research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3,4-di­hydro-2-(2,4-dioxo-6-methylpyran-3-yl­idene)-4-(4-pyridin-4-yl)-1,5-benzodiazepine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elghayatilhoussaine2018@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 23 November 2018; accepted 11 December 2018; online 1 January 2019)

The title compound, C20H17N3O3 [systematic name: 2-(6-methyl-2,4-dioxo­pyran-3-yl­idene)-4-(pyridin-4-yl)-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepine], is built up from a benzodiazepine ring system linked to pyridyl and pendant di­hydro­pyran rings, where the benzene and pyridyl rings are oriented at a dihedral angle of 43.36 (6)°. The pendant di­hydro­pyran ring is rotationally disordered in a 90.899 (3):0.101 (3) ratio with the orientation of each component largely determined by intra­molecular N—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = di­hydro­pyran) hydrogen bonds. In the crystal, mol­ecules are linked via pairs of weak inter­molecular N—HDiazp⋯ODhydp hydrogen bonds, forming inversion-related dimers with R22(26) ring motifs. The dimers are further connected along the b-axis direction by ππ stacking inter­actions between the pendant di­hydro­pyran and pyridyl rings with centroid–centroid distances of 3.833 (3) Å and a dihedral angle of 14.51 (2)°. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (50.1%), H⋯C/C⋯H (17.7%), H⋯O/O⋯H (16.8%), C⋯C (7.7%) and H⋯N/N⋯H (5.3%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

1. Chemical context

Diversely substituted 1,5-benzodiazepines and their derivatives embedded with a variety of functional groups are important biological agents and a significant amount of research activity has been directed towards this class of compounds. In fact, many 1,5-benzodiazepines are best known to possess biologically diverse activities such as anti-inflammatory, hypnotic, anti-HIV-1, anti­convulsant and anti­microbial (Roma et al., 1991[Roma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489-496.]; Kalkhambkar et al., 2008[Kalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178-2188.]; Kudo, 1982[Kudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49-64.]; De Sarro et al., 1996[De Sarro, G., Gitto, R., Rizzo, M., Zappia, M. & De Sarro, A. (1996). Gen. Pharmacol. 27, 935-941.]; Kumar & Joshi, 2007[Kumar, R. & Joshi, Y. C. (2007). Arkivoc, XIII, 142-149.]). Various methods have been worked out for their synthesis (Dardouri et al., 2011[Dardouri, R., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o674.]; Chkirate et al., 2018[Chkirate, K., Sebbar, N. K., Karrouchi, K. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 1-27.]; Sebhaoui et al., 2017[Sebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171057.]). Benzodiazepine derivatives also find commercial use as dyes for acrylic fibers. The search for new heterocyclic systems including the 1,5-benzodiazepine moiety for their biological activities is therefore of much current importance (Tjiou et al., 2005[Tjiou, E. M., Lhoussaine, E. G., Virieux, D. & Fruchier, A. (2005). Magn. Reson. Chem. 43, 557-562.]; Keita et al., 2003[Keita, A., Lazrak, F., Essassi, E. M., Alaoui, I. C., Rodi, Y. K., Bellan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon, 178, 1541-1548.]; Jabli et al., 2009[Jabli, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o3150.]). In this context, we report herein the synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis of the title compound.

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], is built up from a benzodiazepine ring system linked to pyridyl and pendant di­hydro­pyran rings (Fig. 1[link]). The benzene ring A (C1–C6) is oriented at a dihedral angle of 43.36 (6)° with respect to the pyridyl ring C (N3/C10–C14). The pendant di­hydro­pyran ring D (O1/C15–C19) shows a 90.899 (3):0.101 (3) disorder with the minor component rotated by 174.6 (4)° from the orientation of the major component. The orientation of both components is largely determined by intra­molecular N2—H2A⋯O2 or N2—H2A⋯O3A hydrogen bonds (Table 1[link] and Fig. 1[link]). A puckering analysis of the major orientation of the pendant di­hydro­pyran ring D gave the parameters Q = 0.127 (2) Å, θ = 108.0 (8)° and φ = 79.6 (8)° while for the seven-membered diazepine ring B (N1/N2/C1/C6–C9), the parameters are Q(2) = 0.8888 (13) Å, Q(3) = 0.2070 (13) Å, φ(2) = 201.03 (8)° and φ(3) = 293.9 (4)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2iii 0.889 (18) 2.536 (18) 3.089 (2) 121.0 (14)
N2—H2A⋯O2 0.928 (18) 1.836 (18) 2.616 (2) 140.1 (15)
N2—H2A⋯O3A 0.928 (18) 1.58 (2) 2.382 (15) 142.0 (17)
Symmetry code: (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids. Only the major orientation of the disordered di­hydro­pyran ring is shown.

3. Supra­molecular features

In the crystal, the mol­ecules are linked via pairs of weak inter­molecular N—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = di­hydro­pyran) hydrogen bonds (Table 1[link]), forming inversion-related dimers with R22(26) ring motifs. The dimers are further connected along the b-axis direction (Fig. 2[link]) by ππ-stacking inter­actions between the pendant di­hydro­pyran and pyridyl rings [Cg1⋯Cg2 (x, 1 + y, z) = 3.833 (3) Å with a dihedral angle of 14.51 (2)°; Cg1 and Cg2 are the centroids of rings D (O1/C15–C19) and C (N3/C10–C14), respectively].

[Figure 2]
Figure 2
Packing viewed along the a-axis direction. The inter­molecular N—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = di­hydro­pyran) hydrogen bonds and slipped ππ stacking inter­actions are shown, respectively, by blue and green dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white area indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue areas indicate distances shorter (in close contact) or longer (distinct contact), respectively, than the van der Waals radii (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625-636.]). The bright-red spots appearing near O2 and hydrogen atoms H1 and H2A indicate their roles as the respective donors and/or acceptors in the dominant N—H⋯O hydrogen bonds. The shape-index of the HS is a tool for visualizing the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 4[link] clearly suggest that there are ππ inter­actions in (I)[link]. The overall two-dimensional fingerprint plot, Fig. 5[link](a), and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C, H⋯N/N⋯H, N⋯C/C⋯N, O⋯C/C⋯O, N⋯N, N⋯O/O⋯N and O⋯O contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 5[link](b)–(k), respectively, together with their relative contributions to the Hirshfeld surface. H⋯H inter­actions are the most important, contributing 50.1% to the overall crystal packing, and are shown in Fig. 5[link](b) as widely scattered points of high density because of the large hydrogen content of the mol­ecule. The two pairs of thin and thick spikes with the tips at de + di ∼2.27 and 1.95 Å, respectively, in Fig. 5[link](b) are due to the short inter­atomic H⋯H contacts (Table 2[link]). In the absence of C—H⋯π inter­actions in the crystal, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (17.7% contribution to the HS) have a symmetrical distribution of points, Fig. 5[link](c), with the tips at de + di ∼2.82 Å. The two pairs of thin and thick spikes with the tips at de + di = 2.67 and 2.40 Å, respectively, in Fig. 5[link](d) are due to the N—H⋯O hydrogen bonds (Table 1[link]), as well as the short inter­atomic H⋯O/O⋯H contacts (Table 2[link]). The C⋯C [Fig. 5[link](e)] contacts contribute 7.0% to the HS and have symmetrical distribution of points, with the tips at de + di = 3.24 Å. The pair of characteristic wings in the fingerprint plot delineated into H⋯N/N⋯H contacts [5.3% contribution; Fig. 5[link](f)] has a pair of spikes with the tips at de + di = 1.49 Å. Finally, the N⋯C/C⋯N contacts [Fig. 5[link](g)] contribute 1.5% to the HS and are viewed as a symmetrical distribution of points with pairs of thin edges at de + di = 3.36 Å.

Table 2
Selected interatomic distances (Å)

O2⋯C7i 3.22 N3⋯H1 2.330 (16)
O2⋯N1i 3.25 N3⋯H13vii 2.755 (17)
O2⋯N2 2.62 C5⋯C16iii 3.40
O2⋯C2ii 3.40 C7⋯C16vi 3.60
O2⋯C10i 3.29 C9⋯C14i 3.38
O2⋯N1iii 3.09 C10⋯C16vi 3.31
O2⋯C5iii 3.23 C11⋯C16vi 3.52
O3⋯C8 2.85 C11⋯C17vi 3.49
O3⋯C7 3.37 C1⋯H8B 2.547 (17)
O1⋯H11iv 2.84 C4⋯H20Aviii 3.09
O2⋯H1i 2.85 C5⋯H20Aviii 2.98
O2⋯H1iii 2.54 C6⋯H8B 2.548 (17)
O2⋯H2A 1.84 C8⋯H11 2.930 (16)
O2⋯H5iii 2.86 C11⋯H8A 2.688 (15)
O2⋯H7i 2.75 C13⋯H8Bix 2.895 (18)
O2⋯H2ii 2.62 C14⋯H8Bix 2.855 (17)
O3⋯H8A 2.25 C16⋯H2A 2.40
O3⋯H11 2.73 C17⋯H7i 2.92
O3⋯H12iv 2.69 C19⋯H8A 2.60
O3⋯H20Cv 2.71 H1⋯H5 2.29 (2)
N1⋯O2vi 3.25 H1⋯H2Aiii 2.50 (2)
N1⋯N2 2.909 (3) H2⋯H2A 2.41 (3)
N1⋯N3 2.727 (3) H3⋯H4x 2.57 (3)
N1⋯O2iii 3.09 H5⋯H20Aviii 2.4596
N1⋯N2iii 3.078 (3) H7⋯H17vi 2.58
N2⋯O2 2.62 H8A⋯H11 2.31 (2)
N2⋯C6iii 3.319 (3) H8A⋯H20Cv 2.50
N1⋯H2Aiii 2.547 (17) H17⋯H20A 2.47
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) x, y-1, z; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) x+1, y-1, z; (ix) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (x) -x+2, -y+1, -z+1.
[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.2111 to 1.1395 a.u.
[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) C⋯C, (f) H⋯N/N⋯H, (g) N⋯C/C⋯N, (h) O⋯C/C ⋯ O, (i) N⋯N, (j) N⋯O/O⋯N and (k) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, C⋯C and H⋯N/N⋯H inter­actions in Fig. 6[link](a)–(e), respectively.

[Figure 6]
Figure 6
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H, (c) H ⋯ O/O⋯H, (d) C⋯C and (e) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

To a suspension of 3-[1-(2-amino­phenyl­imino)­eth­yl]-4-hy­droxy-6-methyl­pyran-2-one (4 mmol) in ethanol (40 ml) were added 1.5 equivalents of 2-pyridine­carboxaldehyde and three drops of tri­fluoro­acetic acid (TFA). The mixture was refluxed for 4 h. Cooling to room temperature induced the precipitation of a yellow solid, which was filtered off and washed with 20 ml of cold ethanol. Cooling to room temperature induced the precipitation of a yellow solid, which was filtered and washed with 20 ml of cold ethanol. Crystals suitable for X-ray analysis were obrained by recrystallization of the product from ethanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The pendant di­hydro­pyran ring is rotationally disordered in a 90.899 (3):0.101 (3) ratio. As a result of this disorder, the hydrogen atoms on C17 and C20 and their disordered counterparts were placed in calculated positions and included as riding contributions. The alternate orientation of this ring was treated as a rigid group having the same geometry as the major component. The remaining H atoms were located in a difference-Fourier map and were freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C20H17N3O3
Mr 347.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.509 (9), 7.435 (6), 21.367 (16)
β (°) 103.041 (15)
V3) 1626 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.31 × 0.23 × 0.21
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.84, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 30100, 4368, 3541
Rint 0.038
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.07
No. of reflections 4368
No. of parameters 294
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3,4-Dihydro-2-(2,4-dioxo-6-methylpyran-3-ylidene)-4-(4-pyridin-4-yl)-1,5-benzodiazepine top
Crystal data top
C20H17N3O3F(000) = 728
Mr = 347.36Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.509 (9) ÅCell parameters from 9961 reflections
b = 7.435 (6) Åθ = 2.5–29.1°
c = 21.367 (16) ŵ = 0.10 mm1
β = 103.041 (15)°T = 100 K
V = 1626 (2) Å3Block, orange
Z = 40.31 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4368 independent reflections
Radiation source: fine-focus sealed tube3541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.3333 pixels mm-1θmax = 29.1°, θmin = 2.0°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1010
Tmin = 0.84, Tmax = 0.98l = 2929
30100 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0814P)2 + 0.2932P]
where P = (Fo2 + 2Fc2)/3
4368 reflections(Δ/σ)max < 0.001
294 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.20 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 deg. in omega, colllected at phi = 0.00, 90.00 and 180.00 deg. and 2 sets of 800 frames, each of width 0.45 deg in phi, collected at omega = -30.00 and 210.00 deg. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Because of the slight disorder of the dihydropyranone ring, the hydrogen atoms on C17 and C20 and their disordered counterparts were placed in calculated positions and included as riding contributions. The alternate orientation of this ring was treated as a rigid group having the same geometry as the major component.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.50328 (10)0.27877 (14)0.42584 (5)0.0216 (2)
H10.5339 (17)0.167 (2)0.4311 (8)0.035 (4)*
N20.46375 (10)0.66567 (14)0.42864 (5)0.0202 (2)
H2A0.4561 (17)0.766 (2)0.4531 (8)0.035 (4)*
N30.47709 (10)0.02629 (13)0.33122 (5)0.0210 (2)
C10.58855 (12)0.58808 (16)0.43268 (6)0.0195 (2)
C20.69547 (14)0.70495 (18)0.44401 (6)0.0259 (3)
H20.6776 (16)0.831 (2)0.4477 (8)0.030 (4)*
C30.82095 (14)0.6385 (2)0.45086 (7)0.0303 (3)
H30.8932 (19)0.721 (3)0.4594 (9)0.046 (5)*
C40.83965 (13)0.4535 (2)0.44650 (7)0.0283 (3)
H40.9285 (17)0.409 (2)0.4496 (8)0.034 (4)*
C50.73377 (13)0.33768 (18)0.43610 (6)0.0231 (3)
H50.7506 (15)0.206 (2)0.4327 (7)0.026 (4)*
C60.60577 (12)0.40117 (16)0.42916 (5)0.0189 (2)
C70.38159 (12)0.28441 (16)0.37634 (6)0.0210 (3)
H70.3049 (15)0.268 (2)0.3989 (7)0.023 (4)*
C80.36516 (13)0.46755 (16)0.34292 (6)0.0211 (3)
H8A0.2883 (14)0.4618 (19)0.3074 (8)0.018 (3)*
H8B0.4473 (17)0.490 (2)0.3250 (8)0.029 (4)*
C90.35388 (12)0.61587 (16)0.38909 (6)0.0208 (3)
C100.37298 (12)0.13296 (15)0.32695 (6)0.0195 (2)
C110.25688 (12)0.10935 (17)0.28020 (6)0.0220 (3)
H110.1812 (15)0.193 (2)0.2789 (8)0.028 (4)*
C120.24929 (13)0.02918 (17)0.23603 (6)0.0239 (3)
H120.1706 (16)0.050 (2)0.2033 (8)0.024 (4)*
C130.35724 (13)0.14053 (17)0.24005 (6)0.0228 (3)
H130.3539 (16)0.241 (2)0.2093 (8)0.033 (4)*
C140.46719 (13)0.10813 (16)0.28802 (6)0.0214 (3)
H140.5450 (16)0.187 (2)0.2937 (8)0.029 (4)*
O10.00669 (11)0.75916 (18)0.33696 (7)0.0284 (3)0.899 (3)
O20.33642 (11)0.94052 (19)0.46059 (7)0.0210 (3)0.899 (3)
O30.0900 (2)0.4903 (3)0.32931 (15)0.0353 (6)0.899 (3)
C150.23602 (14)0.7124 (2)0.38727 (7)0.0179 (3)0.899 (3)
C160.23681 (15)0.8804 (2)0.42163 (7)0.0184 (3)0.899 (3)
C170.11731 (18)0.9845 (2)0.40703 (8)0.0223 (3)0.899 (3)
H170.1133291.0958240.4283160.027*0.899 (3)
C180.01213 (16)0.9261 (2)0.36392 (8)0.0243 (3)0.899 (3)
C190.11368 (19)0.6417 (3)0.35030 (13)0.0260 (3)0.899 (3)
C200.11056 (16)1.0286 (2)0.33797 (8)0.0328 (4)0.899 (3)
H20A0.1054411.1465020.3588850.049*0.899 (3)
H20B0.1852560.9617170.3464530.049*0.899 (3)
H20C0.1215371.0447910.2915440.049*0.899 (3)
C15A0.2351 (8)0.6865 (16)0.4003 (7)0.0179 (3)0.101 (3)
C16A0.1172 (11)0.6489 (15)0.3522 (8)0.0184 (3)0.101 (3)
C17A0.0191 (9)0.7874 (16)0.3410 (7)0.0223 (3)0.101 (3)
H17A0.0598120.7688130.3097490.027*0.101 (3)
C18A0.0373 (7)0.9429 (13)0.3741 (5)0.0243 (3)0.101 (3)
O1A0.1528 (8)0.9856 (13)0.4151 (5)0.0284 (3)0.101 (3)
C19A0.2584 (7)0.8647 (17)0.4267 (6)0.0260 (3)0.101 (3)
C20A0.0603 (10)1.0911 (14)0.3745 (7)0.0328 (4)0.101 (3)
H20D0.1488921.0412360.3636120.049*0.101 (3)
H20E0.0513321.1828260.3428680.049*0.101 (3)
H20F0.0441621.1455640.4173480.049*0.101 (3)
O2A0.0956 (15)0.5021 (19)0.3224 (11)0.0210 (3)0.101 (3)
O3A0.3599 (8)0.926 (2)0.4586 (9)0.0353 (6)0.101 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0252 (5)0.0167 (5)0.0189 (5)0.0021 (4)0.0032 (4)0.0025 (4)
N20.0239 (5)0.0173 (5)0.0180 (5)0.0024 (4)0.0017 (4)0.0015 (4)
N30.0227 (5)0.0182 (5)0.0212 (5)0.0007 (4)0.0032 (4)0.0006 (4)
C10.0216 (6)0.0193 (5)0.0159 (5)0.0002 (4)0.0006 (4)0.0011 (4)
C20.0303 (7)0.0206 (6)0.0238 (6)0.0047 (5)0.0004 (5)0.0012 (5)
C30.0253 (7)0.0344 (7)0.0280 (7)0.0087 (6)0.0007 (5)0.0005 (6)
C40.0222 (7)0.0373 (7)0.0235 (6)0.0011 (5)0.0013 (5)0.0001 (5)
C50.0252 (6)0.0251 (6)0.0175 (5)0.0040 (5)0.0017 (5)0.0002 (5)
C60.0229 (6)0.0198 (5)0.0124 (5)0.0000 (4)0.0007 (4)0.0004 (4)
C70.0234 (6)0.0179 (5)0.0190 (5)0.0003 (4)0.0004 (5)0.0007 (4)
C80.0253 (6)0.0187 (5)0.0175 (5)0.0025 (4)0.0010 (5)0.0015 (4)
C90.0258 (6)0.0168 (5)0.0188 (5)0.0009 (4)0.0027 (5)0.0003 (4)
C100.0225 (6)0.0159 (5)0.0194 (5)0.0023 (4)0.0035 (4)0.0006 (4)
C110.0212 (6)0.0194 (6)0.0239 (6)0.0009 (4)0.0019 (5)0.0014 (5)
C120.0251 (6)0.0229 (6)0.0211 (6)0.0012 (5)0.0001 (5)0.0026 (5)
C130.0282 (6)0.0199 (6)0.0200 (6)0.0016 (5)0.0050 (5)0.0032 (4)
C140.0236 (6)0.0190 (5)0.0219 (6)0.0001 (5)0.0058 (5)0.0003 (5)
O10.0218 (5)0.0272 (7)0.0338 (6)0.0046 (4)0.0013 (4)0.0068 (5)
O20.0261 (6)0.0166 (5)0.0190 (5)0.0032 (4)0.0021 (5)0.0011 (4)
O30.0278 (6)0.0271 (7)0.0482 (13)0.0006 (5)0.0028 (6)0.0138 (8)
C150.0243 (6)0.0143 (6)0.0149 (8)0.0022 (5)0.0038 (5)0.0020 (5)
C160.0250 (7)0.0151 (6)0.0150 (6)0.0020 (5)0.0042 (5)0.0020 (5)
C170.0266 (8)0.0180 (6)0.0235 (7)0.0045 (6)0.0085 (7)0.0001 (5)
C180.0242 (7)0.0244 (7)0.0253 (7)0.0058 (6)0.0078 (6)0.0005 (5)
C190.0234 (7)0.0254 (7)0.0284 (7)0.0046 (6)0.0044 (6)0.0043 (6)
C200.0268 (8)0.0368 (9)0.0333 (8)0.0117 (6)0.0033 (6)0.0006 (7)
C15A0.0243 (6)0.0143 (6)0.0149 (8)0.0022 (5)0.0038 (5)0.0020 (5)
C16A0.0250 (7)0.0151 (6)0.0150 (6)0.0020 (5)0.0042 (5)0.0020 (5)
C17A0.0266 (8)0.0180 (6)0.0235 (7)0.0045 (6)0.0085 (7)0.0001 (5)
C18A0.0242 (7)0.0244 (7)0.0253 (7)0.0058 (6)0.0078 (6)0.0005 (5)
O1A0.0218 (5)0.0272 (7)0.0338 (6)0.0046 (4)0.0013 (4)0.0068 (5)
C19A0.0234 (7)0.0254 (7)0.0284 (7)0.0046 (6)0.0044 (6)0.0043 (6)
C20A0.0268 (8)0.0368 (9)0.0333 (8)0.0117 (6)0.0033 (6)0.0006 (7)
O2A0.0261 (6)0.0166 (5)0.0190 (5)0.0032 (4)0.0021 (5)0.0011 (4)
O3A0.0278 (6)0.0271 (7)0.0482 (13)0.0006 (5)0.0028 (6)0.0138 (8)
Geometric parameters (Å, º) top
N1—C61.3996 (18)C12—H120.967 (16)
N1—C71.4648 (18)C13—C141.3818 (19)
N1—H10.889 (18)C13—H130.987 (17)
N2—C91.3206 (18)C14—H140.992 (16)
N2—C11.4175 (19)O1—C181.364 (2)
N2—H2A0.928 (18)O1—C191.401 (2)
N3—C101.3377 (18)O2—C161.2630 (18)
N3—C141.3485 (17)O3—C191.217 (2)
C1—C21.3976 (19)C15—C191.447 (2)
C1—C61.406 (2)C15—C161.448 (2)
C2—C31.385 (2)C16—C171.448 (2)
C2—H20.959 (17)C17—C181.341 (2)
C3—C41.395 (2)C17—H170.9500
C3—H30.96 (2)C18—C201.493 (2)
C4—C51.385 (2)C20—H20A0.9800
C4—H40.980 (17)C20—H20B0.9800
C5—C61.402 (2)C20—H20C0.9800
C5—H50.997 (16)C15A—C19A1.4397
C7—C81.5291 (19)C15A—C16A1.4466
C7—C101.5319 (18)C16A—O2A1.2580
C7—H71.036 (16)C16A—C17A1.4385
C8—C91.5020 (18)C17A—C18A1.3459
C8—H8A0.976 (15)C17A—H17A0.9500
C8—H8B1.033 (17)C18A—O1A1.3649
C9—C15A1.423 (3)C18A—C20A1.5066
C9—C151.4246 (19)O1A—C19A1.4057
C10—C111.4026 (19)C19A—O3A1.2185
C11—C121.3870 (19)C20A—H20D0.9800
C11—H111.006 (16)C20A—H20E0.9800
C12—C131.391 (2)C20A—H20F0.9799
O2···C7i3.22N3···H12.330 (16)
O2···N1i3.25N3···H13vii2.755 (17)
O2···N22.62C5···C16iii3.40
O2···C2ii3.40C7···C16vi3.60
O2···C10i3.29C9···C14i3.38
O2···N1iii3.09C10···C16vi3.31
O2···C5iii3.23C11···C16vi3.52
O3···C82.85C11···C17vi3.49
O3···C73.37C1···H8B2.547 (17)
O1···H11iv2.84C4···H20Aviii3.09
O2···H1i2.85C5···H20Aviii2.98
O2···H1iii2.54C6···H8B2.548 (17)
O2···H2A1.84C8···H112.930 (16)
O2···H5iii2.86C11···H8A2.688 (15)
O2···H7i2.75C13···H8Bix2.895 (18)
O2···H2ii2.62C14···H8Bix2.855 (17)
O3···H8A2.25C16···H2A2.40
O3···H112.73C17···H7i2.92
O3···H12iv2.69C19···H8A2.60
O3···H20Cv2.71H1···H52.29 (2)
N1···O2vi3.25H1···H2Aiii2.50 (2)
N1···N22.909 (3)H2···H2A2.41 (3)
N1···N32.727 (3)H3···H4x2.57 (3)
N1···O2iii3.09H5···H20Aviii2.4596
N1···N2iii3.078 (3)H7···H17vi2.58
N2···O22.62H8A···H112.31 (2)
N2···C6iii3.319 (3)H8A···H20Cv2.50
N1···H2Aiii2.547 (17)H17···H20A2.47
C6—N1—C7123.68 (11)C14—C13—C12118.41 (12)
C6—N1—H1110.4 (11)C14—C13—H13121.5 (10)
C7—N1—H1110.5 (11)C12—C13—H13120.1 (10)
C9—N2—C1126.03 (11)N3—C14—C13124.02 (12)
C9—N2—H2A114.4 (11)N3—C14—H14114.9 (10)
C1—N2—H2A119.4 (11)C13—C14—H14121.1 (10)
C10—N3—C14117.20 (11)C18—O1—C19121.73 (12)
C2—C1—C6121.05 (12)C9—C15—C19119.45 (14)
C2—C1—N2117.01 (12)C9—C15—C16121.02 (13)
C6—C1—N2121.85 (11)C19—C15—C16119.53 (12)
C3—C2—C1120.38 (13)O2—C16—C17120.18 (13)
C3—C2—H2122.5 (10)O2—C16—C15123.26 (12)
C1—C2—H2117.1 (10)C17—C16—C15116.50 (12)
C2—C3—C4119.32 (13)C18—C17—C16121.03 (13)
C2—C3—H3118.9 (12)C18—C17—H17119.5
C4—C3—H3121.8 (11)C16—C17—H17119.5
C5—C4—C3120.23 (13)C17—C18—O1122.28 (13)
C5—C4—H4121.3 (10)C17—C18—C20126.79 (15)
C3—C4—H4118.5 (10)O1—C18—C20110.93 (14)
C4—C5—C6121.66 (13)O3—C19—O1114.41 (14)
C4—C5—H5118.1 (9)O3—C19—C15128.34 (14)
C6—C5—H5120.3 (9)O1—C19—C15117.24 (14)
N1—C6—C5119.71 (12)C18—C20—H20A109.5
N1—C6—C1122.59 (12)C18—C20—H20B109.5
C5—C6—C1117.35 (11)H20A—C20—H20B109.5
N1—C7—C8110.54 (10)C18—C20—H20C109.5
N1—C7—C10112.50 (10)H20A—C20—H20C109.5
C8—C7—C10110.48 (11)H20B—C20—H20C109.5
N1—C7—H7107.7 (9)C9—C15A—C19A109.1 (7)
C8—C7—H7107.9 (8)C9—C15A—C16A116.9 (8)
C10—C7—H7107.5 (8)C19A—C15A—C16A119.9
C9—C8—C7111.37 (11)O2A—C16A—C17A119.7
C9—C8—H8A111.6 (9)O2A—C16A—C15A123.7
C7—C8—H8A108.1 (8)C17A—C16A—C15A116.5
C9—C8—H8B108.8 (9)C18A—C17A—C16A121.0
C7—C8—H8B107.4 (9)C18A—C17A—H17A119.5
H8A—C8—H8B109.4 (13)C16A—C17A—H17A119.5
N2—C9—C15A117.6 (6)C17A—C18A—O1A122.5
N2—C9—C15120.36 (12)C17A—C18A—C20A128.0
N2—C9—C8116.04 (11)O1A—C18A—C20A109.5
C15A—C9—C8125.7 (6)C18A—O1A—C19A121.2
C15—C9—C8123.30 (12)O3A—C19A—O1A114.5
N3—C10—C11122.76 (12)O3A—C19A—C15A128.0
N3—C10—C7117.94 (11)O1A—C19A—C15A117.4
C11—C10—C7119.29 (11)C18A—C20A—H20D109.5
C12—C11—C10118.99 (12)C18A—C20A—H20E109.5
C12—C11—H11121.2 (9)H20D—C20A—H20E109.5
C10—C11—H11119.8 (9)C18A—C20A—H20F109.5
C11—C12—C13118.62 (12)H20D—C20A—H20F109.5
C11—C12—H12121.3 (9)H20E—C20A—H20F109.5
C13—C12—H12120.0 (9)
C9—N2—C1—C2142.39 (13)N2—C9—C15—C168.7 (2)
C9—N2—C1—C641.15 (18)C8—C9—C15—C16164.78 (12)
C6—C1—C2—C31.20 (19)C9—C15—C16—O28.5 (2)
N2—C1—C2—C3177.69 (12)C19—C15—C16—O2171.68 (16)
C1—C2—C3—C40.2 (2)C9—C15—C16—C17168.60 (13)
C2—C3—C4—C50.7 (2)C19—C15—C16—C1711.2 (2)
C3—C4—C5—C60.5 (2)O2—C16—C17—C18177.40 (14)
C7—N1—C6—C5130.76 (13)C15—C16—C17—C180.2 (2)
C7—N1—C6—C156.17 (17)C16—C17—C18—O17.3 (2)
C4—C5—C6—N1172.95 (11)C16—C17—C18—C20171.50 (15)
C4—C5—C6—C10.47 (17)C19—O1—C18—C173.3 (2)
C2—C1—C6—N1171.90 (11)C19—O1—C18—C20175.62 (14)
N2—C1—C6—N14.42 (18)C18—O1—C19—O3171.40 (14)
C2—C1—C6—C51.32 (17)C18—O1—C19—C157.8 (2)
N2—C1—C6—C5177.64 (11)C9—C15—C19—O316.0 (3)
C6—N1—C7—C816.96 (16)C16—C15—C19—O3164.19 (17)
C6—N1—C7—C10107.08 (14)C9—C15—C19—O1164.88 (14)
N1—C7—C8—C963.01 (14)C16—C15—C19—O114.9 (3)
C10—C7—C8—C9171.80 (10)N2—C9—C15A—C19A32.4 (8)
C1—N2—C9—C15A168.4 (6)C8—C9—C15A—C19A157.9 (5)
C1—N2—C9—C15176.24 (12)N2—C9—C15A—C16A172.6 (5)
C1—N2—C9—C82.34 (18)C8—C9—C15A—C16A17.7 (8)
C7—C8—C9—N276.22 (14)C9—C15A—C16A—O2A37.2 (8)
C7—C8—C9—C15A93.7 (6)C19A—C15A—C16A—O2A172.9
C7—C8—C9—C15110.09 (14)C9—C15A—C16A—C17A145.4 (8)
C14—N3—C10—C110.16 (18)C19A—C15A—C16A—C17A9.7
C14—N3—C10—C7178.97 (11)O2A—C16A—C17A—C18A177.2
N1—C7—C10—N35.14 (15)C15A—C16A—C17A—C18A0.3
C8—C7—C10—N3118.93 (12)C16A—C17A—C18A—O1A6.5
N1—C7—C10—C11173.71 (11)C16A—C17A—C18A—C20A171.8
C8—C7—C10—C1162.22 (15)C17A—C18A—O1A—C19A2.4
N3—C10—C11—C120.56 (19)C20A—C18A—O1A—C19A176.1
C7—C10—C11—C12179.35 (11)C18A—O1A—C19A—O3A172.4
C10—C11—C12—C130.40 (19)C18A—O1A—C19A—C15A7.6
C11—C12—C13—C140.11 (19)C9—C15A—C19A—O3A27.6 (8)
C10—N3—C14—C130.40 (18)C16A—C15A—C19A—O3A166.4
C12—C13—C14—N30.54 (19)C9—C15A—C19A—O1A152.3 (8)
N2—C9—C15—C19171.57 (17)C16A—C15A—C19A—O1A13.5
C8—C9—C15—C1915.0 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z+1/2; (v) x, y1/2, z+1/2; (vi) x, y1, z; (vii) x+1, y+1/2, z+1/2; (viii) x+1, y1, z; (ix) x+1, y1/2, z+1/2; (x) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2iii0.889 (18)2.536 (18)3.089 (2)121.0 (14)
N2—H2A···O20.928 (18)1.836 (18)2.616 (2)140.1 (15)
N2—H2A···O3A0.928 (18)1.58 (2)2.382 (15)142.0 (17)
Symmetry code: (iii) x+1, y+1, z+1.
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChkirate, K., Sebbar, N. K., Karrouchi, K. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 1–27.  Google Scholar
First citationDardouri, R., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o674.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDe Sarro, G., Gitto, R., Rizzo, M., Zappia, M. & De Sarro, A. (1996). Gen. Pharmacol. 27, 935–941.  CrossRef PubMed Web of Science Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJabli, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o3150.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178–2188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKeita, A., Lazrak, F., Essassi, E. M., Alaoui, I. C., Rodi, Y. K., Bellan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon, 178, 1541–1548.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49–64.  CrossRef PubMed Web of Science Google Scholar
First citationKumar, R. & Joshi, Y. C. (2007). Arkivoc, XIII, 142–149.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRoma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489–496.  CrossRef CAS Web of Science Google Scholar
First citationSebhaoui, J., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x171057.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTjiou, E. M., Lhoussaine, E. G., Virieux, D. & Fruchier, A. (2005). Magn. Reson. Chem. 43, 557–562.  Web of Science CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds