)133
C15—H15A···O2iii0.932.463.271 (7)146
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+1, z; (iii) x, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: F-8816-2012.

§Thomson Reuters ResearcherID: A-5525-2009.

Funding information

QAW thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Individual Grant (1001/PFIZIK/8011080). HCK, WZN and AJS thank the Malaysian Government for MyBrain15 scholarships.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChidan Kumar, C. S., Loh, W.-S., Chandraju, S., Win, Y.-F., Tan, W. K., Quah, C. K. & Fun, H.-K. (2015). PLoS One, 10, e0119440.  CrossRef Google Scholar
First citationGavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353.  Web of Science CrossRef CAS Google Scholar
First citationGavezzotti, A. (2008). Mol. Phys. 106, 1473–1485.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIUCr (2018). https://reference.iucr.org/dictionary/Polymorphism (accessed 22/11/2018).  Google Scholar
First citationJiang, Z., Wang, J.-D., Lin, M.-J., Chen, N.-S. & Huang, J.-L. (2007). Acta Cryst. E63, o4385.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThen, L. Y., Kwong, H. C., Quah, C. K., Chidan Kumar, C. S., Chia, T. S., Wong, Q. A., Chandraju, S., Karthick, T., Win, Y.-F., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Z. Kristallogr. 233, 803–816.  CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds