research communications
and Hirshfeld surface analysis of 3,4-dihydro-2-(2,4-dioxo-6-methylpyran-3-ylidene)-4-(4-pyridin-4-yl)-1,5-benzodiazepine
aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elghayatilhoussaine2018@gmail.com
The title compound, C20H17N3O3 [systematic name: 2-(6-methyl-2,4-dioxopyran-3-ylidene)-4-(pyridin-4-yl)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine], is built up from a benzodiazepine ring system linked to pyridyl and pendant dihydropyran rings, where the benzene and pyridyl rings are oriented at a dihedral angle of 43.36 (6)°. The pendant dihydropyran ring is rotationally disordered in a 90.899 (3):0.101 (3) ratio with the orientation of each component largely determined by intramolecular N—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds. In the crystal, molecules are linked via pairs of weak intermolecular N—HDiazp⋯ODhydp hydrogen bonds, forming inversion-related dimers with R22(26) ring motifs. The dimers are further connected along the b-axis direction by π–π stacking interactions between the pendant dihydropyran and pyridyl rings with centroid–centroid distances of 3.833 (3) Å and a dihedral angle of 14.51 (2)°. Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (50.1%), H⋯C/C⋯H (17.7%), H⋯O/O⋯H (16.8%), C⋯C (7.7%) and H⋯N/N⋯H (5.3%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing.
Keywords: crystal structure; hydrogen bond; π-stacking; benzodiazepine; Hirshfeld surface.
CCDC reference: 1884597
1. Chemical context
Diversely substituted 1,5-benzodiazepines and their derivatives embedded with a variety of functional groups are important biological agents and a significant amount of research activity has been directed towards this class of compounds. In fact, many 1,5-benzodiazepines are best known to possess biologically diverse activities such as anti-inflammatory, hypnotic, anti-HIV-1, anticonvulsant and antimicrobial (Roma et al., 1991; Kalkhambkar et al., 2008; Kudo, 1982; De Sarro et al., 1996; Kumar & Joshi, 2007). Various methods have been worked out for their synthesis (Dardouri et al., 2011; Chkirate et al., 2018; Sebhaoui et al., 2017). Benzodiazepine derivatives also find commercial use as dyes for acrylic fibers. The search for new heterocyclic systems including the 1,5-benzodiazepine moiety for their biological activities is therefore of much current importance (Tjiou et al., 2005; Keita et al., 2003; Jabli et al., 2009). In this context, we report herein the synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis of the title compound.
2. Structural commentary
The title compound, (I), is built up from a benzodiazepine ring system linked to pyridyl and pendant dihydropyran rings (Fig. 1). The benzene ring A (C1–C6) is oriented at a dihedral angle of 43.36 (6)° with respect to the pyridyl ring C (N3/C10–C14). The pendant dihydropyran ring D (O1/C15–C19) shows a 90.899 (3):0.101 (3) disorder with the minor component rotated by 174.6 (4)° from the orientation of the major component. The orientation of both components is largely determined by intramolecular N2—H2A⋯O2 or N2—H2A⋯O3A hydrogen bonds (Table 1 and Fig. 1). A puckering analysis of the major orientation of the pendant dihydropyran ring D gave the parameters Q = 0.127 (2) Å, θ = 108.0 (8)° and φ = 79.6 (8)° while for the seven-membered diazepine ring B (N1/N2/C1/C6–C9), the parameters are Q(2) = 0.8888 (13) Å, Q(3) = 0.2070 (13) Å, φ(2) = 201.03 (8)° and φ(3) = 293.9 (4)°.
3. Supramolecular features
In the crystal, the molecules are linked via pairs of weak intermolecular N—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds (Table 1), forming inversion-related dimers with R22(26) ring motifs. The dimers are further connected along the b-axis direction (Fig. 2) by π–π-stacking interactions between the pendant dihydropyran and pyridyl rings [Cg1⋯Cg2 (x, 1 + y, z) = 3.833 (3) Å with a dihedral angle of 14.51 (2)°; Cg1 and Cg2 are the centroids of rings D (O1/C15–C19) and C (N3/C10–C14), respectively].
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white area indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue areas indicate distances shorter (in close contact) or longer (distinct contact), respectively, than the van der Waals radii (Venkatesan et al., 2016). The bright-red spots appearing near O2 and hydrogen atoms H1 and H2A indicate their roles as the respective donors and/or acceptors in the dominant N—H⋯O hydrogen bonds. The shape-index of the HS is a tool for visualizing the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 4 clearly suggest that there are π–π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 5(a), and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, H⋯N/N⋯H, N⋯C/C⋯N, O⋯C/C⋯O, N⋯N, N⋯O/O⋯N and O⋯O contacts (McKinnon et al., 2007) are illustrated in Fig. 5(b)–(k), respectively, together with their relative contributions to the Hirshfeld surface. H⋯H interactions are the most important, contributing 50.1% to the overall crystal packing, and are shown in Fig. 5(b) as widely scattered points of high density because of the large hydrogen content of the molecule. The two pairs of thin and thick spikes with the tips at de + di ∼2.27 and 1.95 Å, respectively, in Fig. 5(b) are due to the short interatomic H⋯H contacts (Table 2). In the absence of C—H⋯π interactions in the crystal, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (17.7% contribution to the HS) have a symmetrical distribution of points, Fig. 5(c), with the tips at de + di ∼2.82 Å. The two pairs of thin and thick spikes with the tips at de + di = 2.67 and 2.40 Å, respectively, in Fig. 5(d) are due to the N—H⋯O hydrogen bonds (Table 1), as well as the short interatomic H⋯O/O⋯H contacts (Table 2). The C⋯C [Fig. 5(e)] contacts contribute 7.0% to the HS and have symmetrical distribution of points, with the tips at de + di = 3.24 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯N/N⋯H contacts [5.3% contribution; Fig. 5(f)] has a pair of spikes with the tips at de + di = 1.49 Å. Finally, the N⋯C/C⋯N contacts [Fig. 5(g)] contribute 1.5% to the HS and are viewed as a symmetrical distribution of points with pairs of thin edges at de + di = 3.36 Å.
The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C and H⋯N/N⋯H interactions in Fig. 6(a)–(e), respectively.
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Synthesis and crystallization
To a suspension of 3-[1-(2-aminophenylimino)ethyl]-4-hydroxy-6-methylpyran-2-one (4 mmol) in ethanol (40 ml) were added 1.5 equivalents of 2-pyridinecarboxaldehyde and three drops of trifluoroacetic acid (TFA). The mixture was refluxed for 4 h. Cooling to room temperature induced the precipitation of a yellow solid, which was filtered off and washed with 20 ml of cold ethanol. Cooling to room temperature induced the precipitation of a yellow solid, which was filtered and washed with 20 ml of cold ethanol. Crystals suitable for X-ray analysis were obrained by recrystallization of the product from ethanol solution.
6. Refinement
Crystal data, data collection and structure . The pendant dihydropyran ring is rotationally disordered in a 90.899 (3):0.101 (3) ratio. As a result of this disorder, the hydrogen atoms on C17 and C20 and their disordered counterparts were placed in calculated positions and included as riding contributions. The alternate orientation of this ring was treated as a rigid group having the same geometry as the major component. The remaining H atoms were located in a difference-Fourier map and were freely refined.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1884597
https://doi.org/10.1107/S2056989018017565/lh5888sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018017565/lh5888Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017565/lh5888Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017565/lh5888Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C20H17N3O3 | F(000) = 728 |
Mr = 347.36 | Dx = 1.419 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.509 (9) Å | Cell parameters from 9961 reflections |
b = 7.435 (6) Å | θ = 2.5–29.1° |
c = 21.367 (16) Å | µ = 0.10 mm−1 |
β = 103.041 (15)° | T = 100 K |
V = 1626 (2) Å3 | Block, orange |
Z = 4 | 0.31 × 0.23 × 0.21 mm |
Bruker SMART APEX CCD diffractometer | 4368 independent reflections |
Radiation source: fine-focus sealed tube | 3541 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.1°, θmin = 2.0° |
φ and ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −10→10 |
Tmin = 0.84, Tmax = 0.98 | l = −29→29 |
30100 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: mixed |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0814P)2 + 0.2932P] where P = (Fo2 + 2Fc2)/3 |
4368 reflections | (Δ/σ)max < 0.001 |
294 parameters | Δρmax = 0.45 e Å−3 |
1 restraint | Δρmin = −0.20 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, colllected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 15 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Because of the slight disorder of the dihydropyranone ring, the hydrogen atoms on C17 and C20 and their disordered counterparts were placed in calculated positions and included as riding contributions. The alternate orientation of this ring was treated as a rigid group having the same geometry as the major component. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.50328 (10) | 0.27877 (14) | 0.42584 (5) | 0.0216 (2) | |
H1 | 0.5339 (17) | 0.167 (2) | 0.4311 (8) | 0.035 (4)* | |
N2 | 0.46375 (10) | 0.66567 (14) | 0.42864 (5) | 0.0202 (2) | |
H2A | 0.4561 (17) | 0.766 (2) | 0.4531 (8) | 0.035 (4)* | |
N3 | 0.47709 (10) | 0.02629 (13) | 0.33122 (5) | 0.0210 (2) | |
C1 | 0.58855 (12) | 0.58808 (16) | 0.43268 (6) | 0.0195 (2) | |
C2 | 0.69547 (14) | 0.70495 (18) | 0.44401 (6) | 0.0259 (3) | |
H2 | 0.6776 (16) | 0.831 (2) | 0.4477 (8) | 0.030 (4)* | |
C3 | 0.82095 (14) | 0.6385 (2) | 0.45086 (7) | 0.0303 (3) | |
H3 | 0.8932 (19) | 0.721 (3) | 0.4594 (9) | 0.046 (5)* | |
C4 | 0.83965 (13) | 0.4535 (2) | 0.44650 (7) | 0.0283 (3) | |
H4 | 0.9285 (17) | 0.409 (2) | 0.4496 (8) | 0.034 (4)* | |
C5 | 0.73377 (13) | 0.33768 (18) | 0.43610 (6) | 0.0231 (3) | |
H5 | 0.7506 (15) | 0.206 (2) | 0.4327 (7) | 0.026 (4)* | |
C6 | 0.60577 (12) | 0.40117 (16) | 0.42916 (5) | 0.0189 (2) | |
C7 | 0.38159 (12) | 0.28441 (16) | 0.37634 (6) | 0.0210 (3) | |
H7 | 0.3049 (15) | 0.268 (2) | 0.3989 (7) | 0.023 (4)* | |
C8 | 0.36516 (13) | 0.46755 (16) | 0.34292 (6) | 0.0211 (3) | |
H8A | 0.2883 (14) | 0.4618 (19) | 0.3074 (8) | 0.018 (3)* | |
H8B | 0.4473 (17) | 0.490 (2) | 0.3250 (8) | 0.029 (4)* | |
C9 | 0.35388 (12) | 0.61587 (16) | 0.38909 (6) | 0.0208 (3) | |
C10 | 0.37298 (12) | 0.13296 (15) | 0.32695 (6) | 0.0195 (2) | |
C11 | 0.25688 (12) | 0.10935 (17) | 0.28020 (6) | 0.0220 (3) | |
H11 | 0.1812 (15) | 0.193 (2) | 0.2789 (8) | 0.028 (4)* | |
C12 | 0.24929 (13) | −0.02918 (17) | 0.23603 (6) | 0.0239 (3) | |
H12 | 0.1706 (16) | −0.050 (2) | 0.2033 (8) | 0.024 (4)* | |
C13 | 0.35724 (13) | −0.14053 (17) | 0.24005 (6) | 0.0228 (3) | |
H13 | 0.3539 (16) | −0.241 (2) | 0.2093 (8) | 0.033 (4)* | |
C14 | 0.46719 (13) | −0.10813 (16) | 0.28802 (6) | 0.0214 (3) | |
H14 | 0.5450 (16) | −0.187 (2) | 0.2937 (8) | 0.029 (4)* | |
O1 | 0.00669 (11) | 0.75916 (18) | 0.33696 (7) | 0.0284 (3) | 0.899 (3) |
O2 | 0.33642 (11) | 0.94052 (19) | 0.46059 (7) | 0.0210 (3) | 0.899 (3) |
O3 | 0.0900 (2) | 0.4903 (3) | 0.32931 (15) | 0.0353 (6) | 0.899 (3) |
C15 | 0.23602 (14) | 0.7124 (2) | 0.38727 (7) | 0.0179 (3) | 0.899 (3) |
C16 | 0.23681 (15) | 0.8804 (2) | 0.42163 (7) | 0.0184 (3) | 0.899 (3) |
C17 | 0.11731 (18) | 0.9845 (2) | 0.40703 (8) | 0.0223 (3) | 0.899 (3) |
H17 | 0.113329 | 1.095824 | 0.428316 | 0.027* | 0.899 (3) |
C18 | 0.01213 (16) | 0.9261 (2) | 0.36392 (8) | 0.0243 (3) | 0.899 (3) |
C19 | 0.11368 (19) | 0.6417 (3) | 0.35030 (13) | 0.0260 (3) | 0.899 (3) |
C20 | −0.11056 (16) | 1.0286 (2) | 0.33797 (8) | 0.0328 (4) | 0.899 (3) |
H20A | −0.105441 | 1.146502 | 0.358885 | 0.049* | 0.899 (3) |
H20B | −0.185256 | 0.961717 | 0.346453 | 0.049* | 0.899 (3) |
H20C | −0.121537 | 1.044791 | 0.291544 | 0.049* | 0.899 (3) |
C15A | 0.2351 (8) | 0.6865 (16) | 0.4003 (7) | 0.0179 (3) | 0.101 (3) |
C16A | 0.1172 (11) | 0.6489 (15) | 0.3522 (8) | 0.0184 (3) | 0.101 (3) |
C17A | 0.0191 (9) | 0.7874 (16) | 0.3410 (7) | 0.0223 (3) | 0.101 (3) |
H17A | −0.059812 | 0.768813 | 0.309749 | 0.027* | 0.101 (3) |
C18A | 0.0373 (7) | 0.9429 (13) | 0.3741 (5) | 0.0243 (3) | 0.101 (3) |
O1A | 0.1528 (8) | 0.9856 (13) | 0.4151 (5) | 0.0284 (3) | 0.101 (3) |
C19A | 0.2584 (7) | 0.8647 (17) | 0.4267 (6) | 0.0260 (3) | 0.101 (3) |
C20A | −0.0603 (10) | 1.0911 (14) | 0.3745 (7) | 0.0328 (4) | 0.101 (3) |
H20D | −0.148892 | 1.041236 | 0.363612 | 0.049* | 0.101 (3) |
H20E | −0.051332 | 1.182826 | 0.342868 | 0.049* | 0.101 (3) |
H20F | −0.044162 | 1.145564 | 0.417348 | 0.049* | 0.101 (3) |
O2A | 0.0956 (15) | 0.5021 (19) | 0.3224 (11) | 0.0210 (3) | 0.101 (3) |
O3A | 0.3599 (8) | 0.926 (2) | 0.4586 (9) | 0.0353 (6) | 0.101 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0252 (5) | 0.0167 (5) | 0.0189 (5) | −0.0021 (4) | −0.0032 (4) | 0.0025 (4) |
N2 | 0.0239 (5) | 0.0173 (5) | 0.0180 (5) | 0.0024 (4) | 0.0017 (4) | −0.0015 (4) |
N3 | 0.0227 (5) | 0.0182 (5) | 0.0212 (5) | −0.0007 (4) | 0.0032 (4) | −0.0006 (4) |
C1 | 0.0216 (6) | 0.0193 (5) | 0.0159 (5) | 0.0002 (4) | 0.0006 (4) | −0.0011 (4) |
C2 | 0.0303 (7) | 0.0206 (6) | 0.0238 (6) | −0.0047 (5) | −0.0004 (5) | −0.0012 (5) |
C3 | 0.0253 (7) | 0.0344 (7) | 0.0280 (7) | −0.0087 (6) | −0.0007 (5) | 0.0005 (6) |
C4 | 0.0222 (7) | 0.0373 (7) | 0.0235 (6) | 0.0011 (5) | 0.0013 (5) | −0.0001 (5) |
C5 | 0.0252 (6) | 0.0251 (6) | 0.0175 (5) | 0.0040 (5) | 0.0017 (5) | −0.0002 (5) |
C6 | 0.0229 (6) | 0.0198 (5) | 0.0124 (5) | 0.0000 (4) | 0.0007 (4) | −0.0004 (4) |
C7 | 0.0234 (6) | 0.0179 (5) | 0.0190 (5) | 0.0003 (4) | −0.0004 (5) | −0.0007 (4) |
C8 | 0.0253 (6) | 0.0187 (5) | 0.0175 (5) | 0.0025 (4) | 0.0010 (5) | −0.0015 (4) |
C9 | 0.0258 (6) | 0.0168 (5) | 0.0188 (5) | 0.0009 (4) | 0.0027 (5) | −0.0003 (4) |
C10 | 0.0225 (6) | 0.0159 (5) | 0.0194 (5) | −0.0023 (4) | 0.0035 (4) | −0.0006 (4) |
C11 | 0.0212 (6) | 0.0194 (6) | 0.0239 (6) | −0.0009 (4) | 0.0019 (5) | −0.0014 (5) |
C12 | 0.0251 (6) | 0.0229 (6) | 0.0211 (6) | −0.0012 (5) | 0.0001 (5) | −0.0026 (5) |
C13 | 0.0282 (6) | 0.0199 (6) | 0.0200 (6) | −0.0016 (5) | 0.0050 (5) | −0.0032 (4) |
C14 | 0.0236 (6) | 0.0190 (5) | 0.0219 (6) | 0.0001 (5) | 0.0058 (5) | −0.0003 (5) |
O1 | 0.0218 (5) | 0.0272 (7) | 0.0338 (6) | 0.0046 (4) | 0.0013 (4) | −0.0068 (5) |
O2 | 0.0261 (6) | 0.0166 (5) | 0.0190 (5) | 0.0032 (4) | 0.0021 (5) | −0.0011 (4) |
O3 | 0.0278 (6) | 0.0271 (7) | 0.0482 (13) | −0.0006 (5) | 0.0028 (6) | −0.0138 (8) |
C15 | 0.0243 (6) | 0.0143 (6) | 0.0149 (8) | 0.0022 (5) | 0.0038 (5) | 0.0020 (5) |
C16 | 0.0250 (7) | 0.0151 (6) | 0.0150 (6) | 0.0020 (5) | 0.0042 (5) | 0.0020 (5) |
C17 | 0.0266 (8) | 0.0180 (6) | 0.0235 (7) | 0.0045 (6) | 0.0085 (7) | −0.0001 (5) |
C18 | 0.0242 (7) | 0.0244 (7) | 0.0253 (7) | 0.0058 (6) | 0.0078 (6) | −0.0005 (5) |
C19 | 0.0234 (7) | 0.0254 (7) | 0.0284 (7) | 0.0046 (6) | 0.0044 (6) | −0.0043 (6) |
C20 | 0.0268 (8) | 0.0368 (9) | 0.0333 (8) | 0.0117 (6) | 0.0033 (6) | −0.0006 (7) |
C15A | 0.0243 (6) | 0.0143 (6) | 0.0149 (8) | 0.0022 (5) | 0.0038 (5) | 0.0020 (5) |
C16A | 0.0250 (7) | 0.0151 (6) | 0.0150 (6) | 0.0020 (5) | 0.0042 (5) | 0.0020 (5) |
C17A | 0.0266 (8) | 0.0180 (6) | 0.0235 (7) | 0.0045 (6) | 0.0085 (7) | −0.0001 (5) |
C18A | 0.0242 (7) | 0.0244 (7) | 0.0253 (7) | 0.0058 (6) | 0.0078 (6) | −0.0005 (5) |
O1A | 0.0218 (5) | 0.0272 (7) | 0.0338 (6) | 0.0046 (4) | 0.0013 (4) | −0.0068 (5) |
C19A | 0.0234 (7) | 0.0254 (7) | 0.0284 (7) | 0.0046 (6) | 0.0044 (6) | −0.0043 (6) |
C20A | 0.0268 (8) | 0.0368 (9) | 0.0333 (8) | 0.0117 (6) | 0.0033 (6) | −0.0006 (7) |
O2A | 0.0261 (6) | 0.0166 (5) | 0.0190 (5) | 0.0032 (4) | 0.0021 (5) | −0.0011 (4) |
O3A | 0.0278 (6) | 0.0271 (7) | 0.0482 (13) | −0.0006 (5) | 0.0028 (6) | −0.0138 (8) |
N1—C6 | 1.3996 (18) | C12—H12 | 0.967 (16) |
N1—C7 | 1.4648 (18) | C13—C14 | 1.3818 (19) |
N1—H1 | 0.889 (18) | C13—H13 | 0.987 (17) |
N2—C9 | 1.3206 (18) | C14—H14 | 0.992 (16) |
N2—C1 | 1.4175 (19) | O1—C18 | 1.364 (2) |
N2—H2A | 0.928 (18) | O1—C19 | 1.401 (2) |
N3—C10 | 1.3377 (18) | O2—C16 | 1.2630 (18) |
N3—C14 | 1.3485 (17) | O3—C19 | 1.217 (2) |
C1—C2 | 1.3976 (19) | C15—C19 | 1.447 (2) |
C1—C6 | 1.406 (2) | C15—C16 | 1.448 (2) |
C2—C3 | 1.385 (2) | C16—C17 | 1.448 (2) |
C2—H2 | 0.959 (17) | C17—C18 | 1.341 (2) |
C3—C4 | 1.395 (2) | C17—H17 | 0.9500 |
C3—H3 | 0.96 (2) | C18—C20 | 1.493 (2) |
C4—C5 | 1.385 (2) | C20—H20A | 0.9800 |
C4—H4 | 0.980 (17) | C20—H20B | 0.9800 |
C5—C6 | 1.402 (2) | C20—H20C | 0.9800 |
C5—H5 | 0.997 (16) | C15A—C19A | 1.4397 |
C7—C8 | 1.5291 (19) | C15A—C16A | 1.4466 |
C7—C10 | 1.5319 (18) | C16A—O2A | 1.2580 |
C7—H7 | 1.036 (16) | C16A—C17A | 1.4385 |
C8—C9 | 1.5020 (18) | C17A—C18A | 1.3459 |
C8—H8A | 0.976 (15) | C17A—H17A | 0.9500 |
C8—H8B | 1.033 (17) | C18A—O1A | 1.3649 |
C9—C15A | 1.423 (3) | C18A—C20A | 1.5066 |
C9—C15 | 1.4246 (19) | O1A—C19A | 1.4057 |
C10—C11 | 1.4026 (19) | C19A—O3A | 1.2185 |
C11—C12 | 1.3870 (19) | C20A—H20D | 0.9800 |
C11—H11 | 1.006 (16) | C20A—H20E | 0.9800 |
C12—C13 | 1.391 (2) | C20A—H20F | 0.9799 |
O2···C7i | 3.22 | N3···H1 | 2.330 (16) |
O2···N1i | 3.25 | N3···H13vii | 2.755 (17) |
O2···N2 | 2.62 | C5···C16iii | 3.40 |
O2···C2ii | 3.40 | C7···C16vi | 3.60 |
O2···C10i | 3.29 | C9···C14i | 3.38 |
O2···N1iii | 3.09 | C10···C16vi | 3.31 |
O2···C5iii | 3.23 | C11···C16vi | 3.52 |
O3···C8 | 2.85 | C11···C17vi | 3.49 |
O3···C7 | 3.37 | C1···H8B | 2.547 (17) |
O1···H11iv | 2.84 | C4···H20Aviii | 3.09 |
O2···H1i | 2.85 | C5···H20Aviii | 2.98 |
O2···H1iii | 2.54 | C6···H8B | 2.548 (17) |
O2···H2A | 1.84 | C8···H11 | 2.930 (16) |
O2···H5iii | 2.86 | C11···H8A | 2.688 (15) |
O2···H7i | 2.75 | C13···H8Bix | 2.895 (18) |
O2···H2ii | 2.62 | C14···H8Bix | 2.855 (17) |
O3···H8A | 2.25 | C16···H2A | 2.40 |
O3···H11 | 2.73 | C17···H7i | 2.92 |
O3···H12iv | 2.69 | C19···H8A | 2.60 |
O3···H20Cv | 2.71 | H1···H5 | 2.29 (2) |
N1···O2vi | 3.25 | H1···H2Aiii | 2.50 (2) |
N1···N2 | 2.909 (3) | H2···H2A | 2.41 (3) |
N1···N3 | 2.727 (3) | H3···H4x | 2.57 (3) |
N1···O2iii | 3.09 | H5···H20Aviii | 2.4596 |
N1···N2iii | 3.078 (3) | H7···H17vi | 2.58 |
N2···O2 | 2.62 | H8A···H11 | 2.31 (2) |
N2···C6iii | 3.319 (3) | H8A···H20Cv | 2.50 |
N1···H2Aiii | 2.547 (17) | H17···H20A | 2.47 |
C6—N1—C7 | 123.68 (11) | C14—C13—C12 | 118.41 (12) |
C6—N1—H1 | 110.4 (11) | C14—C13—H13 | 121.5 (10) |
C7—N1—H1 | 110.5 (11) | C12—C13—H13 | 120.1 (10) |
C9—N2—C1 | 126.03 (11) | N3—C14—C13 | 124.02 (12) |
C9—N2—H2A | 114.4 (11) | N3—C14—H14 | 114.9 (10) |
C1—N2—H2A | 119.4 (11) | C13—C14—H14 | 121.1 (10) |
C10—N3—C14 | 117.20 (11) | C18—O1—C19 | 121.73 (12) |
C2—C1—C6 | 121.05 (12) | C9—C15—C19 | 119.45 (14) |
C2—C1—N2 | 117.01 (12) | C9—C15—C16 | 121.02 (13) |
C6—C1—N2 | 121.85 (11) | C19—C15—C16 | 119.53 (12) |
C3—C2—C1 | 120.38 (13) | O2—C16—C17 | 120.18 (13) |
C3—C2—H2 | 122.5 (10) | O2—C16—C15 | 123.26 (12) |
C1—C2—H2 | 117.1 (10) | C17—C16—C15 | 116.50 (12) |
C2—C3—C4 | 119.32 (13) | C18—C17—C16 | 121.03 (13) |
C2—C3—H3 | 118.9 (12) | C18—C17—H17 | 119.5 |
C4—C3—H3 | 121.8 (11) | C16—C17—H17 | 119.5 |
C5—C4—C3 | 120.23 (13) | C17—C18—O1 | 122.28 (13) |
C5—C4—H4 | 121.3 (10) | C17—C18—C20 | 126.79 (15) |
C3—C4—H4 | 118.5 (10) | O1—C18—C20 | 110.93 (14) |
C4—C5—C6 | 121.66 (13) | O3—C19—O1 | 114.41 (14) |
C4—C5—H5 | 118.1 (9) | O3—C19—C15 | 128.34 (14) |
C6—C5—H5 | 120.3 (9) | O1—C19—C15 | 117.24 (14) |
N1—C6—C5 | 119.71 (12) | C18—C20—H20A | 109.5 |
N1—C6—C1 | 122.59 (12) | C18—C20—H20B | 109.5 |
C5—C6—C1 | 117.35 (11) | H20A—C20—H20B | 109.5 |
N1—C7—C8 | 110.54 (10) | C18—C20—H20C | 109.5 |
N1—C7—C10 | 112.50 (10) | H20A—C20—H20C | 109.5 |
C8—C7—C10 | 110.48 (11) | H20B—C20—H20C | 109.5 |
N1—C7—H7 | 107.7 (9) | C9—C15A—C19A | 109.1 (7) |
C8—C7—H7 | 107.9 (8) | C9—C15A—C16A | 116.9 (8) |
C10—C7—H7 | 107.5 (8) | C19A—C15A—C16A | 119.9 |
C9—C8—C7 | 111.37 (11) | O2A—C16A—C17A | 119.7 |
C9—C8—H8A | 111.6 (9) | O2A—C16A—C15A | 123.7 |
C7—C8—H8A | 108.1 (8) | C17A—C16A—C15A | 116.5 |
C9—C8—H8B | 108.8 (9) | C18A—C17A—C16A | 121.0 |
C7—C8—H8B | 107.4 (9) | C18A—C17A—H17A | 119.5 |
H8A—C8—H8B | 109.4 (13) | C16A—C17A—H17A | 119.5 |
N2—C9—C15A | 117.6 (6) | C17A—C18A—O1A | 122.5 |
N2—C9—C15 | 120.36 (12) | C17A—C18A—C20A | 128.0 |
N2—C9—C8 | 116.04 (11) | O1A—C18A—C20A | 109.5 |
C15A—C9—C8 | 125.7 (6) | C18A—O1A—C19A | 121.2 |
C15—C9—C8 | 123.30 (12) | O3A—C19A—O1A | 114.5 |
N3—C10—C11 | 122.76 (12) | O3A—C19A—C15A | 128.0 |
N3—C10—C7 | 117.94 (11) | O1A—C19A—C15A | 117.4 |
C11—C10—C7 | 119.29 (11) | C18A—C20A—H20D | 109.5 |
C12—C11—C10 | 118.99 (12) | C18A—C20A—H20E | 109.5 |
C12—C11—H11 | 121.2 (9) | H20D—C20A—H20E | 109.5 |
C10—C11—H11 | 119.8 (9) | C18A—C20A—H20F | 109.5 |
C11—C12—C13 | 118.62 (12) | H20D—C20A—H20F | 109.5 |
C11—C12—H12 | 121.3 (9) | H20E—C20A—H20F | 109.5 |
C13—C12—H12 | 120.0 (9) | ||
C9—N2—C1—C2 | 142.39 (13) | N2—C9—C15—C16 | 8.7 (2) |
C9—N2—C1—C6 | −41.15 (18) | C8—C9—C15—C16 | −164.78 (12) |
C6—C1—C2—C3 | 1.20 (19) | C9—C15—C16—O2 | −8.5 (2) |
N2—C1—C2—C3 | 177.69 (12) | C19—C15—C16—O2 | 171.68 (16) |
C1—C2—C3—C4 | −0.2 (2) | C9—C15—C16—C17 | 168.60 (13) |
C2—C3—C4—C5 | −0.7 (2) | C19—C15—C16—C17 | −11.2 (2) |
C3—C4—C5—C6 | 0.5 (2) | O2—C16—C17—C18 | 177.40 (14) |
C7—N1—C6—C5 | −130.76 (13) | C15—C16—C17—C18 | 0.2 (2) |
C7—N1—C6—C1 | 56.17 (17) | C16—C17—C18—O1 | 7.3 (2) |
C4—C5—C6—N1 | −172.95 (11) | C16—C17—C18—C20 | −171.50 (15) |
C4—C5—C6—C1 | 0.47 (17) | C19—O1—C18—C17 | −3.3 (2) |
C2—C1—C6—N1 | 171.90 (11) | C19—O1—C18—C20 | 175.62 (14) |
N2—C1—C6—N1 | −4.42 (18) | C18—O1—C19—O3 | 171.40 (14) |
C2—C1—C6—C5 | −1.32 (17) | C18—O1—C19—C15 | −7.8 (2) |
N2—C1—C6—C5 | −177.64 (11) | C9—C15—C19—O3 | 16.0 (3) |
C6—N1—C7—C8 | −16.96 (16) | C16—C15—C19—O3 | −164.19 (17) |
C6—N1—C7—C10 | 107.08 (14) | C9—C15—C19—O1 | −164.88 (14) |
N1—C7—C8—C9 | −63.01 (14) | C16—C15—C19—O1 | 14.9 (3) |
C10—C7—C8—C9 | 171.80 (10) | N2—C9—C15A—C19A | 32.4 (8) |
C1—N2—C9—C15A | 168.4 (6) | C8—C9—C15A—C19A | −157.9 (5) |
C1—N2—C9—C15 | −176.24 (12) | N2—C9—C15A—C16A | 172.6 (5) |
C1—N2—C9—C8 | −2.34 (18) | C8—C9—C15A—C16A | −17.7 (8) |
C7—C8—C9—N2 | 76.22 (14) | C9—C15A—C16A—O2A | 37.2 (8) |
C7—C8—C9—C15A | −93.7 (6) | C19A—C15A—C16A—O2A | 172.9 |
C7—C8—C9—C15 | −110.09 (14) | C9—C15A—C16A—C17A | −145.4 (8) |
C14—N3—C10—C11 | 0.16 (18) | C19A—C15A—C16A—C17A | −9.7 |
C14—N3—C10—C7 | 178.97 (11) | O2A—C16A—C17A—C18A | 177.2 |
N1—C7—C10—N3 | −5.14 (15) | C15A—C16A—C17A—C18A | −0.3 |
C8—C7—C10—N3 | 118.93 (12) | C16A—C17A—C18A—O1A | 6.5 |
N1—C7—C10—C11 | 173.71 (11) | C16A—C17A—C18A—C20A | −171.8 |
C8—C7—C10—C11 | −62.22 (15) | C17A—C18A—O1A—C19A | −2.4 |
N3—C10—C11—C12 | −0.56 (19) | C20A—C18A—O1A—C19A | 176.1 |
C7—C10—C11—C12 | −179.35 (11) | C18A—O1A—C19A—O3A | 172.4 |
C10—C11—C12—C13 | 0.40 (19) | C18A—O1A—C19A—C15A | −7.6 |
C11—C12—C13—C14 | 0.11 (19) | C9—C15A—C19A—O3A | −27.6 (8) |
C10—N3—C14—C13 | 0.40 (18) | C16A—C15A—C19A—O3A | −166.4 |
C12—C13—C14—N3 | −0.54 (19) | C9—C15A—C19A—O1A | 152.3 (8) |
N2—C9—C15—C19 | −171.57 (17) | C16A—C15A—C19A—O1A | 13.5 |
C8—C9—C15—C19 | 15.0 (2) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, y+1/2, −z+1/2; (v) −x, y−1/2, −z+1/2; (vi) x, y−1, z; (vii) −x+1, y+1/2, −z+1/2; (viii) x+1, y−1, z; (ix) −x+1, y−1/2, −z+1/2; (x) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2iii | 0.889 (18) | 2.536 (18) | 3.089 (2) | 121.0 (14) |
N2—H2A···O2 | 0.928 (18) | 1.836 (18) | 2.616 (2) | 140.1 (15) |
N2—H2A···O3A | 0.928 (18) | 1.58 (2) | 2.382 (15) | 142.0 (17) |
Symmetry code: (iii) −x+1, −y+1, −z+1. |
Funding information
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chkirate, K., Sebbar, N. K., Karrouchi, K. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 1–27. Google Scholar
Dardouri, R., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o674. Web of Science CrossRef IUCr Journals Google Scholar
De Sarro, G., Gitto, R., Rizzo, M., Zappia, M. & De Sarro, A. (1996). Gen. Pharmacol. 27, 935–941. CrossRef PubMed Web of Science Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jabli, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o3150. Web of Science CrossRef IUCr Journals Google Scholar
Kalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178–2188. Web of Science CrossRef PubMed CAS Google Scholar
Keita, A., Lazrak, F., Essassi, E. M., Alaoui, I. C., Rodi, Y. K., Bellan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon, 178, 1541–1548. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49–64. CrossRef PubMed Web of Science Google Scholar
Kumar, R. & Joshi, Y. C. (2007). Arkivoc, XIII, 142–149. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Roma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489–496. CrossRef CAS Web of Science Google Scholar
Sebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171057. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tjiou, E. M., Lhoussaine, E. G., Virieux, D. & Fruchier, A. (2005). Magn. Reson. Chem. 43, 557–562. Web of Science CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.