research communications
Conformational dimorphism of 2,2′-methylenebis(isoindoline-1,3-dione)
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering and Technology, Visvesvaraya Technological University, Alanahalli, Mysuru 570 028, India, and dDepartment of Chemistry, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
*Correspondence e-mail: chiatzeshyang@gmail.com, arafath_sustche90@yahoo.com
In this study, a new monoclinic polymorph (space group C2/c) of 2,2′-methylenebis(isoindoline-1,3-dione), C17H10N2O4, is reported and compared to the previously reported triclinic polymorph (space group P). Similarly, both polymorphs consist of a unique molecule in the (Z′ = 1). The molecular conformations of the two polymorphs are very similar, as shown by the r.m.s. deviation of 0.368 Å (excluding all H atoms). The intermolecular interactions of both polymorphs are described along with the Hirshfeld surface analysis, and the lattice energies are calculated.
Keywords: crystal structure; polymorphism; isoindoline-1,3-dione; Hirshfeld surface analysis; PIXEL.
CCDC reference: 1884044
1. Chemical context
Phthalimide (or isoindoline-1,3-dione) derivatives with five-membered N-heterocycles have been proven to exhibit significant biological and pharmaceutical activities, and have also been used as dyes and heat-resistant polymers in industry (Chidan Kumar et al., 2015; Then et al., 2018). The first reported of 2,2′-methylenebis(isoindoline-1,3-dione) (1α; Jiang et al., 2007) crystallizes in the centrosymmetric triclinic P [a = 7.6660 (9) Å, b = 9.5810 (8) Å, c = 10.2780 (6) Å, α = 104.325 (3)°, β = 99.768 (4)°, γ = 96.030 (3)°, Z = 2, Z′ = 1 and V = 712.23 (11) Å3; Cambridge Structural Database (CSD; Groom et al., 2016) refcode SINDID]. In this article, we report the second polymorphic form (1β) of 2,2′-methylenebis(isoindoline-1,3-dione) with Z′ = 1 and compare its properties with those of 1α. According to the Online Dictionary of Crystallography, is the phenomenon in which the same chemical compound exhibits different crystal structures (IUCr, 2018).
2. Structural commentary
The asymmetric units of polymorphs 1α and 1β (Fig. 1) each contain a unique molecule of 2,2′-methylenebis(isoindoline-1,3-dione), which consists of two phthalimide groups and a methylene bridge. The phthalimide groups are nearly planar with maximum deviations of 0.029 (1) and 0.059 (1) Å for 1α, and 0.040 (4) and 0.064 (3) Å for 1β. There are two to characterize the molecular conformations of 1α and 1β: these are the torsion angles C1—N1—C9—N2 [106.7 (1) and 117.4 (3)°, respectively] and N1—C9—N2—C10 [109.2 (1) and 117.6 (3)°, respectively]. Generally, the molecule of 1β deviates only slightly from that of 1α, as indicated by a r.m.s. deviation of 0.368 Å (excluding all H atoms) (Fig. 2). The mean planes of the phthalimide rings for 1β make a dihedral angle of 76.12 (8)°, which is smaller than that of 88.96 (4)° observed in polymorph 1α. The calculated density and Kitaigorodskii packing index (Spek, 2009) for 1β (1.469 Mg m−3 and 70.0%) are slightly higher than those observed for 1α (1.428 Mg m−3 and 69.0%).
3. Supramolecular features
The crystal packing of 1α features weak intermolecular C—H⋯O hydrogen bonds and π–π interactions between neighboring phthalimide units. In the of 1β (Fig. 3), the molecules are connected by weak intermolecular C—H⋯O hydrogen bonds (Table 1), forming a three-dimensional network. The of 1β also features weak π–π interactions between two C2–C7 phenyl rings (symmetry code: −x, −y + 1, −z) and between N1/C1/C2/C7/C8 and C11–C16 rings (symmetry codes: −x + , y + , −z + and −x + , y − , −z + ), with centroid-to-centroid distances of 3.664 (3) and 3.938 (3) Å, respectively.
4. Hirshfeld surface analysis
The Hirshfeld surface analysis and two-dimensional fingerprint plots were performed using CrystalExplorer version 17.5 (Spackman & Jayatilaka, 2009; Spackman & McKinnon, 2002; Turner et al., 2017). The H⋯O/O⋯H contact is the most populated contact and contributes 38.2 and 34.4% of the total intermolecular contacts of 1α and 1β (Fig. 4), respectively. The large red spots on the Hirshfeld surface mapped over dnorm for 1β (Fig. 5) correspond to the intermolecular C3—H3A⋯O3 and C15—H15A⋯O2 hydrogen-bonds. The tips of the pseudo-mirrored sharp spikes at de + di ≃ 2.32 Å represent the shortest H⋯O/O⋯H contacts, corresponding to the intermolecular C3—H3A⋯O3 hydrogen-bond. The H⋯H contact is the second most populated contact and contributes 25.4 and 26.5% of the total intermolecular contacts of 1α and 1β, respectively. The shortest H⋯H contacts of 1α (symmetry code: −x, −y, −z + 1) and 1β (symmetry code: −x, y, −z − ) are illustrated as two sharp tips along the diagonal of their two-dimensional fingerprint plots at de ≃ di ≃ 1.06 and 1.21 Å [Fig. 4(c)], respectively. The percentages of contribution of H⋯C/C⋯H, O⋯C/C⋯O and C⋯C contacts to the Hirshfeld surface are 20.6, 3.3 and 8.9%, respectively, for 1α, and 20.8, 7.9 and 6.7%, respectively, for 1β (Fig. 4). The absence of significant C—H⋯π interactions in the of 1β is indicated by the absence of characteristic `wings' in the fingerprint plot of H⋯C/C⋯H contacts [Fig. 4(d)]. The C⋯C contacts appear as a unique `triangle' focused at de ≃ di ≃ 1.75 Å [Fig. 4(f)]. The intermolecular π–π interactions are illustrated as unique patterns of red and blue `triangles' on the shape-index surface (Fig. 6), and flat regions on the curvedness surface (Fig. 7), of the C2–C7, N1/C1/C2/C7/C8 and C11–C16 rings.
5. Lattice energy calculation
The C—H bond lengths in 1α and 1β were normalized to 1.08 Å and the lattice energies were calculated by using the CLP-PIXEL software package (Gavezzotti, 2003, 2008). The calculated lattice energy of 1α (130.3 kJ mol−1) is slightly larger than for 1β (128.5 kJ mol−1), indicating that 1α is slightly more stable than 1β under ambient conditions.
6. Synthesis and crystallization
Single crystals of 1β were obtained from an unsuccessful synthesis of 2-{[(3-iodopyridin-4-yl)amino]methyl}isoindoline-1,3-dione by reacting N-(bromomethyl)phthalimide (1 mmol) and 4-amino-3-iodopyridine (1 mmol) in N,N-dimethylformamide (8 ml) with the presence of a catalytic amount of anhydrous potassium carbonate. The reaction solution was stirred for about 2 h at room temperature. Once the reaction was complete, the resultant mixture was poured into a beaker of ice-cooled water to obtain a precipitate (Then et al., 2018), which was then filtered, washed with distilled water and dried. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
7. Refinement
Crystal data, data collection and structure β are summarized in Table 2. All H atoms were positioned geometrically (C—H = 0.93 and 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).
details of 1Supporting information
CCDC reference: 1884044
https://doi.org/10.1107/S2056989018017425/jj2205sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018017425/jj2205Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017425/jj2205Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).C17H10N2O4 | F(000) = 1264 |
Mr = 306.27 | Dx = 1.469 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 26.296 (5) Å | Cell parameters from 1601 reflections |
b = 7.9996 (15) Å | θ = 2.4–26.4° |
c = 16.987 (4) Å | µ = 0.11 mm−1 |
β = 129.165 (10)° | T = 296 K |
V = 2770.5 (10) Å3 | Block, colourless |
Z = 8 | 0.44 × 0.13 × 0.02 mm |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 2444 independent reflections |
Radiation source: fine-focus sealed tube | 1213 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.128 |
φ and ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −31→31 |
Tmin = 0.649, Tmax = 0.745 | k = −9→9 |
29675 measured reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.0624P)2 + 0.5204P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2444 reflections | Δρmax = 0.14 e Å−3 |
208 parameters | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.05520 (11) | 0.9015 (3) | 0.12678 (18) | 0.0786 (8) | |
O2 | 0.20385 (12) | 0.6374 (3) | 0.11771 (17) | 0.0769 (8) | |
O3 | 0.32974 (11) | 0.7796 (3) | 0.34998 (18) | 0.0817 (8) | |
O4 | 0.15774 (12) | 0.6563 (3) | 0.34093 (18) | 0.0765 (8) | |
N1 | 0.14191 (12) | 0.7785 (3) | 0.14765 (19) | 0.0563 (8) | |
N2 | 0.23369 (12) | 0.7434 (3) | 0.32431 (19) | 0.0577 (8) | |
C1 | 0.07580 (16) | 0.8101 (4) | 0.0966 (3) | 0.0595 (9) | |
C2 | 0.04023 (16) | 0.7104 (4) | 0.0028 (2) | 0.0547 (9) | |
C3 | −0.02562 (16) | 0.6944 (4) | −0.0726 (2) | 0.0620 (10) | |
H3A | −0.0554 | 0.7553 | −0.0718 | 0.074* | |
C4 | −0.04608 (18) | 0.5854 (5) | −0.1492 (3) | 0.0777 (11) | |
H4A | −0.0908 | 0.5706 | −0.2014 | 0.093* | |
C5 | −0.0021 (2) | 0.4972 (5) | −0.1507 (3) | 0.0798 (12) | |
H5A | −0.0176 | 0.4222 | −0.2033 | 0.096* | |
C6 | 0.06535 (19) | 0.5173 (5) | −0.0753 (3) | 0.0697 (10) | |
H6A | 0.0955 | 0.4600 | −0.0768 | 0.084* | |
C7 | 0.08469 (15) | 0.6259 (4) | 0.0011 (2) | 0.0531 (9) | |
C8 | 0.15090 (17) | 0.6749 (4) | 0.0923 (2) | 0.0568 (9) | |
C9 | 0.19381 (15) | 0.8576 (5) | 0.2405 (2) | 0.0671 (10) | |
H9A | 0.1752 | 0.9399 | 0.2578 | 0.081* | |
H9B | 0.2216 | 0.9165 | 0.2305 | 0.081* | |
C10 | 0.30011 (17) | 0.7197 (5) | 0.3748 (3) | 0.0625 (10) | |
C11 | 0.32396 (17) | 0.6090 (4) | 0.4617 (2) | 0.0591 (9) | |
C12 | 0.38561 (19) | 0.5506 (5) | 0.5381 (3) | 0.0765 (11) | |
H12A | 0.4214 | 0.5788 | 0.5418 | 0.092* | |
C13 | 0.3923 (2) | 0.4479 (6) | 0.6095 (3) | 0.0930 (14) | |
H13A | 0.4336 | 0.4071 | 0.6628 | 0.112* | |
C14 | 0.3398 (3) | 0.4050 (5) | 0.6036 (3) | 0.0956 (14) | |
H14A | 0.3458 | 0.3341 | 0.6522 | 0.115* | |
C15 | 0.2779 (2) | 0.4654 (5) | 0.5263 (3) | 0.0784 (11) | |
H15A | 0.2420 | 0.4371 | 0.5222 | 0.094* | |
C16 | 0.27123 (18) | 0.5674 (4) | 0.4564 (3) | 0.0607 (9) | |
C17 | 0.21289 (18) | 0.6552 (4) | 0.3696 (3) | 0.0590 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0699 (17) | 0.0814 (19) | 0.0879 (18) | 0.0089 (14) | 0.0514 (15) | −0.0122 (15) |
O2 | 0.0556 (16) | 0.101 (2) | 0.0781 (17) | 0.0107 (14) | 0.0441 (14) | 0.0021 (15) |
O3 | 0.0572 (16) | 0.107 (2) | 0.0841 (18) | −0.0104 (14) | 0.0462 (15) | 0.0008 (15) |
O4 | 0.0587 (16) | 0.094 (2) | 0.0815 (17) | −0.0156 (14) | 0.0465 (14) | −0.0159 (14) |
N1 | 0.0423 (17) | 0.072 (2) | 0.0512 (17) | 0.0008 (14) | 0.0278 (15) | −0.0056 (15) |
N2 | 0.0450 (18) | 0.073 (2) | 0.0508 (17) | −0.0036 (15) | 0.0279 (15) | 0.0004 (15) |
C1 | 0.054 (2) | 0.064 (3) | 0.063 (2) | 0.0040 (19) | 0.038 (2) | 0.003 (2) |
C2 | 0.051 (2) | 0.058 (2) | 0.056 (2) | −0.0022 (18) | 0.0348 (19) | 0.0027 (18) |
C3 | 0.049 (2) | 0.068 (3) | 0.058 (2) | 0.0026 (18) | 0.029 (2) | 0.007 (2) |
C4 | 0.060 (2) | 0.093 (3) | 0.062 (3) | −0.010 (2) | 0.030 (2) | 0.003 (2) |
C5 | 0.089 (3) | 0.093 (3) | 0.063 (3) | −0.020 (3) | 0.050 (3) | −0.010 (2) |
C6 | 0.076 (3) | 0.082 (3) | 0.060 (2) | 0.001 (2) | 0.047 (2) | −0.002 (2) |
C7 | 0.048 (2) | 0.067 (2) | 0.048 (2) | 0.0001 (18) | 0.0316 (18) | 0.0034 (18) |
C8 | 0.049 (2) | 0.067 (2) | 0.059 (2) | 0.0068 (19) | 0.036 (2) | 0.0113 (19) |
C9 | 0.059 (2) | 0.072 (3) | 0.057 (2) | −0.0047 (19) | 0.030 (2) | −0.001 (2) |
C10 | 0.052 (2) | 0.075 (3) | 0.061 (2) | −0.008 (2) | 0.036 (2) | −0.012 (2) |
C11 | 0.054 (2) | 0.067 (2) | 0.049 (2) | −0.0031 (19) | 0.029 (2) | −0.0094 (19) |
C12 | 0.070 (3) | 0.080 (3) | 0.063 (3) | 0.009 (2) | 0.034 (2) | −0.008 (2) |
C13 | 0.091 (3) | 0.090 (3) | 0.063 (3) | 0.022 (3) | 0.032 (3) | 0.003 (2) |
C14 | 0.135 (4) | 0.070 (3) | 0.077 (3) | 0.010 (3) | 0.065 (3) | 0.001 (2) |
C15 | 0.103 (3) | 0.065 (3) | 0.075 (3) | −0.010 (2) | 0.060 (3) | −0.012 (2) |
C16 | 0.069 (2) | 0.057 (2) | 0.051 (2) | −0.009 (2) | 0.036 (2) | −0.0096 (19) |
C17 | 0.063 (2) | 0.059 (2) | 0.060 (2) | −0.014 (2) | 0.041 (2) | −0.0183 (19) |
O1—C1 | 1.201 (4) | C5—H5A | 0.9300 |
O2—C8 | 1.207 (3) | C6—C7 | 1.365 (4) |
O3—C10 | 1.195 (4) | C6—H6A | 0.9300 |
O4—C17 | 1.203 (4) | C7—C8 | 1.476 (4) |
N1—C8 | 1.381 (4) | C9—H9A | 0.9700 |
N1—C1 | 1.391 (4) | C9—H9B | 0.9700 |
N1—C9 | 1.425 (4) | C10—C11 | 1.480 (5) |
N2—C17 | 1.386 (4) | C11—C12 | 1.369 (4) |
N2—C10 | 1.389 (4) | C11—C16 | 1.372 (4) |
N2—C9 | 1.441 (4) | C12—C13 | 1.380 (5) |
C1—C2 | 1.473 (4) | C12—H12A | 0.9300 |
C2—C3 | 1.362 (4) | C13—C14 | 1.363 (5) |
C2—C7 | 1.366 (4) | C13—H13A | 0.9300 |
C3—C4 | 1.364 (5) | C14—C15 | 1.382 (5) |
C3—H3A | 0.9300 | C14—H14A | 0.9300 |
C4—C5 | 1.369 (5) | C15—C16 | 1.358 (5) |
C4—H4A | 0.9300 | C15—H15A | 0.9300 |
C5—C6 | 1.394 (5) | C16—C17 | 1.470 (5) |
C8—N1—C1 | 111.6 (3) | N1—C9—N2 | 113.7 (3) |
C8—N1—C9 | 124.3 (3) | N1—C9—H9A | 108.8 |
C1—N1—C9 | 123.8 (3) | N2—C9—H9A | 108.8 |
C17—N2—C10 | 111.8 (3) | N1—C9—H9B | 108.8 |
C17—N2—C9 | 125.1 (3) | N2—C9—H9B | 108.8 |
C10—N2—C9 | 122.9 (3) | H9A—C9—H9B | 107.7 |
O1—C1—N1 | 124.6 (3) | O3—C10—N2 | 125.0 (4) |
O1—C1—C2 | 130.0 (3) | O3—C10—C11 | 129.2 (3) |
N1—C1—C2 | 105.4 (3) | N2—C10—C11 | 105.8 (3) |
C3—C2—C7 | 122.1 (3) | C12—C11—C16 | 121.5 (4) |
C3—C2—C1 | 129.0 (3) | C12—C11—C10 | 130.7 (4) |
C7—C2—C1 | 108.9 (3) | C16—C11—C10 | 107.8 (3) |
C2—C3—C4 | 117.3 (3) | C11—C12—C13 | 117.0 (4) |
C2—C3—H3A | 121.4 | C11—C12—H12A | 121.5 |
C4—C3—H3A | 121.4 | C13—C12—H12A | 121.5 |
C3—C4—C5 | 121.3 (3) | C14—C13—C12 | 121.6 (4) |
C3—C4—H4A | 119.4 | C14—C13—H13A | 119.2 |
C5—C4—H4A | 119.4 | C12—C13—H13A | 119.2 |
C4—C5—C6 | 121.5 (4) | C13—C14—C15 | 120.8 (4) |
C4—C5—H5A | 119.3 | C13—C14—H14A | 119.6 |
C6—C5—H5A | 119.3 | C15—C14—H14A | 119.6 |
C7—C6—C5 | 116.2 (3) | C16—C15—C14 | 117.7 (4) |
C7—C6—H6A | 121.9 | C16—C15—H15A | 121.1 |
C5—C6—H6A | 121.9 | C14—C15—H15A | 121.1 |
C6—C7—C2 | 121.6 (3) | C15—C16—C11 | 121.4 (4) |
C6—C7—C8 | 130.6 (3) | C15—C16—C17 | 129.8 (4) |
C2—C7—C8 | 107.7 (3) | C11—C16—C17 | 108.8 (3) |
O2—C8—N1 | 124.1 (3) | O4—C17—N2 | 124.6 (3) |
O2—C8—C7 | 129.7 (3) | O4—C17—C16 | 129.6 (4) |
N1—C8—C7 | 106.2 (3) | N2—C17—C16 | 105.8 (3) |
C8—N1—C1—O1 | −177.0 (3) | C17—N2—C9—N1 | −67.9 (4) |
C9—N1—C1—O1 | −3.1 (5) | C10—N2—C9—N1 | 117.6 (3) |
C8—N1—C1—C2 | 2.8 (3) | C17—N2—C10—O3 | 178.7 (3) |
C9—N1—C1—C2 | 176.7 (3) | C9—N2—C10—O3 | −6.2 (5) |
O1—C1—C2—C3 | −1.7 (6) | C17—N2—C10—C11 | −1.4 (3) |
N1—C1—C2—C3 | 178.5 (3) | C9—N2—C10—C11 | 173.8 (3) |
O1—C1—C2—C7 | 179.8 (4) | O3—C10—C11—C12 | 2.6 (6) |
N1—C1—C2—C7 | 0.0 (3) | N2—C10—C11—C12 | −177.4 (3) |
C7—C2—C3—C4 | 2.1 (5) | O3—C10—C11—C16 | −177.6 (4) |
C1—C2—C3—C4 | −176.2 (3) | N2—C10—C11—C16 | 2.5 (4) |
C2—C3—C4—C5 | −0.7 (5) | C16—C11—C12—C13 | 0.0 (5) |
C3—C4—C5—C6 | −1.2 (6) | C10—C11—C12—C13 | 179.8 (3) |
C4—C5—C6—C7 | 1.7 (5) | C11—C12—C13—C14 | 0.7 (6) |
C5—C6—C7—C2 | −0.3 (5) | C12—C13—C14—C15 | −1.0 (6) |
C5—C6—C7—C8 | 179.1 (3) | C13—C14—C15—C16 | 0.5 (6) |
C3—C2—C7—C6 | −1.6 (5) | C14—C15—C16—C11 | 0.3 (5) |
C1—C2—C7—C6 | 177.0 (3) | C14—C15—C16—C17 | −177.0 (3) |
C3—C2—C7—C8 | 178.8 (3) | C12—C11—C16—C15 | −0.6 (5) |
C1—C2—C7—C8 | −2.5 (3) | C10—C11—C16—C15 | 179.6 (3) |
C1—N1—C8—O2 | 175.4 (3) | C12—C11—C16—C17 | 177.2 (3) |
C9—N1—C8—O2 | 1.5 (5) | C10—C11—C16—C17 | −2.6 (4) |
C1—N1—C8—C7 | −4.3 (3) | C10—N2—C17—O4 | 179.2 (3) |
C9—N1—C8—C7 | −178.1 (3) | C9—N2—C17—O4 | 4.2 (5) |
C6—C7—C8—O2 | 5.1 (6) | C10—N2—C17—C16 | −0.2 (3) |
C2—C7—C8—O2 | −175.5 (3) | C9—N2—C17—C16 | −175.2 (3) |
C6—C7—C8—N1 | −175.3 (3) | C15—C16—C17—O4 | 0.0 (6) |
C2—C7—C8—N1 | 4.1 (3) | C11—C16—C17—O4 | −177.6 (3) |
C8—N1—C9—N2 | −69.4 (4) | C15—C16—C17—N2 | 179.3 (3) |
C1—N1—C9—N2 | 117.4 (3) | C11—C16—C17—N2 | 1.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O3i | 0.93 | 2.43 | 3.150 (6) | 134 |
C4—H4A···O4ii | 0.93 | 2.60 | 3.300 (5) | 133 |
C15—H15A···O2iii | 0.93 | 2.46 | 3.271 (7) | 146 |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) −x, −y+1, −z; (iii) x, −y+1, z+1/2. |
Funding information
QAW thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Individual Grant (1001/PFIZIK/8011080). HCK, WZN and AJS thank the Malaysian Government for MyBrain15 scholarships.
References
Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chidan Kumar, C. S., Loh, W.-S., Chandraju, S., Win, Y.-F., Tan, W. K., Quah, C. K. & Fun, H.-K. (2015). PLoS One, 10, e0119440. CrossRef Google Scholar
Gavezzotti, A. (2003). J. Phys. Chem. B, 107, 2344–2353. Web of Science CrossRef CAS Google Scholar
Gavezzotti, A. (2008). Mol. Phys. 106, 1473–1485. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
IUCr (2018). https://reference.iucr.org/dictionary/Polymorphism (accessed 22/11/2018). Google Scholar
Jiang, Z., Wang, J.-D., Lin, M.-J., Chen, N.-S. & Huang, J.-L. (2007). Acta Cryst. E63, o4385. CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Then, L. Y., Kwong, H. C., Quah, C. K., Chidan Kumar, C. S., Chia, T. S., Wong, Q. A., Chandraju, S., Karthick, T., Win, Y.-F., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2018). Z. Kristallogr. 233, 803–816. CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.