research communications
Ca2Te3O8, a new phase in the CaO–TeO2 system
aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, TU Wien, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at
Single crystals of dicalcium octaoxidotritellurate(IV), Ca2Te3O8, were obtained from a CsCl/NaCl melt with CaO and TeO2 as educts in the molar ratio of 1:2. Ca2Te3O8 crystallizes isotypically with Pb3Te2O8 and is comprised of two unique Ca, four Te and eight O sites. One calcium cation has eight and the other nine coordination partners. Both coordination polyhedra are considerably distorted. Two kinds of oxotellurate(IV) anions with the same formula [Te3O8]4− are present. One is an infinite zigzag chain anion consisting of pairs of [TeO4] bisphenoids linked to a trigonal–pyramidal [TeO3] group with a connectivity of [(TeO1/1O2/2)(TeO2/1O2/2)2]n, while the other is a finite anion made up of one central [TeO4] bisphenoid linked to two [TeO3] trigonal pyramids and has a connectivity of [(TeO2/1O1/2)2(TeO2/2O2/1)]. In the crystal, the anions are organized in layers extending parallel to (100). Adjacent layers are held together by the calcium cations to define a three-dimensional framework structure.
Keywords: crystal structure; oxotellurate(IV); calcium tellurite; isotypism; compstru.
CCDC reference: 1883382
1. Chemical context
A partial phase diagram for the pseudo-binary system CaO–TeO2 has been determined for the composition range 50–100 mol% TeO2 to contain the 1:1 phase CaTeO3 and the 1:2 phase CaTe2O5 (Mishra et al., 1998). Another phase not reported during the original study of Mishra et al. (1998) is the 4:5 phase Ca4Te5O14, for which full structural details were determined for the normal-pressure and high-pressure forms (Weil, 2004; Weil et al., 2016). For compositions CaTeO3 and CaTe2O5, was reported on the basis of and temperature-dependent X-ray diffracion (Mishra et al., 1998; Tripathi et al., 2001), however, without structural details of the corresponding phases. Whereas determinations were subsequently performed for four polymorphic forms of CaTeO3 (Stöger et al., 2009; Poupon et al., 2015), our present knowledge of the CaTe2O5 structures is restricted to only one form (Weil & Stöger, 2008; Barrier et al., 2009) that is not related to the mica-like CaTe2O5 phase reported nearly 50 years ago (Redman et al., 1970). In an attempt to grow single crystals of the latter from a salt melt at comparatively low temperatures, a heretofore unknown phase in the CaO–TeO2 system was obtained, viz. the 2:3 phase Ca2Te3O8.
In this article, preparation conditions, 2Te3O8 (Champarnaud-Mesjard et al., 2001) are reported.
and the relation to the isotypic lead(II) analogue Pb2. Structural commentary
The 2Te3O8 comprises two Ca sites, four Te sites and eight O sites. One Ca site (Ca2) is located on 8g (site symmetry ..m), sites Te1 on 4c (m2m), Te2 on 8f (m..), Te4 on 8g, O1 on 8f, O2 on 8e (2..) and O7 and O8 both on 8g; all other sites are on general positions 16h.
of CaThe two Ca2+ cations are surrounded by eight (Ca1) and nine (Ca2) O atoms, considering a cut-off value of 3.1 Å for relevant Ca—O distances (Table 1). The bond valence sums (Brown, 2002) computed with the parameters of Brown & Altermatt (1985) are 1.89 valence units (v.u.) for Ca1 and 2.02 v.u. for Ca2, in good agreement with the expected value of 2. Likewise, the mean Ca—O bond length of 2.55 Å for Ca1 and 2.57 Å for Ca2 are in accord with the values for eight- and nine-coordinate Ca of 2.50 (15) and 2.56 (20) Å, respectively (Gagné & Hawthorne, 2016). Whereas the [Ca1O8] polyhedron is difficult to derive from a simple geometric figure, [Ca2O9] can be best described as a monocapped square antiprism (Fig. 1).
All four Te atoms have an 3] trigonal pyramids are only slightly spread, ranging from 1.8522 (12) to 1.8994 (11) Å. The two [TeO4] bisphenoids are characterised by two short bonds of < 2 Å and two longer bonds of > 2 Å, with the maximum at 2.3222 (12) Å for Te3. All Te—O bond lengths (Table 1) are in characteristic ranges for oxotellurates(IV) with three- and four-coordinate tellurium, as reviewed recently by Christy et al. (2016).
of +IV and can be divided into two pairs with the most commonly observed three-coordination in the form of a trigonal pyramid (Te2 and Te4) and four-coordination in the form of a bisphenoid (Te1 and Te3). The Te—O bond lengths within the [TeOBond valence sums for the four Te atoms computed with the parameters of Brese and O'Keeffe (1991) are 4.14, 4.07, 3.99 and 3.81 v.u., but are considerably lower when the revised parameters of Mills & Christy (2013) are used, i.e. 3.93, 3.80, 3.81 and 3.57 v.u.
The oxotellurium(IV) network is built up from two different anions, both with composition [Te3O8]4−. One anion is made up from an infinite zigzag chain that extends parallel to [001] and consists of a pair of corner-sharing [Te3O4] bisphenoids linked alternately to a [Te4O3] trigonal pyramid {= [(Te4O1/1O2/2)(Te3O2/1O2/2)2]n} (Fig. 2a). The second oxotellurate(IV) anion is finite and is situated between neighbouring chain anions. It is comprised of a curved [Te3O8]4− unit with a central Te1O4 bisphenoid linked to two [Te2O3] trigonal pyramids {= [(Te1O2/1O1/2)2(Te2O2/2O2/1)]} (Fig. 2b).
In the crystal, the two types of [Te3O8]4− anions are arranged in layers parallel to (100). Approximately at x ≃ 1/4 and 3/4, the calcium cations link adjacent layers into the three-dimensional framework (Fig. 3).
Ca2Te3O8 is isotypic with Pb2Te3O8 (Champarnaud-Mesjard et al., 2001), but not with its higher alkaline earth homologue Sr2Te3O8, which is reported to have a different orthorhombic cell, with details of the structure not known (Elerman & Koçak, 1986). Comparison of the bond lengths of the [MOx] (M = Ca, Pb) polyhedra and the [TeO3] and [TeO4] units in the isotypic structures of Ca2Te3O8 and Pb2Te3O8 (Table 1) reveals nearly identical values for the individual oxotellurate(IV) units, but differences up to 0.6 Å for the metal–oxygen polyhedra. On one hand, this behaviour is ascribed to the different ionic radii for eight-coordinate CaII and PbII of 1.12 and 1.29 Å, respectively (Shannon, 1976), and, on the other hand, to the stereochemical activity (Galy et al., 1975) of the 6s2 free-electron lone pair located at PbII that is responsible for the formation of off-centred lead–oxygen polyhedra with either holo- or hemidirected oxygen ligands (Shimoni-Livny et al., 1998).
For a quantitative structural comparison of the isotypic M2Te3O8 (M = Ca, Pb) structures, the program compstru (de la Flor et al., 2016), available at the Bilbao Crystallographic Server (Aroyo et al., 2006), was used. The degree of is 0.0205, the maximum distance between the atomic positions of paired atoms is 0.403 Å for pair O8, the arithmetic mean of all distances is 0.195 Å and the measure of similarity is 0.05.
3. Synthesis and crystallization
Crystals of Ca2Te3O8 were obtained as one of the products from a synthesis using a CsCl/NaCl salt mixture (molar ratio 0.65/0.35). To 1.5 g of the salt mixture were added CaO (0.075 g; freshly prepared by heating CaCO3 at 1473 K for 1 d) and TeO2 (0.425 g) according to a molar ratio of 1:2. The reaction mixture was placed in a silica ampoule that was subsequently evacuated and sealed. The ampoule was placed vertically in a furnace and heated from room temperature within 3 h to 793 K, kept at that temperature for 90 h and cooled within 10 h to room temperature. The silica ampoule was broken and the solidified melt leached out with water for two h. The colourless product was filtered off, washed with water and was dried in a stream of air. The title compound was present in the form of a few crystals that were distinguishable from the other crystals due to their characteristic square form (maximum edge length 1.5 mm). Other phases identified by single-crystal X-ray diffraction measurements of selected crystals and by powder X-ray diffraction measurements of the bulk were CaTe2O5 in the mica-like modification reported by Redman et al. (1970) as the main phase (tiny colourless plates) and Ca4Te5O14 (small colourless pinacoids; Weil, 2004).
4. Refinement
Crystal data, data collection and structure . Starting coordinates for the were taken from isotypic Pb2Te3O8 (Champarnaud-Mesjard et al., 2001). Both remaining maximum and minimum electron-density peaks are located 0.64 and 0.30 Å from the Te2 site.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1883382
https://doi.org/10.1107/S2056989018017310/pk2611sup1.cif
contains datablocks I, general. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018017310/pk2611Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: coordinates from isotypic compound; program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Ca2Te3O8 | Dx = 4.949 Mg m−3 |
Mr = 590.95 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Cmcm | Cell parameters from 9248 reflections |
a = 18.7368 (15) Å | θ = 3.2–48.6° |
b = 6.8399 (6) Å | µ = 12.27 mm−1 |
c = 18.5652 (15) Å | T = 297 K |
V = 2379.3 (3) Å3 | Plate, colourless |
Z = 12 | 0.25 × 0.15 × 0.10 mm |
F(000) = 3120 |
Bruker APEXII CCD diffractometer | 5325 reflections with I > 2σ(I) |
ω scans | Rint = 0.043 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 48.7°, θmin = 2.2° |
Tmin = 0.472, Tmax = 0.750 | h = −37→39 |
47523 measured reflections | k = −14→14 |
6097 independent reflections | l = −36→39 |
Refinement on F2 | Primary atom site location: isomorphous structure methods |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0102P)2 + 6.3377P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.023 | (Δ/σ)max = 0.002 |
wR(F2) = 0.043 | Δρmax = 4.13 e Å−3 |
S = 1.12 | Δρmin = −2.08 e Å−3 |
6097 reflections | Extinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
101 parameters | Extinction coefficient: 0.00143 (3) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.29994 (2) | 0.36584 (4) | 0.41210 (2) | 0.00884 (4) | |
Ca2 | 0.19996 (2) | 0.49754 (6) | 0.250000 | 0.00819 (5) | |
Te1 | 0.500000 | 0.08952 (3) | 0.250000 | 0.00866 (3) | |
Te2 | 0.500000 | 0.29743 (2) | 0.07448 (2) | 0.00865 (2) | |
Te3 | 0.37898 (2) | 0.84140 (2) | 0.41362 (2) | 0.00685 (2) | |
Te4 | 0.37986 (2) | 0.54478 (2) | 0.250000 | 0.00616 (2) | |
O1 | 0.500000 | 0.0728 (2) | 0.13377 (9) | 0.0150 (3) | |
O2 | 0.40826 (9) | 0.000000 | 0.500000 | 0.0146 (3) | |
O3 | 0.31332 (6) | 0.69421 (16) | 0.46567 (6) | 0.01057 (16) | |
O4 | 0.32340 (7) | 0.67071 (18) | 0.32118 (6) | 0.01226 (17) | |
O5 | 0.31362 (6) | 0.02866 (15) | 0.38074 (6) | 0.00918 (15) | |
O6 | 0.42263 (7) | 0.42092 (19) | 0.11674 (8) | 0.0165 (2) | |
O7 | 0.42329 (9) | 0.9223 (3) | 0.250000 | 0.0135 (3) | |
O8 | 0.31736 (10) | 0.3318 (3) | 0.250000 | 0.0209 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.00841 (9) | 0.00807 (9) | 0.01005 (9) | 0.00102 (7) | −0.00031 (7) | 0.00024 (7) |
Ca2 | 0.00857 (13) | 0.00778 (12) | 0.00821 (12) | 0.00113 (10) | 0.000 | 0.000 |
Te1 | 0.00648 (6) | 0.00643 (6) | 0.01305 (7) | 0.000 | 0.000 | 0.000 |
Te2 | 0.00773 (4) | 0.00848 (4) | 0.00974 (4) | 0.000 | 0.000 | −0.00001 (3) |
Te3 | 0.00550 (3) | 0.00710 (3) | 0.00794 (3) | 0.00067 (2) | 0.00072 (2) | 0.00095 (2) |
Te4 | 0.00569 (4) | 0.00572 (4) | 0.00706 (4) | 0.00012 (3) | 0.000 | 0.000 |
O1 | 0.0227 (8) | 0.0108 (6) | 0.0116 (6) | 0.000 | 0.000 | 0.0018 (5) |
O2 | 0.0110 (6) | 0.0209 (7) | 0.0119 (6) | 0.000 | 0.000 | −0.0089 (5) |
O3 | 0.0123 (4) | 0.0103 (4) | 0.0091 (4) | −0.0023 (3) | 0.0028 (3) | 0.0010 (3) |
O4 | 0.0122 (4) | 0.0157 (4) | 0.0088 (4) | 0.0031 (3) | 0.0022 (3) | −0.0022 (3) |
O5 | 0.0096 (4) | 0.0072 (3) | 0.0107 (4) | 0.0021 (3) | −0.0006 (3) | 0.0000 (3) |
O6 | 0.0091 (4) | 0.0175 (5) | 0.0228 (6) | 0.0037 (4) | 0.0000 (4) | −0.0049 (4) |
O7 | 0.0072 (5) | 0.0142 (6) | 0.0193 (7) | −0.0022 (5) | 0.000 | 0.000 |
O8 | 0.0099 (7) | 0.0077 (6) | 0.0451 (12) | −0.0030 (5) | 0.000 | 0.000 |
Ca1—O3i | 2.3198 (11) | Ca2—O4 | 2.9154 (13) |
Ca1—O6ii | 2.3903 (13) | Ca2—O4ii | 2.9154 (13) |
Ca1—O5 | 2.3924 (11) | Ca2—Te4 | 3.3863 (5) |
Ca1—O3 | 2.4691 (12) | Ca2—Te4vi | 3.4390 (5) |
Ca1—O5iii | 2.4712 (11) | Ca2—Te3vi | 3.5434 (3) |
Ca1—O3iv | 2.6212 (12) | Te1—O7vii | 1.8369 (17) |
Ca1—O4 | 2.7186 (13) | Te1—O7viii | 1.8369 (17) |
Ca1—O8 | 3.0360 (4) | Te1—O1 | 2.1608 (17) |
Ca1—Te3iv | 3.3567 (4) | Te1—O1ii | 2.1609 (17) |
Ca1—Te3 | 3.5742 (4) | Te2—O6ix | 1.8522 (12) |
Ca1—Te4 | 3.5773 (4) | Te2—O6 | 1.8522 (12) |
Ca1—Ca2 | 3.6575 (4) | Te2—O1 | 1.8902 (17) |
Ca2—O8v | 2.3089 (18) | Te3—O3 | 1.8602 (11) |
Ca2—O7vi | 2.3660 (17) | Te3—O5x | 1.8743 (10) |
Ca2—O5v | 2.4497 (11) | Te3—O2x | 2.0123 (5) |
Ca2—O5iii | 2.4497 (11) | Te3—O4 | 2.3222 (12) |
Ca2—O8 | 2.4749 (19) | Te4—O8 | 1.8694 (17) |
Ca2—O4vi | 2.6335 (13) | Te4—O4 | 1.8994 (11) |
Ca2—O4iv | 2.6335 (13) | Te4—O4ii | 1.8994 (11) |
O3i—Ca1—O6ii | 98.22 (5) | O8v—Ca2—Te3vi | 103.87 (2) |
O3i—Ca1—O5 | 93.20 (4) | O7vi—Ca2—Te3vi | 61.771 (12) |
O6ii—Ca1—O5 | 89.68 (4) | O5v—Ca2—Te3vi | 29.94 (2) |
O3i—Ca1—O3 | 75.88 (4) | O5iii—Ca2—Te3vi | 146.33 (3) |
O6ii—Ca1—O3 | 81.32 (4) | O8—Ca2—Te3vi | 103.47 (2) |
O5—Ca1—O3 | 164.59 (4) | O4vi—Ca2—Te3vi | 40.94 (3) |
O3i—Ca1—O5iii | 113.79 (4) | O4iv—Ca2—Te3vi | 96.03 (3) |
O6ii—Ca1—O5iii | 134.77 (4) | O4—Ca2—Te3vi | 147.38 (2) |
O5—Ca1—O5iii | 117.99 (4) | O4ii—Ca2—Te3vi | 93.73 (2) |
O3—Ca1—O5iii | 76.84 (4) | Te4—Ca2—Te3vi | 116.377 (7) |
O3i—Ca1—O3iv | 68.72 (4) | Te4vi—Ca2—Te3vi | 63.068 (6) |
O6ii—Ca1—O3iv | 159.11 (4) | O7vii—Te1—O7viii | 102.97 (11) |
O5—Ca1—O3iv | 75.37 (4) | O7vii—Te1—O1 | 88.11 (3) |
O3—Ca1—O3iv | 109.69 (4) | O7viii—Te1—O1 | 88.11 (3) |
O5iii—Ca1—O3iv | 66.05 (4) | O7vii—Te1—O1ii | 88.11 (3) |
O3i—Ca1—O4 | 136.52 (4) | O7viii—Te1—O1ii | 88.11 (3) |
O6ii—Ca1—O4 | 65.45 (4) | O1—Te1—O1ii | 173.92 (9) |
O5—Ca1—O4 | 124.82 (4) | O7vii—Te1—Ca2vi | 28.98 (5) |
O3—Ca1—O4 | 62.35 (4) | O7viii—Te1—Ca2vi | 131.95 (6) |
O5iii—Ca1—O4 | 69.34 (4) | O1—Te1—Ca2vi | 89.497 (8) |
O3iv—Ca1—O4 | 135.24 (4) | O1ii—Te1—Ca2vi | 89.497 (8) |
O3i—Ca1—O8 | 160.81 (5) | O7vii—Te1—Ca2xi | 131.95 (6) |
O6ii—Ca1—O8 | 71.74 (5) | O7viii—Te1—Ca2xi | 28.98 (5) |
O5—Ca1—O8 | 70.93 (4) | O1—Te1—Ca2xi | 89.497 (8) |
O3—Ca1—O8 | 117.27 (4) | O1ii—Te1—Ca2xi | 89.497 (8) |
O5iii—Ca1—O8 | 83.89 (4) | Ca2vi—Te1—Ca2xi | 160.934 (13) |
O3iv—Ca1—O8 | 115.39 (4) | O6ix—Te2—O6 | 103.01 (8) |
O4—Ca1—O8 | 54.98 (4) | O6ix—Te2—O1 | 97.12 (6) |
O3i—Ca1—Te3iv | 95.22 (3) | O6—Te2—O1 | 97.12 (6) |
O6ii—Ca1—Te3iv | 165.99 (3) | O6ix—Te2—Ca1xii | 30.77 (4) |
O5—Ca1—Te3iv | 93.50 (3) | O6—Te2—Ca1xii | 133.69 (4) |
O3—Ca1—Te3iv | 98.24 (3) | O1—Te2—Ca1xii | 93.563 (8) |
O5iii—Ca1—Te3iv | 33.33 (2) | O6ix—Te2—Ca1ii | 133.69 (4) |
O3iv—Ca1—Te3iv | 33.48 (2) | O6—Te2—Ca1ii | 30.77 (4) |
O4—Ca1—Te3iv | 101.83 (3) | O1—Te2—Ca1ii | 93.563 (8) |
O8—Ca1—Te3iv | 96.42 (4) | Ca1xii—Te2—Ca1ii | 163.902 (10) |
O3i—Ca1—Te3 | 96.23 (3) | O3—Te3—O5x | 96.14 (5) |
O6ii—Ca1—Te3 | 57.30 (3) | O3—Te3—O2x | 93.33 (5) |
O5—Ca1—Te3 | 146.60 (3) | O5x—Te3—O2x | 93.97 (5) |
O3—Ca1—Te3 | 29.18 (3) | O3—Te3—O4 | 79.35 (5) |
O5iii—Ca1—Te3 | 87.05 (3) | O5x—Te3—O4 | 79.04 (5) |
O3iv—Ca1—Te3 | 137.74 (3) | O2x—Te3—O4 | 169.18 (6) |
O4—Ca1—Te3 | 40.52 (3) | O3—Te3—Ca1iii | 51.01 (4) |
O8—Ca1—Te3 | 91.90 (3) | O5x—Te3—Ca1iii | 46.42 (3) |
Te3iv—Ca1—Te3 | 117.328 (9) | O2x—Te3—Ca1iii | 104.60 (5) |
O3i—Ca1—Te4 | 146.96 (3) | O4—Te3—Ca1iii | 64.59 (3) |
O6ii—Ca1—Te4 | 49.84 (3) | O3—Te3—Ca2v | 109.41 (4) |
O5—Ca1—Te4 | 94.60 (3) | O5x—Te3—Ca2v | 40.72 (3) |
O3—Ca1—Te4 | 89.14 (3) | O2x—Te3—Ca2v | 129.382 (18) |
O5iii—Ca1—Te4 | 90.46 (3) | O4—Te3—Ca2v | 47.99 (3) |
O3iv—Ca1—Te4 | 144.22 (3) | Ca1iii—Te3—Ca2v | 63.955 (8) |
O4—Ca1—Te4 | 31.52 (2) | O3—Te3—Ca1 | 40.32 (4) |
O8—Ca1—Te4 | 31.50 (3) | O5x—Te3—Ca1 | 110.40 (3) |
Te3iv—Ca1—Te4 | 116.244 (9) | O2x—Te3—Ca1 | 127.580 (17) |
Te3—Ca1—Te4 | 61.433 (6) | O4—Te3—Ca1 | 49.52 (3) |
O3i—Ca1—Ca2 | 154.68 (3) | Ca1iii—Te3—Ca1 | 68.372 (6) |
O6ii—Ca1—Ca2 | 105.63 (3) | Ca2v—Te3—Ca1 | 95.427 (9) |
O5—Ca1—Ca2 | 95.28 (3) | O3—Te3—Ca1i | 26.53 (4) |
O3—Ca1—Ca2 | 99.17 (3) | O5x—Te3—Ca1i | 105.99 (3) |
O5iii—Ca1—Ca2 | 41.77 (3) | O2x—Te3—Ca1i | 68.39 (3) |
O3iv—Ca1—Ca2 | 90.45 (3) | O4—Te3—Ca1i | 105.36 (3) |
O4—Ca1—Ca2 | 51.91 (3) | Ca1iii—Te3—Ca1i | 68.861 (8) |
O8—Ca1—Ca2 | 42.13 (4) | Ca2v—Te3—Ca1i | 132.402 (9) |
Te3iv—Ca1—Ca2 | 60.505 (8) | Ca1—Te3—Ca1i | 60.638 (8) |
Te3—Ca1—Ca2 | 89.690 (9) | O8—Te4—O4 | 90.26 (6) |
Te4—Ca1—Ca2 | 55.803 (9) | O8—Te4—O4ii | 90.26 (6) |
O8v—Ca2—O7vi | 94.49 (6) | O4—Te4—O4ii | 88.18 (7) |
O8v—Ca2—O5v | 84.22 (3) | O8—Te4—Ca2 | 45.74 (6) |
O7vi—Ca2—O5v | 85.27 (3) | O4—Te4—Ca2 | 59.26 (4) |
O8v—Ca2—O5iii | 84.22 (3) | O4ii—Te4—Ca2 | 59.26 (4) |
O7vi—Ca2—O5iii | 85.27 (3) | O8—Te4—Ca2v | 115.43 (6) |
O5v—Ca2—O5iii | 164.44 (5) | O4—Te4—Ca2v | 49.41 (4) |
O8v—Ca2—O8 | 125.35 (5) | O4ii—Te4—Ca2v | 49.42 (4) |
O7vi—Ca2—O8 | 140.16 (6) | Ca2—Te4—Ca2v | 69.699 (8) |
O5v—Ca2—O8 | 97.59 (3) | O8—Te4—Ca1 | 58.067 (9) |
O5iii—Ca2—O8 | 97.59 (3) | O4—Te4—Ca1 | 48.45 (4) |
O8v—Ca2—O4vi | 144.79 (4) | O4ii—Te4—Ca1 | 120.49 (4) |
O7vi—Ca2—O4vi | 69.70 (5) | Ca2—Te4—Ca1 | 63.297 (6) |
O5v—Ca2—O4vi | 63.85 (3) | Ca2v—Te4—Ca1 | 97.242 (7) |
O5iii—Ca2—O4vi | 123.62 (4) | O8—Te4—Ca1ii | 58.067 (9) |
O8—Ca2—O4vi | 76.04 (5) | O4—Te4—Ca1ii | 120.49 (4) |
O8v—Ca2—O4iv | 144.79 (4) | O4ii—Te4—Ca1ii | 48.45 (4) |
O7vi—Ca2—O4iv | 69.70 (5) | Ca2—Te4—Ca1ii | 63.299 (6) |
O5v—Ca2—O4iv | 123.62 (4) | Ca2v—Te4—Ca1ii | 97.242 (7) |
O5iii—Ca2—O4iv | 63.85 (3) | Ca1—Te4—Ca1ii | 114.545 (11) |
O8—Ca2—O4iv | 76.04 (5) | Te2—O1—Te1 | 122.58 (9) |
O4vi—Ca2—O4iv | 60.24 (5) | Te3vii—O2—Te3i | 148.36 (9) |
O8v—Ca2—O4 | 73.10 (5) | Te3—O3—Ca1i | 132.49 (6) |
O7vi—Ca2—O4 | 149.63 (3) | Te3—O3—Ca1 | 110.51 (5) |
O5v—Ca2—O4 | 119.75 (4) | Ca1i—O3—Ca1 | 102.82 (4) |
O5iii—Ca2—O4 | 66.29 (3) | Te3—O3—Ca1iii | 95.51 (5) |
O8—Ca2—O4 | 58.73 (4) | Ca1i—O3—Ca1iii | 111.28 (4) |
O4vi—Ca2—O4 | 134.77 (3) | Ca1—O3—Ca1iii | 99.92 (4) |
O4iv—Ca2—O4 | 104.43 (4) | Te4—O4—Te3 | 119.50 (6) |
O8v—Ca2—O4ii | 73.10 (5) | Te4—O4—Ca2v | 97.37 (5) |
O7vi—Ca2—O4ii | 149.63 (3) | Te3—O4—Ca2v | 91.07 (4) |
O5v—Ca2—O4ii | 66.29 (3) | Te4—O4—Ca1 | 100.03 (5) |
O5iii—Ca2—O4ii | 119.75 (4) | Te3—O4—Ca1 | 89.96 (4) |
O8—Ca2—O4ii | 58.73 (4) | Ca2v—O4—Ca1 | 159.36 (5) |
O4vi—Ca2—O4ii | 104.43 (4) | Te4—O4—Ca2 | 86.69 (4) |
O4iv—Ca2—O4ii | 134.77 (3) | Te3—O4—Ca2 | 153.51 (5) |
O4—Ca2—O4ii | 53.91 (5) | Ca2v—O4—Ca2 | 89.17 (4) |
O8v—Ca2—Te4 | 92.60 (5) | Ca1—O4—Ca2 | 80.88 (3) |
O7vi—Ca2—Te4 | 172.91 (4) | Te3vii—O5—Ca1 | 130.51 (5) |
O5v—Ca2—Te4 | 95.46 (3) | Te3vii—O5—Ca2vi | 109.34 (5) |
O5iii—Ca2—Te4 | 95.46 (3) | Ca1—O5—Ca2vi | 108.29 (4) |
O8—Ca2—Te4 | 32.75 (4) | Te3vii—O5—Ca1iv | 100.25 (5) |
O4vi—Ca2—Te4 | 104.27 (3) | Ca1—O5—Ca1iv | 106.55 (4) |
O4iv—Ca2—Te4 | 104.27 (3) | Ca2vi—O5—Ca1iv | 96.02 (4) |
O4—Ca2—Te4 | 34.05 (2) | Te2—O6—Ca1ii | 125.87 (7) |
O4ii—Ca2—Te4 | 34.05 (2) | Te1x—O7—Ca2v | 128.92 (9) |
O8v—Ca2—Te4vi | 146.15 (5) | Te4—O8—Ca2vi | 149.29 (10) |
O7vi—Ca2—Te4vi | 51.66 (4) | Te4—O8—Ca2 | 101.52 (8) |
O5v—Ca2—Te4vi | 91.90 (3) | Ca2vi—O8—Ca2 | 109.19 (7) |
O5iii—Ca2—Te4vi | 91.90 (3) | Te4—O8—Ca1 | 90.43 (3) |
O8—Ca2—Te4vi | 88.51 (4) | Ca2vi—O8—Ca1 | 93.49 (3) |
O4vi—Ca2—Te4vi | 33.21 (2) | Ca2—O8—Ca1 | 82.49 (4) |
O4iv—Ca2—Te4vi | 33.21 (2) | Te4—O8—Ca1ii | 90.43 (3) |
O4—Ca2—Te4vi | 135.31 (3) | Ca2vi—O8—Ca1ii | 93.49 (3) |
O4ii—Ca2—Te4vi | 135.31 (3) | Ca2—O8—Ca1ii | 82.49 (4) |
Te4—Ca2—Te4vi | 121.252 (12) | Ca1—O8—Ca1ii | 164.82 (7) |
Symmetry codes: (i) x, −y+1, −z+1; (ii) x, y, −z+1/2; (iii) −x+1/2, y+1/2, z; (iv) −x+1/2, y−1/2, z; (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1/2, y−1/2, −z+1/2; (vii) x, y−1, z; (viii) −x+1, y−1, −z+1/2; (ix) −x+1, y, z; (x) x, y+1, z; (xi) x+1/2, y−1/2, z; (xii) −x+1, y, −z+1/2. |
Ca2Te3O8(a) | Pb2Te3O8(b) | |
M1—O3i | 2.3198 (11) | 2.372 (8) |
M1—O6ii | 2.3903 (13) | 2.440 (8) |
M1—O5 | 2.3924 (11) | 2.470 (6) |
M1—O3 | 2.4691 (12) | 2.636 (8) |
M1—O5iii | 2.4712 (11) | 2.934 (8) |
M1—O3iv | 2.6212 (12) | 3.032 (8) |
M1—O4 | 2.7186 (13) | |
M1—O8 | 3.0360 (4) | 3.069 (2) |
M2—O8v | 2.3089 (18) | 2.439 (9) |
M2—O7vi | 2.3660 (17) | 2.374 (10) |
M2—O5v | 2.4497 (11) | 2.556 (6) |
M2—O5iii | 2.4497 (11) | 2.556 (6) |
M2—O8 | 2.4749 (19) | 3.080 (11) |
M2—O4vi | 2.6335 (13) | 2.732 (6) |
M2—O4iv | 2.6335 (13) | 2.732 (6) |
M2—O4 | 2.9154 (13) | 3.342 (7) |
M2—O4ii | 2.9154 (13) | 3.342 (7) |
Te1—O7vii | 1.8369 (17) | 1.852 (10) |
Te1—O7viii | 1.8369 (17) | 1.852 (10) |
Te1—O1 | 2.1608 (17) | 2.160 (9) |
Te1—O1ii | 2.1608 (17) | 2.160 (9) |
Te2—O6ix | 1.8522 (12) | 1.859 (8) |
Te2—O6 | 1.8522 (12) | 1.859 (8) |
Te2—O1 | 1.8902 (17) | 1.883 (10) |
Te3—O3 | 1.8602 (11) | 1.868 (8) |
Te3—O5x | 1.8743 (10) | 1.856 (7) |
Te3—O2x | 2.0123 (5) | 2.008 (3) |
Te3—O4 | 2.3222 (12) | 2.338 (6) |
Te4—O8 | 1.8694 (17) | 1.857 (10) |
Te4—O4 | 1.8994 (11) | 1.900 (7) |
Te4—O4ii | 1.8994 (11) | 1.900 (7) |
Notes: (a) this study; (b) Champarnaud-Mesjard et al. (2001); single-crystal data with a = 19.522 (4), b = 7.121 (1) and c = 18.813 (4) Å. Symmetry codes: (i) x, -y+1, -z+1; (ii) x, y, -z+1/2; (iii) -x+1/2, y+1/2, z; (iv) -x+1/2, y-1/2, z; (v) -x+1/2, y+1/2, -z+1/2; (vi) -x+1/2, y-1/2, -z+1/2; (vii) x, y-1, z; (viii) -x+1, y-1, -z+1/2; (ix) -x+1, y, z; (x) x, y+1, z. |
Acknowledgements
The X-ray centre of the TU Wien is acknowledged for financial support and for providing access to the single-crystal and powder X-ray diffractometers.
References
Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H. (2006). Z. Kristallogr. 221, 15–27. Web of Science CrossRef CAS Google Scholar
Barrier, N., Rueff, J. M., Lepetit, M. B., Contreras-Garcia, J., Malo, S. & Raveau, B. (2009). Solid State Sci. 11, 289–293. CrossRef Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press. Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Champarnaud-Mesjard, J. C., Thomas, P., Colas-Dutreilh, M. & Oufkir, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 185–186. Google Scholar
Christy, A. G., Mills, S. J. & Kampf, A. R. (2016). Mineral. Mag. 80, 415–545. Web of Science CrossRef CAS Google Scholar
Dowty, E. (2006). ATOMS for Windows. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. Google Scholar
Elerman, Y. & Koçak, M. (1986). J. Appl. Cryst. 19, 410. CrossRef Web of Science IUCr Journals Google Scholar
Flor, G. de la, Orobengoa, D., Tasci, E., Perez-Mato, J. M. & Aroyo, M. I. (2016). J. Appl. Cryst. 49, 653–664. Web of Science CrossRef IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. Web of Science CrossRef IUCr Journals Google Scholar
Galy, J., Meunier, G., Anderson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mills, S. J. & Christy, A. G. (2013). Acta Cryst. B69, 145–149. CrossRef CAS IUCr Journals Google Scholar
Mishra, R., Namboodiri, P. N., Tripathi, S. N. & Dharwadkar, S. R. (1998). J. Alloys Compd. 280, 56–64. CrossRef Google Scholar
Poupon, M., Barrier, N., Petit, S., Clevers, S. & Dupray, V. (2015). Inorg. Chem. 54, 5660–5670. CrossRef Google Scholar
Redman, M. J., Chen, J. H., Binnie, W. P. & Mallo, W. J. (1970). J. Am. Chem. Soc. 53, 645–648. CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867. Web of Science CrossRef CAS Google Scholar
Stöger, B., Weil, M., Zobetz, E. & Giester, G. (2009). Acta Cryst. B65, 167–181. Web of Science CrossRef IUCr Journals Google Scholar
Tripathi, S. N., Mishra, R., Mathews, M. D. & Namboodiri, P. N. (2001). Powder Diffr. 16, 205–211. Web of Science CrossRef CAS Google Scholar
Weil, M. (2004). Solid State Sci. 6, 29–37. Web of Science CrossRef CAS Google Scholar
Weil, M., Heymann, G. & Huppertz, H. (2016). Eur. J. Inorg. Chem. pp. 2374–3579. Google Scholar
Weil, M. & Stöger, B. (2008). Acta Cryst. C64, i79–i81. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.