research communications
of 4-[(adamantan-1-yl)amino]naphthalene-1,2-dione
aEscuela de Química, Universidad de Costa Rica, 2060, San José, Costa Rica, bCentro de investigación en Productos Naturales (CIPRONA), Universidad de Costa Rica, 2060, San José, Costa Rica, and cCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 2060, San José, Costa Rica
*Correspondence e-mail: guy.lamoureux@ucr.ac.cr
The title compound, C20H21NO2, an example of a stable 1,2-naphthoquinone, was determined by single-crystal X-ray at 100 K. This structure illustrates steric buttressing of the adamantanyl group, forcing the N—H group into the coplanar aromatic C—H. The presence of strong delocalization between the planar N atom at the 4-position and the carbonyl group at the 2-position is indicated. In the crystal, C—H⋯O and C—H⋯π interactions link the molecules into a three-dimensional network.
Keywords: crystal structure; adamantane; N—H⋯O hydrogen bonding; intramolecular hydrogen bonding; naphthoquinone.
CCDC reference: 1876987
1. Chemical context
The formation of 4-amino-1,2-naphthoquinones is important in the colorimetric analysis (Folin analysis) of ). However, the isolation and characterization of these aminoquinones is not common (Asahi et al., 1984). In the literature, it is reported that the yields for the formation of 1,2-naphthoquinones with a primary amino group in the 4-position are greatly inferior to those of secondary amino groups (Bullock et al., 1970). These inferior yields may be due to the equilibrium of amine/imine tautomeric forms (Yano et al., 1980; Fragoso et al., 2010), which would complicate the identification of 4-primary amino-1,2-naphthoquinones (Hartke & Lohmann, 1983). As part of our work on the synthesis and properties of naphthoquinones (Lamoureux et al., 2008), we were interested to prepare and analyze the structure of the title compound 4-[(adamantan-1-yl)amino]naphthalene-1,2-dione, also known as 4-(1-adamantanylamino)-1,2-naphthoquinone). To the best of our knowledge, the hybrid of a naphthoquinone core with an adamantanyl substituent is not known in the literature (Lamoureux & Artavia, 2010).
(Folin, 19222. Structural commentary
In the molecule of the title compound (Fig. 1), the C=O bond length of the carbonyl group at the 1-position [C11=O2 = 1.216 (2) Å] is shorter than the other at the 2-position [C2=O1 = 1.241 (2) Å], suggesting strong delocalization from the trigonal-planar nitrogen at the 4-position, causing a decrease of the double-bond character at the C2 carbonyl (vinylogous amide), whereas the C1 carbonyl atom is unaffected. Further evidence of this delocalization is shown by a short N1—C4 bond distance [1.346 (2) Å], which is intermediate between the C—N and C=N bond distances observed in a related quinone amine/imine structure (Lamoureux et al., 2018). The aliphatic bond distance [N1—C12 = 1.482 (2) Å] is longer than expected, but may be caused by the bulky adamantanyl group. Further evidence of the of the adamantanyl group is shown by the large angle at the planar nitrogen atom [C4—N1—C12 = 131.1 (2)°] compared to the ideal value of 120°. Most strikingly, the compression on one side of the adamantane ring causes another through-space compression between the NH group and the aromatic ring of the naphthoquinone ring system (H1⋯H6 = 1.82 Å; H1⋯C6 = 2.37 Å).
The fused quinone ring adopts a flattened
with atom C2 as the flap (displaced by 0.0687 (18) Å from the plane through the other atoms); the O1—C2—C11—O2 torsion angle formed by the two carbonyl groups is −6.1 (3)°. The C10—C11—C2 angle of 117.8 (2)°, C10—C11—C2 angle of 117.9 (2)° and C2—C3—C4 angle of 123.5 (2)° show the largest deviations from the ideal value of 120°. The aromatic ring is planar, as expected, and has internal bond angles that range from 117.9 (2) to 120.9 (2)°.3. Supramolecular features
In the ), molecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds (Table 1) involving as donors the C—H groups of both the adamantanyl system and the benzene ring. The crystal packing is further consolidated by C—H⋯π interactions. There are no π–π interactions, the aromatic rings being separated by more than 6 Å.
of the title compound (Fig. 24. Database survey
A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016) for the 4-amino-1,2-naphthoquinone yielded seven hits. However, only one structure (refcode ZARNOY; Hatfield et al., 2017) contains a primary amine (aniline) in the 4-position. The distance between the N—H group and the coplanar aromatic hydrogen atom [1.93 (4) Å] in this structure is longer than in the title compound, probably due to the smaller size of the nitrogen substituent. Surprisingly, the carbonyl groups in ZARNOY are almost coplanar [torsion angle of 0.2 (5)°]. In the same reference (Hatfield et al., 2017), another structure is reported (refcode ZARPAM) with a secondary amine (N-methylaniline), which has a completely different structure from ZARNOY: the nitrogen is not planar, the amino moiety is twisted with respect to the naphthoquinone plane and the C4—N bond distance is greater in the case of the secondary amine. The authors summarize the differences between the structures and rationalize these differences using the concept of (more accurately greater delocalization) in the structure with the primary amine.
Of the other structures in the database, four structures contain a secondary amine connected at the 4-position. Two structures (refcodes DMANPQ10 and EANAPQ10; Bechtel et al., 1976), involve the simple aliphatic dimethylamine and diethylamine. One structure (SEJZIQ; Ukhin et al., 1997) combines the cyclic morpholine with 1,2-naphthoquinone. The structure of XANRUB (Singh et al., 2011) contains a carbazole moiety at the 4-position of the 1,2-naphthoquinone unit.
Finally, one structure AMNPQH10 (Aime et al., 1970) is anomalous since it contains an –NH2 group at the 4-position, yet has bond and angle parameters completely different from the other molecules. Based on our analysis, this structure from 1970 should be re-analyzed to determine whether it could be best refined as an iminoquinone.
5. Synthesis and crystallization
The synthesis of 4-[(adamantan-1-yl)amino]naphthalene-1,2-dione is based on a new procedure (complete publication in progress). In a reaction tube were mixed 740 mg (2.00 mmol) of 1,2-naphthoquinone-4-sulfonic acid cesium salt, 76 mg (0.50 mmol, 1 equiv) of adamantan-1-amine, and 302 mg (1.00 mmol, 2 equiv) of tetrabutylammonium acetate. The solids were dissolved in tert-amyl alcohol (5.0 mL). A cellulose extraction thimble with Li2CO3 was placed above the reaction mixture. This solution was stirred at 393 K under a nitrogen atmosphere for 5 h. After being allowed to cool to room temperature, the dark-brown solution was diluted with toluene (30 mL), filtered and concentrated under reduced pressure. A brownish-red solid (503 mg) of the crude product was obtained. The crude product was further purified by using silica gel with a gradient solvent elution [100% dichloromethane (CH2Cl2) and then dichloromethane/2-propanol (CH2Cl2/C3H8O, 9:1 v/v)]; the fractions were dried under vacuum to yield 72 mg of a dark-orange solid product (47% yield), determined pure by NMR analysis. Part of the purified product was re-dissolved in heptane and cooled to 203 K for crystallization. Red crystalline blocks suitable for X-ray analysis were obtained, m.p. 522 K (decomposition) determined using a Fisher–Johns melting-point apparatus with calibrated thermometer. 1H NMR (600 MHz, CDCl3) δ 8.20–8.21 (d, J = 7.6 Hz, 1 H), 7.66–7.69 (t, J = 7.8 Hz, 1 H), 7.58–7.61 (t, J = 7.6 Hz, 1 H), 7.39–7.40 (d, J = 7.9 Hz, 1 H), 6.20 (br s, 1H), 5.47 (br s, 1 H), 2.22 (br s, 3 H), 2.16 (br s, 6 H), 1.73–1.79 (m, 6 H).
6. Refinement
Crystal data, data collection and structure . The N-bound H atom was located in a difference-Fourier map and refined as riding, with N—H = 0.88 Å, and with Uiso(H) = 1.2 Ueq(N). All other H atoms were placed geometrically and refined using a riding-atom approximation, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1876987
https://doi.org/10.1107/S2056989018017917/rz5250sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018017917/rz5250Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017917/rz5250Isup3.cml
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).C20H21NO2 | F(000) = 656 |
Mr = 307.38 | Dx = 1.339 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.8487 (5) Å | Cell parameters from 80 reflections |
b = 10.8187 (4) Å | θ = 3.5–20.0° |
c = 11.8469 (5) Å | µ = 0.09 mm−1 |
β = 112.248 (1)° | T = 100 K |
V = 1524.20 (10) Å3 | Block, translucent intense orange-red |
Z = 4 | 0.20 × 0.15 × 0.10 mm |
Bruker D8 Venture diffractometer | 3494 independent reflections |
Radiation source: Incoatec Microsource | 2412 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.075 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.5°, θmin = 2.5° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −14→14 |
Tmin = 0.702, Tmax = 0.746 | l = −15→15 |
31552 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0492P)2 + 0.826P] where P = (Fo2 + 2Fc2)/3 |
3494 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.38228 (11) | 0.03240 (12) | 0.55184 (12) | 0.0167 (3) | |
O2 | 0.15850 (11) | 0.07574 (12) | 0.43684 (12) | 0.0174 (3) | |
N1 | 0.45787 (13) | 0.36387 (14) | 0.33029 (14) | 0.0130 (3) | |
H1 | 0.4241 | 0.4268 | 0.2837 | 0.016* | |
C2 | 0.35129 (15) | 0.11642 (16) | 0.47491 (16) | 0.0115 (4) | |
C3 | 0.42405 (15) | 0.18810 (17) | 0.43727 (16) | 0.0119 (4) | |
H3 | 0.5014 | 0.1664 | 0.4668 | 0.014* | |
C4 | 0.38867 (15) | 0.28844 (16) | 0.35958 (16) | 0.0106 (4) | |
C5 | 0.26636 (15) | 0.32093 (16) | 0.30318 (16) | 0.0099 (4) | |
C6 | 0.22581 (16) | 0.41901 (17) | 0.22207 (17) | 0.0136 (4) | |
H6 | 0.2768 | 0.4671 | 0.1996 | 0.016* | |
C7 | 0.11207 (16) | 0.44738 (17) | 0.17363 (17) | 0.0145 (4) | |
H7 | 0.0861 | 0.5149 | 0.1188 | 0.017* | |
C8 | 0.03608 (16) | 0.37845 (18) | 0.20441 (17) | 0.0148 (4) | |
H8 | −0.0416 | 0.3991 | 0.172 | 0.018* | |
C9 | 0.07435 (16) | 0.27905 (17) | 0.28295 (17) | 0.0135 (4) | |
H9 | 0.0224 | 0.2304 | 0.3034 | 0.016* | |
C10 | 0.18809 (15) | 0.24991 (16) | 0.33209 (16) | 0.0107 (4) | |
C11 | 0.22506 (16) | 0.14264 (16) | 0.41573 (16) | 0.0114 (4) | |
C12 | 0.58113 (15) | 0.35926 (16) | 0.36293 (16) | 0.0105 (4) | |
C13 | 0.61093 (15) | 0.48247 (17) | 0.31748 (17) | 0.0131 (4) | |
H13A | 0.5659 | 0.4918 | 0.2292 | 0.016* | |
H13B | 0.5922 | 0.552 | 0.3608 | 0.016* | |
C14 | 0.73627 (15) | 0.48667 (17) | 0.33974 (17) | 0.0133 (4) | |
H14 | 0.7542 | 0.567 | 0.3093 | 0.016* | |
C15 | 0.80594 (16) | 0.47438 (18) | 0.47649 (17) | 0.0156 (4) | |
H15A | 0.8871 | 0.476 | 0.4912 | 0.019* | |
H15B | 0.7896 | 0.5444 | 0.521 | 0.019* | |
C16 | 0.77630 (16) | 0.35233 (18) | 0.52241 (17) | 0.0140 (4) | |
H16 | 0.8215 | 0.3441 | 0.6118 | 0.017* | |
C17 | 0.80384 (16) | 0.24419 (18) | 0.45448 (17) | 0.0145 (4) | |
H17A | 0.8852 | 0.2441 | 0.4703 | 0.017* | |
H17B | 0.7851 | 0.165 | 0.4842 | 0.017* | |
C18 | 0.65032 (15) | 0.35023 (18) | 0.50031 (16) | 0.0133 (4) | |
H18A | 0.6318 | 0.2726 | 0.5329 | 0.016* | |
H18B | 0.6321 | 0.4206 | 0.543 | 0.016* | |
C19 | 0.61046 (15) | 0.25234 (17) | 0.29482 (16) | 0.0118 (4) | |
H19A | 0.5923 | 0.1724 | 0.3238 | 0.014* | |
H19B | 0.5655 | 0.2592 | 0.2063 | 0.014* | |
C20 | 0.76438 (16) | 0.37983 (17) | 0.27165 (17) | 0.0144 (4) | |
H20A | 0.8453 | 0.382 | 0.2853 | 0.017* | |
H20B | 0.7205 | 0.388 | 0.183 | 0.017* | |
C21 | 0.73612 (15) | 0.25706 (17) | 0.31772 (17) | 0.0128 (4) | |
H21 | 0.7551 | 0.1872 | 0.2736 | 0.015* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0177 (7) | 0.0131 (7) | 0.0193 (7) | 0.0022 (6) | 0.0070 (6) | 0.0057 (6) |
O2 | 0.0172 (7) | 0.0148 (7) | 0.0198 (8) | −0.0043 (6) | 0.0068 (6) | 0.0024 (6) |
N1 | 0.0103 (8) | 0.0108 (8) | 0.0171 (8) | 0.0015 (6) | 0.0042 (7) | 0.0050 (6) |
C2 | 0.0149 (10) | 0.0087 (9) | 0.0118 (9) | 0.0001 (7) | 0.0059 (8) | −0.0028 (7) |
C3 | 0.0101 (10) | 0.0113 (9) | 0.0140 (10) | 0.0008 (8) | 0.0041 (8) | −0.0008 (8) |
C4 | 0.0123 (10) | 0.0103 (9) | 0.0103 (9) | −0.0008 (7) | 0.0055 (8) | −0.0043 (7) |
C5 | 0.0121 (9) | 0.0091 (9) | 0.0091 (9) | −0.0001 (7) | 0.0046 (8) | −0.0027 (7) |
C6 | 0.0144 (10) | 0.0111 (9) | 0.0159 (10) | −0.0012 (8) | 0.0065 (8) | −0.0005 (8) |
C7 | 0.0165 (10) | 0.0122 (10) | 0.0140 (10) | 0.0032 (8) | 0.0048 (8) | 0.0029 (8) |
C8 | 0.0108 (9) | 0.0174 (10) | 0.0154 (10) | 0.0017 (8) | 0.0040 (8) | −0.0020 (8) |
C9 | 0.0146 (10) | 0.0121 (9) | 0.0154 (10) | −0.0025 (8) | 0.0076 (8) | −0.0028 (8) |
C10 | 0.0125 (9) | 0.0091 (9) | 0.0109 (9) | −0.0012 (7) | 0.0050 (8) | −0.0038 (7) |
C11 | 0.0157 (10) | 0.0103 (9) | 0.0091 (9) | −0.0028 (8) | 0.0058 (8) | −0.0038 (7) |
C12 | 0.0088 (9) | 0.0100 (9) | 0.0121 (9) | −0.0004 (7) | 0.0034 (7) | 0.0003 (7) |
C13 | 0.0137 (10) | 0.0084 (9) | 0.0172 (10) | −0.0003 (7) | 0.0060 (8) | 0.0022 (7) |
C14 | 0.0144 (10) | 0.0092 (9) | 0.0177 (10) | −0.0019 (7) | 0.0075 (8) | 0.0028 (8) |
C15 | 0.0124 (10) | 0.0166 (10) | 0.0171 (10) | −0.0040 (8) | 0.0050 (8) | −0.0043 (8) |
C16 | 0.0126 (10) | 0.0188 (10) | 0.0093 (9) | −0.0014 (8) | 0.0027 (8) | 0.0010 (8) |
C17 | 0.0100 (9) | 0.0141 (10) | 0.0200 (10) | 0.0021 (8) | 0.0064 (8) | 0.0042 (8) |
C18 | 0.0139 (10) | 0.0156 (10) | 0.0111 (9) | −0.0027 (8) | 0.0055 (8) | −0.0007 (8) |
C19 | 0.0141 (10) | 0.0109 (9) | 0.0102 (9) | −0.0027 (8) | 0.0042 (8) | −0.0003 (7) |
C20 | 0.0141 (10) | 0.0169 (10) | 0.0139 (10) | −0.0012 (8) | 0.0073 (8) | 0.0014 (8) |
C21 | 0.0150 (10) | 0.0099 (9) | 0.0151 (10) | 0.0024 (8) | 0.0075 (8) | −0.0008 (7) |
O1—C2 | 1.241 (2) | C13—C14 | 1.531 (3) |
O2—C11 | 1.216 (2) | C13—H13A | 0.99 |
N1—C4 | 1.346 (2) | C13—H13B | 0.99 |
N1—C12 | 1.482 (2) | C14—C20 | 1.529 (3) |
N1—H1 | 0.88 | C14—C15 | 1.531 (3) |
C2—C3 | 1.411 (3) | C14—H14 | 1.0 |
C2—C11 | 1.530 (3) | C15—C16 | 1.530 (3) |
C3—C4 | 1.384 (3) | C15—H15A | 0.99 |
C3—H3 | 0.95 | C15—H15B | 0.99 |
C4—C5 | 1.498 (3) | C16—C17 | 1.535 (3) |
C5—C6 | 1.393 (3) | C16—C18 | 1.539 (3) |
C5—C10 | 1.407 (2) | C16—H16 | 1.0 |
C6—C7 | 1.387 (3) | C17—C21 | 1.528 (3) |
C6—H6 | 0.95 | C17—H17A | 0.99 |
C7—C8 | 1.383 (3) | C17—H17B | 0.99 |
C7—H7 | 0.95 | C18—H18A | 0.99 |
C8—C9 | 1.385 (3) | C18—H18B | 0.99 |
C8—H8 | 0.95 | C19—C21 | 1.533 (2) |
C9—C10 | 1.389 (3) | C19—H19A | 0.99 |
C9—H9 | 0.95 | C19—H19B | 0.99 |
C10—C11 | 1.482 (3) | C20—C21 | 1.531 (3) |
C12—C18 | 1.534 (3) | C20—H20A | 0.99 |
C12—C19 | 1.537 (2) | C20—H20B | 0.99 |
C12—C13 | 1.539 (2) | C21—H21 | 1.0 |
C4—N1—C12 | 131.11 (16) | C13—C14—C15 | 109.58 (15) |
C4—N1—H1 | 114.4 | C20—C14—H14 | 109.5 |
C12—N1—H1 | 114.4 | C13—C14—H14 | 109.5 |
O1—C2—C3 | 124.61 (17) | C15—C14—H14 | 109.5 |
O1—C2—C11 | 117.51 (16) | C16—C15—C14 | 109.06 (15) |
C3—C2—C11 | 117.87 (16) | C16—C15—H15A | 109.9 |
C4—C3—C2 | 123.46 (17) | C14—C15—H15A | 109.9 |
C4—C3—H3 | 118.3 | C16—C15—H15B | 109.9 |
C2—C3—H3 | 118.3 | C14—C15—H15B | 109.9 |
N1—C4—C3 | 124.37 (17) | H15A—C15—H15B | 108.3 |
N1—C4—C5 | 115.26 (16) | C15—C16—C17 | 109.47 (15) |
C3—C4—C5 | 120.37 (16) | C15—C16—C18 | 109.85 (16) |
C6—C5—C10 | 117.95 (17) | C17—C16—C18 | 109.63 (15) |
C6—C5—C4 | 122.78 (16) | C15—C16—H16 | 109.3 |
C10—C5—C4 | 119.27 (16) | C17—C16—H16 | 109.3 |
C7—C6—C5 | 120.93 (17) | C18—C16—H16 | 109.3 |
C7—C6—H6 | 119.5 | C21—C17—C16 | 109.55 (15) |
C5—C6—H6 | 119.5 | C21—C17—H17A | 109.8 |
C8—C7—C6 | 120.67 (18) | C16—C17—H17A | 109.8 |
C8—C7—H7 | 119.7 | C21—C17—H17B | 109.8 |
C6—C7—H7 | 119.7 | C16—C17—H17B | 109.8 |
C7—C8—C9 | 119.31 (18) | H17A—C17—H17B | 108.2 |
C7—C8—H8 | 120.3 | C12—C18—C16 | 109.22 (14) |
C9—C8—H8 | 120.3 | C12—C18—H18A | 109.8 |
C8—C9—C10 | 120.49 (17) | C16—C18—H18A | 109.8 |
C8—C9—H9 | 119.8 | C12—C18—H18B | 109.8 |
C10—C9—H9 | 119.8 | C16—C18—H18B | 109.8 |
C9—C10—C5 | 120.63 (17) | H18A—C18—H18B | 108.3 |
C9—C10—C11 | 118.54 (16) | C21—C19—C12 | 109.46 (14) |
C5—C10—C11 | 120.83 (17) | C21—C19—H19A | 109.8 |
O2—C11—C10 | 122.06 (17) | C12—C19—H19A | 109.8 |
O2—C11—C2 | 120.08 (16) | C21—C19—H19B | 109.8 |
C10—C11—C2 | 117.85 (15) | C12—C19—H19B | 109.8 |
N1—C12—C18 | 114.32 (15) | H19A—C19—H19B | 108.2 |
N1—C12—C19 | 109.79 (14) | C14—C20—C21 | 109.42 (14) |
C18—C12—C19 | 110.51 (15) | C14—C20—H20A | 109.8 |
N1—C12—C13 | 105.21 (14) | C21—C20—H20A | 109.8 |
C18—C12—C13 | 107.78 (15) | C14—C20—H20B | 109.8 |
C19—C12—C13 | 108.98 (14) | C21—C20—H20B | 109.8 |
C14—C13—C12 | 110.50 (15) | H20A—C20—H20B | 108.2 |
C14—C13—H13A | 109.5 | C17—C21—C20 | 109.90 (15) |
C12—C13—H13A | 109.5 | C17—C21—C19 | 108.87 (14) |
C14—C13—H13B | 109.5 | C20—C21—C19 | 109.98 (15) |
C12—C13—H13B | 109.5 | C17—C21—H21 | 109.4 |
H13A—C13—H13B | 108.1 | C20—C21—H21 | 109.4 |
C20—C14—C13 | 109.26 (15) | C19—C21—H21 | 109.4 |
C20—C14—C15 | 109.40 (15) | ||
O1—C2—C3—C4 | −173.98 (18) | C4—N1—C12—C19 | 71.4 (2) |
C11—C2—C3—C4 | 6.9 (3) | C4—N1—C12—C13 | −171.49 (17) |
C12—N1—C4—C3 | 3.9 (3) | N1—C12—C13—C14 | −176.98 (14) |
C12—N1—C4—C5 | −177.13 (16) | C18—C12—C13—C14 | 60.65 (19) |
C2—C3—C4—N1 | 174.46 (17) | C19—C12—C13—C14 | −59.31 (19) |
C2—C3—C4—C5 | −4.5 (3) | C12—C13—C14—C20 | 59.72 (19) |
N1—C4—C5—C6 | 2.6 (2) | C12—C13—C14—C15 | −60.13 (19) |
C3—C4—C5—C6 | −178.38 (17) | C20—C14—C15—C16 | −60.95 (19) |
N1—C4—C5—C10 | −177.72 (15) | C13—C14—C15—C16 | 58.82 (19) |
C3—C4—C5—C10 | 1.3 (2) | C14—C15—C16—C17 | 60.51 (19) |
C10—C5—C6—C7 | 1.5 (3) | C14—C15—C16—C18 | −59.93 (19) |
C4—C5—C6—C7 | −178.80 (17) | C15—C16—C17—C21 | −59.66 (19) |
C5—C6—C7—C8 | −0.3 (3) | C18—C16—C17—C21 | 60.90 (19) |
C6—C7—C8—C9 | −1.0 (3) | N1—C12—C18—C16 | −177.36 (15) |
C7—C8—C9—C10 | 1.1 (3) | C19—C12—C18—C16 | 58.19 (19) |
C8—C9—C10—C5 | 0.1 (3) | C13—C12—C18—C16 | −60.80 (19) |
C8—C9—C10—C11 | −179.99 (17) | C15—C16—C18—C12 | 61.65 (19) |
C6—C5—C10—C9 | −1.4 (3) | C17—C16—C18—C12 | −58.69 (19) |
C4—C5—C10—C9 | 178.86 (16) | N1—C12—C19—C21 | 173.69 (14) |
C6—C5—C10—C11 | 178.73 (16) | C18—C12—C19—C21 | −59.31 (19) |
C4—C5—C10—C11 | −1.0 (2) | C13—C12—C19—C21 | 58.95 (18) |
C9—C10—C11—O2 | 4.3 (3) | C13—C14—C20—C21 | −59.63 (19) |
C5—C10—C11—O2 | −175.85 (16) | C15—C14—C20—C21 | 60.33 (19) |
C9—C10—C11—C2 | −176.47 (16) | C16—C17—C21—C20 | 59.08 (19) |
C5—C10—C11—C2 | 3.4 (2) | C16—C17—C21—C19 | −61.43 (19) |
O1—C2—C11—O2 | −6.1 (3) | C14—C20—C21—C17 | −59.49 (19) |
C3—C2—C11—O2 | 173.12 (16) | C14—C20—C21—C19 | 60.35 (19) |
O1—C2—C11—C10 | 174.65 (16) | C12—C19—C21—C17 | 60.33 (19) |
C3—C2—C11—C10 | −6.1 (2) | C12—C19—C21—C20 | −60.13 (18) |
C4—N1—C12—C18 | −53.4 (3) |
Cg1 is the centroid of the C5–C10 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.95 | 2.59 | 3.385 (3) | 142 |
C8—H8···O2ii | 0.95 | 2.47 | 3.231 (2) | 137 |
C13—H13A···O1i | 0.99 | 2.51 | 3.400 (2) | 150 |
C15—H15B···Cg1iii | 0.99 | 2.74 | 3.587 (2) | 144 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1. |
Funding information
The Centro de Investigaciones en Productos Naturales (CIPRONA), the Centro de Electroquímica y Energía Química (CELEQ) and the Escuela de Química, Universidad de Costa Rica (UCR) provided support.
References
Aime, S., Gaultier, J. & Hauw, C. (1970). Acta Cryst. B26, 1597–1609. CrossRef IUCr Journals Google Scholar
Asahi, Y., Tanaka, M. & Shinozaki, K. (1984). Chem. Pharm. Bull. 32, 3093–3099. CrossRef Google Scholar
Bechtel, F., Chasseau, D., Gaultier, J. & Hauw, C. (1976). Acta Cryst. B32, 1738–1748. CrossRef IUCr Journals Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bullock, F. J., Tweedie, J. F., McRitchie, D. D. & Tucker, M. A. (1970). J. Med. Chem. 13, 97–103. CrossRef Google Scholar
Folin, O. (1922). J. Biol. Chem. 51, 377–391. Google Scholar
Fragoso, T. P., de Mesquita Carneiro, J. W. & Vargas, M. D. (2010). J. Mol. Model. 16, 825–830. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hartke, K. & Lohmann, U. (1983). Chem. Lett. 12, 693–696. CrossRef Google Scholar
Hatfield, M. J., Chen, J., Fratt, E. M., Chi, L., Bollinger, J. C., Binder, R. J., Bowling, J., Hyatt, J. L., Scarborough, J., Jeffries, C. & Potter, P. M. (2017). J. Med. Chem. 60, 1568–1579. Web of Science CrossRef Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Lamoureux, G., Alvarado-Rojas, M. & Pineda, L. W. (2018). Acta Cryst. E74, 973–976. CrossRef IUCr Journals Google Scholar
Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978. CrossRef CAS PubMed Google Scholar
Lamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022–1028. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, P., Baheti, A. & Thomas, K. R. (2011). J. Org. Chem. 76, 6134–6145. CrossRef Google Scholar
Ukhin, L. Y., Morkovnik, Z. S., Philipenko, O. S., Aldoshin, S. M. & Shishkin, O. V. (1997). Mendeleev Commun. 7, 153–154. CrossRef Google Scholar
Yano, H., Yamasaki, M., Shimomura, Y., Iwasaki, M., Ohta, M., Furuno, Y., Kouno, K., Ono, Y. & Ueda, Y. (1980). Chem. Pharm. Bull. 28, 1207–1213. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.