research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of (E)-1-(4-bromo­phen­yl)-3-(3-fluoro­phen­yl)prop-2-en-1-one

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suhanaarshad@usm.my

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 26 November 2018; accepted 7 December 2018; online 1 January 2019)

The asymmetric unit of the title halogenated chalcone derivative, C15H10BrFO, contains two independent mol­ecules, both adopting an s-cis configuration with respect to the C=O and C=C bonds. In the crystal, centrosymmetrically related mol­ecules are linked into dimers via inter­molecular hydrogen bonds, forming rings with R12(6), R22(10) and R22(14) graph-set motifs. The dimers are further connected by C—H⋯O inter­actions into chains parallel to [001]. A Hirshfeld surface analysis suggests that the most significant contribution to the crystal packing is by H⋯H contacts (26.3%). Calculations performed on the optimized structure obtained using density functional theory (DFT) at B3LYP with the 6–311 G++(d,p) basis set reveal that the HOMO–LUMO energy gap is 4.12 eV, indicating the suitability of this crystal for optoelectronic and biological applications. The nucleophilic and electrophilic binding site regions are elucidated using the mol­ecular electrostatic potential (MEP).

1. Chemical context

Chalcones are natural or synthetic compounds belonging to the flavonoid family (Di Carlo et al., 1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]), consisting of open-chain flavonoids in which the aromatic rings are linked by a three-carbon α,β-unsaturated carbonyl system (Thanigaimani et al., 2015[Thanigaimani, K., Arshad, S., Khalib, N. C., Razak, I. A., Arunagiri, C., Subashini, A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 149, 90-102.]). Chalcone derivatives have attracted significant inter­est in the field of non-linear optics due to their excellent blue-light transmittance, good crystal stability, large non-linear optical coefficients and relatively short cut-off wavelengths of transmittance (Goto et al., 1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]; Patil et al., 2006a[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o896-o898.],b[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710-o1712.]; Zhao et al., 2000[Zhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513-1517.]). The presence of halogen substitutions results in alterations of the physicochemical properties and biological activities of organic compounds, without introducing much major steric change. As a result of this, many researchers have worked intensively on fluorine substitution to develop a wide range of biologically active materials (O'Hagan et al., 2008[O'Hagan, D. (2008). Chem. Soc. Rev. 37, 308-319.]). As part of our studies in this area, fluoro and bromo substituents were introduced in the title compound and the resulting organic mol­ecular crystal is reported herein in term of its structural stability, the percentage contributions of the various inter­actions to the crystal packing, and electronic charge transfer within the mol­ecule.

2. Structural commentary

The asymmetric unit of the title compound [Fig. 1[link](a)] contains two independent mol­ecules (A and B) with different conformations: the fluoro­benzene group in mol­ecule A is rotated by approximately 180° about the C9—C10 bond with respect to mol­ecule B, the C9⋯C11—C12—F1 torsion angle formed by non-bonded atoms being 178.4 (3) and −177.0 (3)° in mol­ecules A and B, respectively. The optimized structure of the title compound was performed with the Gaussian 09W software package (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., USA.]) using the DFT method at the B3LYP/6-311 G++(d,p) level to provide information about the mol­ecular geometry.

[Scheme 1]
[Figure 1]
Figure 1
(a) The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and (b) the optimized mol­ecular structure of the title compound generated using the DFT method at the B3LYP/6–311 G++(d,p) level.

Bond length and angles are unexceptional and fall within the expected ranges. The enone group (O1/C7–C9) of both mol­ecules A and B adopts s-cis configurations with respect to the C7=O1 [C7A—O1A = 1.207 (4) Å; C7B-–O1B = 1.221 (3) Å] and C8=C9 [C8A—C9A = 1.321 (4) Å; C8B—C9B = 1.322 (4) Å] double bonds. The values of the bond lengths within the enone group obtained by theoretical study are in good agreement with the results of the X-ray analysis (C7–O1 = 1.223 Å; C8–C9 = 1.345 Å). The mol­ecule is essentially planar, the O1—C7—C8—C9 torsion angle being 1.0 (5)° for mol­ecule A and 3.9 (4)° for mol­ecule B. The corresponding torsion angle from the DFT study is −5.024°. This slight deviation from the experimental value is due to the fact that the optimization is performed in isolated conditions, whereas the crystal environment and hydrogen-bonding inter­actions affect the results of the X-ray structure (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, I. A., Pillai, R. R., Sulaiman, S. F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, C. Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520-533.]). The C1–C6 (R1) and C10–C15 (R2) phenyl rings in both mol­ecules are approximately coplanar, the dihedral angle they form being 3.75 (15)° and 5.56 (15)° in mol­ecules A and B, respectively. Furthermore, the dihedral angles formed by the mean plane through the enone group [maximum deviation of 0.004 (3) Å for atoms C7A/C8A, and 0.016 (3) Å for atom C7B] and the R1 and R2 rings are 6.3 (2) and 2.6 (2)° in mol­ecule A, and 6.42 (19) and 4.41 (19)° in mol­ecule B.

3. Supra­molecular features

In the crystal packing of the compound, the B mol­ecules are centrosymmetrically connected via inter­molecular C15B—H15B⋯O1B inter­actions, forming a ring with an R22(14) graph-set motif [Table 1[link], Fig. 2[link](a)]. Similarly, the inter­molecular C9A—H9AA⋯O1A and C11A—H11A⋯O1A [Table 1[link], Fig. 2[link](b)] hydrogen bonds also connect the A mol­ecules into inversion dimers, forming two R12(6) and one R22(10) ring motifs. Finally, the C13A—H13A⋯O1B inter­actions act as a bridge, linking the dimers into chains extending parallel to the c axis (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13A⋯O1B 0.93 2.52 3.427 (4) 165
C9A—H9AA⋯O1Ai 0.93 2.52 3.362 (4) 151
C11A—H11A⋯O1Ai 0.93 2.45 3.294 (4) 151
C15B—H15B⋯O1Bii 0.93 2.50 3.377 (4) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
Crystal packing of the title compound showing C—H⋯O hydrogen bonds (dotted lines). H atoms not involved in hydrogen bonding are omitted. The insets show the formation of (a) R22(14) ring motifs and (b) R12(6) and R22(10) ring motifs.
[Figure 3]
Figure 3
Partial crystal packing of the title compound viewed approximately down the a axis showing the formation of a mol­ecular chain parallel to the c axis by C—H⋯O inter­actions (dotted lines).

4. Hirshfeld Surface analysis

Hirshfeld surface analysis provides the percentage contribution of the inter­molecular inter­actions inside the unit-cell packing. The surface and the related two-dimensional fingerprint plots were generated with CrystalExplorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Perth.]). The dnorm and de surfaces are presented in Fig. 4[link](a) and Fig. 4[link](b), respectively. All C—H⋯O contacts are recognized in the dnorm mapped surface as deep-red depression areas showing the inter­action between the neighbouring mol­ecules [Fig. 4[link](a)]. Further existence of these contacts can be visualized under the de surfaces. The side view I (Fig. 4[link]) shows that the A mol­ecules may inter­act through C9A—H9AA⋯O1A and C11A—H11A⋯O1A inter­actions, resulting in the formation of three ring motifs. Meanwhile, side view II (Fig. 4[link]) indicates that for B mol­ecules only one ring motif is achieved through C15B—H15B⋯O1B inter­actions. Two-dimensional fingerprint plots provide information about the major and minor percentage contribution of inter­atomic contacts in the compound. The blue colour refers to the frequency of occurrence of the (di, de) pair and the grey colour is the outline of the full fingerprint (Ternavisk et al., 2014[Ternavisk, R. R., Camargo, A. J., Machado, F. B. C., Rocco, J. A. F. F., Aquino, G. L. B., Silva, V. H. C. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526-2536.]). The fingerprint plots (Fig. 5[link]) show that the H⋯H contacts clearly make the most significant contribution to the Hirshfeld surface (26.3%): there is one distinct spike with a de + di value approximately less than the sum of Van der Waals radii (2.4 Å). In addition, C⋯H/H⋯C and O⋯H/H⋯O contacts contribute 21.2% and 8.3%, respectively, to the Hirshfeld surface. In particular, the O⋯H/H⋯O contacts indicate the presence of inter­molecular C—H⋯O inter­actions where the distance is shorter than the sum of de + di (∼2.32 Å).

[Figure 4]
Figure 4
Hirshfeld surfaces of the title compound mapped over dnorm and de.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots with a dnorm view showing the percentage contributions to the total Hirshfeld surface.

5. Frontier mol­ecular orbital and UV–vis Analyses

Frontier mol­ecular orbital analysis is an important tool in quantum chemistry for studying the mol­ecular electronic charge mobility from the highest occupied mol­ecular orbital (HOMO) and the lowest unoccupied mol­ecular orbital (LUMO). The HOMO–LUMO separation confirms the energy gap of the compound where it is responsible for the ICT (intra­molecular charge transfer) from the end-capping electron-donor groups to the efficient electron-acceptor groups through the π-conjugated path. The electron-density plots of the HOMO and LUMO for the title compound were calculated using density functional theory (DFT) at the B3LYP/6–311 G++(d,p) level. As seen from the orbital plots (Fig. 6[link]), both HOMO and LUMO extend mainly over the entire mol­ecule, but the mol­ecular orbital localization differs. This can be seen specifically at the enone moiety where the orbital accumulates around the carbon–carbon double bond at the HOMO state whereas it is localized at the carbon–carbon single bond at the LUMO state, indicating conjugation within the mol­ecule. The calculated energy gap, ELUMOEHOMO, is 4.12 eV. The experimental UV–vis absorption spectrum consists of one major band (Fig. 7[link]) occurring in the visible region at 304 nm which was assigned to the ππ* transition. This sharp peak was expected to arise from the carbonyl group of the chalcone (Zainuri et al., 2018[Zainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 1427-1432.]). From the UV–vis absorption edge, the calculated energy band-gap value is 3.60 eV, which is similar to that found in a previous study of a related chalcone (Zaini et al., 2018[Zaini, M. F., Arshad, S., Ibrahim, A. R., Khalib, N. C. & Zainuri, D. A. (2018). J. Phys. Conf. Ser. 1083, 012047.]).

[Figure 6]
Figure 6
Mol­ecular orbitals showing the HOMO–LUMO electronic transitions in the title compound.
[Figure 7]
Figure 7
The UV–vis absorption spectrum of the title compound.

6. Mol­ecular electrostatic potential

The mol­ecular electrostatic potential (MEP) is useful in depicting the mol­ecular size and shape as well as in visualizing the charge distributions of mol­ecules. The MEP map (Fig. 8[link]) of the title compounds was calculated theoretically at the DFT/B3LYP/6–311 G++(d,p) level of theory. The colour grading in the plot represents the electrostatic potential regions in which the red-coloured region is nucleophile and electron rich, the blue colour indicates the electron-poor electrophile region and the white region indicates neutral atoms. These sites provide information about where the intermolecular inter­actions are involved within the mol­ecule (Gunasekaran et al., 2008[Gunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G. & Srinivasan, S. (2008). J. Chem. Sci. 120, 780-785.]). The reactive sites are found near the carbonyl group: the region is represented in red and possesses the most negative potential spots. This nucleophile site (negative potential value of −0.04713 a.u.) is distributed around the oxygen atom due to the inter­molecular C—H⋯O inter­actions; in the mol­ecular structure it indicates the strong­est repulsion site (electrophilic attack), whereas the strongest attraction regions (nucleophilic attack) portrayed by the blue spots are localized on the hydrogen atoms.

[Figure 8]
Figure 8
The mol­ecular electrostatic potential surface of the title compound calculated at the DFT/B3LYP/6–311 G++(d,p) level.

7. Database survey

A search of the Cambridge Structural Database (Version 5.39, last update November 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed one closely related compound that differs in the halogen substitution attached to the aldehyde ring, namely 3-(3-bromo­phen­yl)-1-(4-bromo­phen­yl)-prop-2-en-1-one (Teh et al., 2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399-o2400.]). Other related compounds, which differ in the halogen substitution at the para-position of the aldehyde ring include (2E)-1-(4-bromo­phen­yl)-3-(4-fluoro­phen­yl)prop-2-en-1-one (Dut­kiewicz et al., 2010[Dutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243-o1244.]), 1-(4-bromo­phen­yl)-3-(4-chloro­phen­yl)prop-2-en-1-one (Yang et al., 2006[Yang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195-198.]), 1,3-bis­(4-bromo­phen­yl)prop-2-en-1-one (Ng et al., 2006[Ng, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1421-o1423.]), (E)-1-(4-bromo­phen­yl)-3-(4-iodo­ophen­yl)prop-2-en-1-one (Zainuri et al., 2017[Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, I. A., Pillai, R. R., Sulaiman, S. F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, C. Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520-533.]) and (E)-3-(4-bromo­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one (Zaini et al., 2018[Zaini, M. F., Arshad, S., Ibrahim, A. R., Khalib, N. C. & Zainuri, D. A. (2018). J. Phys. Conf. Ser. 1083, 012047.]).

8. Synthesis and crystallization

The title compound was prepared by a standard Claisen–Schmidt condensation reaction at room temperature. A mixture of 4-bromo­aceto­phenone (0.5 mmol) and 3-fluoro­benzaldehyde (0.5 mmol) was dissolved in methanol (20 ml) and the solution stirred continuously. A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise until a precipitate formed and the reaction was stirred continuously for about 5 h. After stirring, the solution was poured into 60 ml of ice-cold distilled water. The resultant crude product was filtered and washed successively with distilled water until the filtrate turned colourless. The dried precipitate was further recrystallized to obtain the desired chalcone. Crystals suitable for X-ray diffraction analysis were formed by slow evaporation of an acetone solution.

9. Refinement

Details of the crystal data collection and structure refinement are summarized in Table 2[link]. All C-bound H atoms were positioned geometrically (C—H = 0.930 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). One outlier (3[\overline{1}]1) was omitted in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C15H10BrFO
Mr 305.14
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.0090 (4), 10.8695 (7), 20.5616 (12)
α, β, γ (°) 102.803 (1), 96.938 (1), 97.276 (1)
V3) 1283.57 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.20
Crystal size (mm) 0.56 × 0.39 × 0.29
 
Data collection
Diffractometer Bruker SMART APEXII Duo CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.267, 0.455
No. of measured, independent and observed [I > 2σ(I)] reflections 27389, 7437, 4832
Rint 0.037
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.158, 1.04
No. of reflections 7437
No. of parameters 325
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.85, −1.35
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

(E)-1-(4-Bromophenyl)-3-(3-fluorophenyl)prop-2-en-1-one top
Crystal data top
C15H10BrFOZ = 4
Mr = 305.14F(000) = 608
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0090 (4) ÅCell parameters from 8958 reflections
b = 10.8695 (7) Åθ = 2.5–28.0°
c = 20.5616 (12) ŵ = 3.20 mm1
α = 102.803 (1)°T = 296 K
β = 96.938 (1)°Plate, yellow
γ = 97.276 (1)°0.56 × 0.39 × 0.29 mm
V = 1283.57 (14) Å3
Data collection top
Bruker SMART APEXII Duo CCD area-detector
diffractometer
7437 independent reflections
Radiation source: fine-focus sealed tube4832 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.267, Tmax = 0.455k = 1515
27389 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.4733P]
where P = (Fo2 + 2Fc2)/3
7437 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.36851 (7)1.01488 (4)0.369778 (19)0.07958 (15)
F1A0.5304 (4)0.3263 (2)0.74576 (11)0.0894 (7)
O1A0.3367 (4)0.6239 (3)0.46486 (13)0.0805 (8)
C1A0.1316 (5)0.7958 (3)0.49478 (14)0.0533 (6)
H1AA0.17030.77250.53330.064*
C2A0.2576 (5)0.8732 (3)0.46588 (16)0.0595 (7)
H2AA0.38070.90170.48460.071*
C3A0.1989 (5)0.9074 (3)0.40938 (15)0.0564 (7)
C4A0.0175 (6)0.8661 (3)0.38068 (16)0.0632 (8)
H4AA0.02050.89030.34230.076*
C5A0.1071 (5)0.7882 (3)0.40975 (15)0.0583 (7)
H5AA0.22930.75960.39060.070*
C6A0.0523 (4)0.7524 (2)0.46713 (13)0.0462 (5)
C7A0.1930 (5)0.6668 (3)0.49525 (14)0.0526 (6)
C8A0.1559 (5)0.6354 (3)0.55997 (14)0.0513 (6)
H8AA0.04300.66820.58240.062*
C9A0.2801 (5)0.5616 (3)0.58648 (13)0.0492 (6)
H9AA0.39320.53240.56280.059*
C10A0.2592 (5)0.5208 (2)0.64885 (12)0.0457 (5)
C11A0.4081 (5)0.4430 (3)0.66883 (14)0.0531 (6)
H11A0.51950.41810.64330.064*
C12A0.3866 (6)0.4042 (3)0.72699 (15)0.0606 (7)
C13A0.2265 (6)0.4381 (3)0.76688 (15)0.0685 (9)
H13A0.21710.41020.80620.082*
C14A0.0807 (7)0.5147 (4)0.74667 (17)0.0750 (9)
H14A0.02970.53900.77270.090*
C15A0.0953 (6)0.5562 (3)0.68819 (15)0.0637 (8)
H15A0.00500.60800.67520.076*
Br1B0.33082 (7)0.20429 (4)0.72238 (2)0.09061 (17)
F1B1.2882 (4)0.0939 (2)1.06936 (14)0.1021 (8)
O1B0.3006 (4)0.34757 (19)0.91642 (11)0.0632 (5)
C1B0.0157 (5)0.1510 (3)0.83454 (15)0.0538 (6)
H1BA0.05130.23330.84400.065*
C2B0.1694 (5)0.0535 (3)0.79170 (15)0.0587 (7)
H2BA0.30740.06940.77220.070*
C3B0.1153 (5)0.0677 (3)0.77835 (16)0.0590 (7)
C4B0.0883 (6)0.0930 (3)0.80586 (19)0.0730 (9)
H4BA0.12310.17540.79590.088*
C5B0.2415 (5)0.0063 (3)0.84882 (17)0.0646 (8)
H5BA0.37990.01010.86770.077*
C6B0.1921 (5)0.1289 (3)0.86397 (13)0.0484 (6)
C7B0.3501 (5)0.2405 (2)0.90990 (13)0.0483 (6)
C8B0.5623 (5)0.2192 (3)0.94716 (14)0.0522 (6)
H8BA0.60190.13780.93960.063*
C9B0.6961 (5)0.3151 (3)0.99126 (13)0.0481 (5)
H9BA0.64790.39430.99710.058*
C10B0.9115 (5)0.3113 (2)1.03206 (12)0.0458 (5)
C11B0.9974 (5)0.1983 (3)1.03227 (15)0.0574 (7)
H11B0.91640.12021.00710.069*
C12B1.2032 (6)0.2045 (3)1.07027 (16)0.0623 (7)
C13B1.3312 (5)0.3157 (3)1.10868 (15)0.0611 (7)
H13B1.47030.31591.13410.073*
C14B1.2459 (6)0.4271 (3)1.10829 (14)0.0607 (7)
H14B1.32910.50461.13350.073*
C15B1.0377 (5)0.4254 (3)1.07085 (13)0.0527 (6)
H15B0.98160.50161.07170.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0856 (3)0.0670 (2)0.0818 (3)0.01918 (18)0.02313 (19)0.02390 (17)
F1A0.1164 (18)0.0866 (14)0.0753 (13)0.0378 (13)0.0027 (12)0.0375 (11)
O1A0.0840 (17)0.1058 (19)0.0857 (16)0.0548 (15)0.0438 (14)0.0557 (15)
C1A0.0548 (15)0.0585 (16)0.0497 (14)0.0147 (12)0.0070 (12)0.0166 (12)
C2A0.0569 (16)0.0606 (17)0.0612 (16)0.0184 (13)0.0026 (13)0.0134 (13)
C3A0.0599 (16)0.0471 (14)0.0552 (15)0.0058 (12)0.0141 (13)0.0115 (11)
C4A0.073 (2)0.0651 (18)0.0542 (16)0.0068 (15)0.0018 (14)0.0268 (14)
C5A0.0599 (17)0.0622 (17)0.0578 (16)0.0161 (13)0.0103 (13)0.0206 (13)
C6A0.0467 (13)0.0440 (12)0.0471 (13)0.0050 (10)0.0029 (10)0.0128 (10)
C7A0.0535 (15)0.0521 (14)0.0570 (15)0.0134 (12)0.0103 (12)0.0191 (12)
C8A0.0537 (15)0.0519 (14)0.0521 (14)0.0143 (12)0.0119 (12)0.0153 (11)
C9A0.0504 (14)0.0487 (13)0.0495 (13)0.0093 (11)0.0076 (11)0.0129 (11)
C10A0.0509 (14)0.0421 (12)0.0417 (12)0.0054 (10)0.0032 (10)0.0083 (10)
C11A0.0605 (16)0.0479 (13)0.0482 (14)0.0101 (12)0.0009 (12)0.0090 (11)
C12A0.075 (2)0.0516 (15)0.0514 (15)0.0051 (13)0.0077 (14)0.0159 (12)
C13A0.083 (2)0.078 (2)0.0440 (15)0.0016 (17)0.0046 (15)0.0221 (14)
C14A0.077 (2)0.098 (3)0.0557 (17)0.021 (2)0.0217 (16)0.0213 (18)
C15A0.071 (2)0.0728 (19)0.0533 (16)0.0248 (16)0.0120 (14)0.0185 (14)
Br1B0.0727 (3)0.0615 (2)0.1139 (3)0.01018 (17)0.0328 (2)0.00307 (19)
F1B0.0907 (16)0.0653 (13)0.140 (2)0.0298 (11)0.0343 (15)0.0209 (13)
O1B0.0684 (13)0.0461 (10)0.0725 (13)0.0170 (9)0.0053 (10)0.0128 (9)
C1B0.0542 (16)0.0488 (13)0.0599 (15)0.0171 (11)0.0020 (12)0.0147 (12)
C2B0.0498 (15)0.0613 (17)0.0632 (17)0.0151 (13)0.0054 (13)0.0153 (13)
C3B0.0537 (16)0.0529 (15)0.0638 (16)0.0070 (12)0.0068 (13)0.0091 (13)
C4B0.0655 (19)0.0492 (16)0.093 (2)0.0170 (14)0.0145 (17)0.0023 (15)
C5B0.0523 (16)0.0541 (16)0.081 (2)0.0168 (13)0.0117 (14)0.0102 (14)
C6B0.0473 (13)0.0519 (14)0.0472 (13)0.0113 (11)0.0024 (11)0.0151 (11)
C7B0.0513 (14)0.0462 (13)0.0483 (13)0.0105 (11)0.0034 (11)0.0138 (10)
C8B0.0528 (15)0.0472 (13)0.0567 (15)0.0134 (11)0.0017 (12)0.0134 (11)
C9B0.0520 (14)0.0462 (13)0.0477 (13)0.0114 (11)0.0055 (11)0.0135 (10)
C10B0.0506 (14)0.0462 (13)0.0410 (12)0.0097 (10)0.0056 (10)0.0112 (10)
C11B0.0600 (16)0.0450 (13)0.0626 (16)0.0068 (12)0.0056 (13)0.0125 (12)
C12B0.0648 (18)0.0560 (16)0.0659 (17)0.0164 (14)0.0031 (14)0.0176 (14)
C13B0.0552 (16)0.0719 (19)0.0547 (15)0.0077 (14)0.0022 (13)0.0190 (14)
C14B0.0633 (18)0.0603 (17)0.0484 (14)0.0039 (13)0.0039 (13)0.0017 (12)
C15B0.0635 (17)0.0485 (14)0.0438 (13)0.0121 (12)0.0054 (12)0.0060 (11)
Geometric parameters (Å, º) top
Br1A—C3A1.894 (3)Br1B—C3B1.898 (3)
F1A—C12A1.365 (4)F1B—C12B1.362 (4)
O1A—C7A1.207 (4)O1B—C7B1.221 (3)
C1A—C2A1.381 (4)C1B—C2B1.376 (4)
C1A—C6A1.390 (4)C1B—C6B1.393 (4)
C1A—H1AA0.9300C1B—H1BA0.9300
C2A—C3A1.367 (5)C2B—C3B1.374 (4)
C2A—H2AA0.9300C2B—H2BA0.9300
C3A—C4A1.378 (5)C3B—C4B1.371 (4)
C4A—C5A1.383 (4)C4B—C5B1.386 (4)
C4A—H4AA0.9300C4B—H4BA0.9300
C5A—C6A1.385 (4)C5B—C6B1.379 (4)
C5A—H5AA0.9300C5B—H5BA0.9300
C6A—C7A1.494 (4)C6B—C7B1.499 (4)
C7A—C8A1.481 (4)C7B—C8B1.477 (4)
C8A—C9A1.321 (4)C8B—C9B1.322 (4)
C8A—H8AA0.9300C8B—H8BA0.9300
C9A—C10A1.461 (4)C9B—C10B1.465 (4)
C9A—H9AA0.9300C9B—H9BA0.9300
C10A—C15A1.387 (4)C10B—C15B1.388 (4)
C10A—C11A1.393 (4)C10B—C11B1.393 (4)
C11A—C12A1.368 (4)C11B—C12B1.366 (4)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.371 (5)C12B—C13B1.368 (5)
C13A—C14A1.373 (5)C13B—C14B1.375 (5)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.383 (5)C14B—C15B1.383 (4)
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9300C15B—H15B0.9300
C2A—C1A—C6A121.0 (3)C2B—C1B—C6B121.4 (3)
C2A—C1A—H1AA119.5C2B—C1B—H1BA119.3
C6A—C1A—H1AA119.5C6B—C1B—H1BA119.3
C3A—C2A—C1A119.1 (3)C3B—C2B—C1B118.8 (3)
C3A—C2A—H2AA120.4C3B—C2B—H2BA120.6
C1A—C2A—H2AA120.4C1B—C2B—H2BA120.6
C2A—C3A—C4A121.4 (3)C4B—C3B—C2B121.6 (3)
C2A—C3A—Br1A119.5 (2)C4B—C3B—Br1B119.2 (2)
C4A—C3A—Br1A119.0 (2)C2B—C3B—Br1B119.2 (2)
C3A—C4A—C5A119.1 (3)C3B—C4B—C5B118.9 (3)
C3A—C4A—H4AA120.5C3B—C4B—H4BA120.5
C5A—C4A—H4AA120.5C5B—C4B—H4BA120.5
C4A—C5A—C6A120.8 (3)C6B—C5B—C4B121.1 (3)
C4A—C5A—H5AA119.6C6B—C5B—H5BA119.5
C6A—C5A—H5AA119.6C4B—C5B—H5BA119.5
C5A—C6A—C1A118.6 (3)C5B—C6B—C1B118.2 (3)
C5A—C6A—C7A117.8 (2)C5B—C6B—C7B123.8 (2)
C1A—C6A—C7A123.6 (2)C1B—C6B—C7B118.0 (2)
O1A—C7A—C8A120.4 (3)O1B—C7B—C8B120.9 (3)
O1A—C7A—C6A119.5 (2)O1B—C7B—C6B119.5 (2)
C8A—C7A—C6A120.0 (2)C8B—C7B—C6B119.6 (2)
C9A—C8A—C7A121.3 (3)C9B—C8B—C7B120.4 (2)
C9A—C8A—H8AA119.4C9B—C8B—H8BA119.8
C7A—C8A—H8AA119.4C7B—C8B—H8BA119.8
C8A—C9A—C10A127.1 (3)C8B—C9B—C10B127.6 (2)
C8A—C9A—H9AA116.4C8B—C9B—H9BA116.2
C10A—C9A—H9AA116.4C10B—C9B—H9BA116.2
C15A—C10A—C11A119.3 (2)C15B—C10B—C11B118.6 (3)
C15A—C10A—C9A122.1 (3)C15B—C10B—C9B118.7 (2)
C11A—C10A—C9A118.6 (2)C11B—C10B—C9B122.7 (2)
C12A—C11A—C10A118.4 (3)C12B—C11B—C10B118.6 (3)
C12A—C11A—H11A120.8C12B—C11B—H11B120.7
C10A—C11A—H11A120.8C10B—C11B—H11B120.7
F1A—C12A—C11A118.2 (3)F1B—C12B—C11B118.3 (3)
F1A—C12A—C13A118.3 (3)F1B—C12B—C13B117.7 (3)
C11A—C12A—C13A123.5 (3)C11B—C12B—C13B123.9 (3)
C12A—C13A—C14A117.6 (3)C12B—C13B—C14B117.3 (3)
C12A—C13A—H13A121.2C12B—C13B—H13B121.3
C14A—C13A—H13A121.2C14B—C13B—H13B121.3
C13A—C14A—C15A121.1 (3)C13B—C14B—C15B120.8 (3)
C13A—C14A—H14A119.5C13B—C14B—H14B119.6
C15A—C14A—H14A119.5C15B—C14B—H14B119.6
C14A—C15A—C10A120.1 (3)C14B—C15B—C10B120.8 (3)
C14A—C15A—H15A119.9C14B—C15B—H15B119.6
C10A—C15A—H15A119.9C10B—C15B—H15B119.6
C6A—C1A—C2A—C3A0.2 (5)C6B—C1B—C2B—C3B0.3 (5)
C1A—C2A—C3A—C4A0.2 (5)C1B—C2B—C3B—C4B0.9 (5)
C1A—C2A—C3A—Br1A179.4 (2)C1B—C2B—C3B—Br1B177.4 (2)
C2A—C3A—C4A—C5A0.1 (5)C2B—C3B—C4B—C5B0.8 (6)
Br1A—C3A—C4A—C5A179.6 (2)Br1B—C3B—C4B—C5B177.5 (3)
C3A—C4A—C5A—C6A0.3 (5)C3B—C4B—C5B—C6B0.1 (6)
C4A—C5A—C6A—C1A0.3 (5)C4B—C5B—C6B—C1B0.5 (5)
C4A—C5A—C6A—C7A179.3 (3)C4B—C5B—C6B—C7B179.9 (3)
C2A—C1A—C6A—C5A0.0 (4)C2B—C1B—C6B—C5B0.4 (4)
C2A—C1A—C6A—C7A179.0 (3)C2B—C1B—C6B—C7B179.8 (3)
C5A—C6A—C7A—O1A5.7 (4)C5B—C6B—C7B—O1B174.3 (3)
C1A—C6A—C7A—O1A173.3 (3)C1B—C6B—C7B—O1B5.2 (4)
C5A—C6A—C7A—C8A174.3 (3)C5B—C6B—C7B—C8B6.3 (4)
C1A—C6A—C7A—C8A6.8 (4)C1B—C6B—C7B—C8B174.2 (3)
O1A—C7A—C8A—C9A1.0 (5)O1B—C7B—C8B—C9B3.9 (4)
C6A—C7A—C8A—C9A179.0 (3)C6B—C7B—C8B—C9B175.5 (3)
C7A—C8A—C9A—C10A178.7 (3)C7B—C8B—C9B—C10B179.7 (3)
C8A—C9A—C10A—C15A0.9 (5)C8B—C9B—C10B—C15B173.9 (3)
C8A—C9A—C10A—C11A179.6 (3)C8B—C9B—C10B—C11B4.5 (5)
C15A—C10A—C11A—C12A0.0 (4)C15B—C10B—C11B—C12B0.5 (4)
C9A—C10A—C11A—C12A179.4 (3)C9B—C10B—C11B—C12B177.9 (3)
C10A—C11A—C12A—F1A178.9 (3)C10B—C11B—C12B—F1B178.9 (3)
C10A—C11A—C12A—C13A0.2 (5)C10B—C11B—C12B—C13B0.2 (5)
F1A—C12A—C13A—C14A178.9 (3)F1B—C12B—C13B—C14B178.8 (3)
C11A—C12A—C13A—C14A0.3 (5)C11B—C12B—C13B—C14B0.3 (5)
C12A—C13A—C14A—C15A0.1 (6)C12B—C13B—C14B—C15B0.6 (5)
C13A—C14A—C15A—C10A0.1 (6)C13B—C14B—C15B—C10B0.9 (5)
C11A—C10A—C15A—C14A0.1 (5)C11B—C10B—C15B—C14B0.8 (4)
C9A—C10A—C15A—C14A179.6 (3)C9B—C10B—C15B—C14B177.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13A—H13A···O1B0.932.523.427 (4)165
C9A—H9AA···O1Ai0.932.523.362 (4)151
C11A—H11A···O1Ai0.932.453.294 (4)151
C15B—H15B···O1Bii0.932.503.377 (4)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
 

Funding information

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for providing facilities and the Fundamental Research Grant Scheme (FRGS) No. 203.PFIZIK.6711606 for supplying the chemicals to conduct this research successfully.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDutkiewicz, G., Veena, K., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2010). Acta Cryst. E66, o1243–o1244.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., USA.  Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G. & Srinivasan, S. (2008). J. Chem. Sci. 120, 780–785.  CrossRef Google Scholar
First citationNg, S.-L., Shettigar, V., Razak, I. A., Fun, H.-K., Patil, P. S. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1421–o1423.  Web of Science CrossRef IUCr Journals Google Scholar
First citationO'Hagan, D. (2008). Chem. Soc. Rev. 37, 308–319.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006a). Acta Cryst. E62, o896–o898.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o1710–o1712.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o2399–o2400.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTernavisk, R. R., Camargo, A. J., Machado, F. B. C., Rocco, J. A. F. F., Aquino, G. L. B., Silva, V. H. C. & Napolitano, H. B. (2014). J. Mol. Model. 20, 2526–2536.  Web of Science CrossRef PubMed Google Scholar
First citationThanigaimani, K., Arshad, S., Khalib, N. C., Razak, I. A., Arunagiri, C., Subashini, A., Sulaiman, S. F., Hashim, N. S. & Ooi, K. L. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 149, 90–102.  CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Perth.  Google Scholar
First citationYang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195–198.  Web of Science CrossRef CAS Google Scholar
First citationZaini, M. F., Arshad, S., Ibrahim, A. R., Khalib, N. C. & Zainuri, D. A. (2018). J. Phys. Conf. Ser. 1083, 012047.  CrossRef Google Scholar
First citationZainuri, D. A., Arshad, S., Khalib, N. C., Razak, I. A., Pillai, R. R., Sulaiman, S. F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, C. Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.  CrossRef Google Scholar
First citationZainuri, D. A., Razak, I. A. & Arshad, S. (2018). Acta Cryst. E74, 1427–1432.  CrossRef IUCr Journals Google Scholar
First citationZhao, B., Lu, W.-Q., Zhou, Z.-H. & Wu, Y. (2000). J. Mater. Chem. 10, 1513–1517.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds