research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(adamantan-1-yl)amino]­naphthalene-1,2-dione

CROSSMARK_Color_square_no_text.svg

aEscuela de Química, Universidad de Costa Rica, 2060, San José, Costa Rica, bCentro de investigación en Productos Naturales (CIPRONA), Universidad de Costa Rica, 2060, San José, Costa Rica, and cCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 2060, San José, Costa Rica
*Correspondence e-mail: guy.lamoureux@ucr.ac.cr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 11 December 2018; accepted 18 December 2018; online 1 January 2019)

The title compound, C20H21NO2, an example of a stable 1,2-naphtho­quinone, was determined by single-crystal X-ray diffraction analysis at 100 K. This structure illustrates steric buttressing of the adamantanyl group, forcing the N—H group into the coplanar aromatic C—H. The presence of strong delocalization between the planar N atom at the 4-position and the carbonyl group at the 2-position is indicated. In the crystal, C—H⋯O and C—H⋯π inter­actions link the mol­ecules into a three-dimensional network.

1. Chemical context

The formation of 4-amino-1,2-naphtho­quinones is important in the colorimetric analysis (Folin analysis) of amines (Folin, 1922[Folin, O. (1922). J. Biol. Chem. 51, 377-391.]). However, the isolation and characterization of these amino­quinones is not common (Asahi et al., 1984[Asahi, Y., Tanaka, M. & Shinozaki, K. (1984). Chem. Pharm. Bull. 32, 3093-3099.]). In the literature, it is reported that the yields for the formation of 1,2-naphtho­quinones with a primary amino group in the 4-position are greatly inferior to those of secondary amino groups (Bullock et al., 1970[Bullock, F. J., Tweedie, J. F., McRitchie, D. D. & Tucker, M. A. (1970). J. Med. Chem. 13, 97-103.]). These inferior yields may be due to the equilibrium of amine/imine tautomeric forms (Yano et al., 1980[Yano, H., Yamasaki, M., Shimomura, Y., Iwasaki, M., Ohta, M., Furuno, Y., Kouno, K., Ono, Y. & Ueda, Y. (1980). Chem. Pharm. Bull. 28, 1207-1213.]; Fragoso et al., 2010[Fragoso, T. P., de Mesquita Carneiro, J. W. & Vargas, M. D. (2010). J. Mol. Model. 16, 825-830.]), which would complicate the identification of 4-primary amino-1,2-naphtho­quinones (Hartke & Lohmann, 1983[Hartke, K. & Lohmann, U. (1983). Chem. Lett. 12, 693-696.]). As part of our work on the synthesis and properties of naphtho­quinones (Lamoureux et al., 2008[Lamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022-1028.]), we were inter­ested to prepare and analyze the structure of the title compound 4-[(adamantan-1-yl)amino]­naphthalene-1,2-dione, also known as 4-(1-adamantanyl­amino)-1,2-naphtho­quinone). To the best of our knowledge, the hybrid of a naphtho­quinone core with an adamantanyl substituent is not known in the literature (Lamoureux & Artavia, 2010[Lamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967-2978.]).

[Scheme 1]

2. Structural commentary

In the mol­ecule of the title compound (Fig. 1[link]), the C=O bond length of the carbonyl group at the 1-position [C11=O2 = 1.216 (2) Å] is shorter than the other at the 2-position [C2=O1 = 1.241 (2) Å], suggesting strong delocalization from the trigonal-planar nitro­gen at the 4-position, causing a decrease of the double-bond character at the C2 carbonyl (vinyl­ogous amide), whereas the C1 carbonyl atom is unaffected. Further evidence of this delocalization is shown by a short N1—C4 bond distance [1.346 (2) Å], which is inter­mediate between the C—N and C=N bond distances observed in a related quinone amine/imine structure (Lamoureux et al., 2018[Lamoureux, G., Alvarado-Rojas, M. & Pineda, L. W. (2018). Acta Cryst. E74, 973-976.]). The aliphatic bond distance [N1—C12 = 1.482 (2) Å] is longer than expected, but may be caused by the bulky adamantanyl group. Further evidence of the steric effect of the adamantanyl group is shown by the large angle at the planar nitro­gen atom [C4—N1—C12 = 131.1 (2)°] compared to the ideal value of 120°. Most strikingly, the compression on one side of the adamantane ring causes another through-space compression between the NH group and the aromatic ring of the naphtho­quinone ring system (H1⋯H6 = 1.82 Å; H1⋯C6 = 2.37 Å).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. The steric compression is shown as a dotted line.

The fused quinone ring adopts a flattened envelope conformation, with atom C2 as the flap (displaced by 0.0687 (18) Å from the plane through the other atoms); the O1—C2—C11—O2 torsion angle formed by the two carbonyl groups is −6.1 (3)°. The C10—C11—C2 angle of 117.8 (2)°, C10—C11—C2 angle of 117.9 (2)° and C2—C3—C4 angle of 123.5 (2)° show the largest deviations from the ideal value of 120°. The aromatic ring is planar, as expected, and has inter­nal bond angles that range from 117.9 (2) to 120.9 (2)°.

3. Supra­molecular features

In the crystal structure of the title compound (Fig. 2[link]), mol­ecules are linked into a three-dimensional network by C—H⋯O hydrogen bonds (Table 1[link]) involving as donors the C—H groups of both the adamantanyl system and the benzene ring. The crystal packing is further consolidated by C—H⋯π inter­actions. There are no ππ inter­actions, the aromatic rings being separated by more than 6 Å.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.59 3.385 (3) 142
C8—H8⋯O2ii 0.95 2.47 3.231 (2) 137
C13—H13A⋯O1i 0.99 2.51 3.400 (2) 150
C15—H15BCg1iii 0.99 2.74 3.587 (2) 144
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Partial crystal packing of the title compound. C—H⋯O inter­actions are shown as dashed lines. The C—H⋯π inter­action is shown as a green dashed line between the orange centroid of the aromatic ring and the hydrogen atom H15B.

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the substructure 4-amino-1,2-naphtho­quinone yielded seven hits. However, only one structure (refcode ZARNOY; Hatfield et al., 2017[Hatfield, M. J., Chen, J., Fratt, E. M., Chi, L., Bollinger, J. C., Binder, R. J., Bowling, J., Hyatt, J. L., Scarborough, J., Jeffries, C. & Potter, P. M. (2017). J. Med. Chem. 60, 1568-1579.]) contains a primary amine (aniline) in the 4-position. The distance between the N—H group and the coplanar aromatic hydrogen atom [1.93 (4) Å] in this structure is longer than in the title compound, probably due to the smaller size of the nitro­gen substituent. Surprisingly, the carbonyl groups in ZARNOY are almost coplanar [torsion angle of 0.2 (5)°]. In the same reference (Hatfield et al., 2017[Hatfield, M. J., Chen, J., Fratt, E. M., Chi, L., Bollinger, J. C., Binder, R. J., Bowling, J., Hyatt, J. L., Scarborough, J., Jeffries, C. & Potter, P. M. (2017). J. Med. Chem. 60, 1568-1579.]), another structure is reported (refcode ZARPAM) with a secondary amine (N-methyl­aniline), which has a completely different structure from ZARNOY: the nitro­gen is not planar, the amino moiety is twisted with respect to the naphtho­quinone plane and the C4—N bond distance is greater in the case of the secondary amine. The authors summarize the differences between the structures and rationalize these differences using the concept of tautomerization (more accurately greater delocalization) in the structure with the primary amine.

Of the other structures in the database, four structures contain a secondary amine connected at the 4-position. Two structures (refcodes DMANPQ10 and EANAPQ10; Bechtel et al., 1976[Bechtel, F., Chasseau, D., Gaultier, J. & Hauw, C. (1976). Acta Cryst. B32, 1738-1748.]), involve the simple aliphatic amines di­methyl­amine and di­ethyl­amine. One structure (SEJZIQ; Ukhin et al., 1997[Ukhin, L. Y., Morkovnik, Z. S., Philipenko, O. S., Aldoshin, S. M. & Shishkin, O. V. (1997). Mendeleev Commun. 7, 153-154.]) combines the cyclic morpholine with 1,2-naphtho­quinone. The structure of XANRUB (Singh et al., 2011[Singh, P., Baheti, A. & Thomas, K. R. (2011). J. Org. Chem. 76, 6134-6145.]) contains a carbazole moiety at the 4-position of the 1,2-naphtho­quinone unit.

Finally, one structure AMNPQH10 (Aime et al., 1970[Aime, S., Gaultier, J. & Hauw, C. (1970). Acta Cryst. B26, 1597-1609.]) is anomalous since it contains an –NH2 group at the 4-position, yet has bond and angle parameters completely different from the other mol­ecules. Based on our analysis, this structure from 1970 should be re-analyzed to determine whether it could be best refined as an imino­quinone.

5. Synthesis and crystallization

The synthesis of 4-[(adamantan-1-yl)amino]­naphthalene-1,2-dione is based on a new procedure (complete publication in progress). In a reaction tube were mixed 740 mg (2.00 mmol) of 1,2-naphtho­quinone-4-sulfonic acid cesium salt, 76 mg (0.50 mmol, 1 equiv) of adamantan-1-amine, and 302 mg (1.00 mmol, 2 equiv) of tetra­butyl­ammonium acetate. The solids were dissolved in tert-amyl alcohol (5.0 mL). A cellulose extraction thimble with Li2CO3 was placed above the reaction mixture. This solution was stirred at 393 K under a nitro­gen atmosphere for 5 h. After being allowed to cool to room temperature, the dark-brown solution was diluted with toluene (30 mL), filtered and concentrated under reduced pressure. A brownish-red solid (503 mg) of the crude product was obtained. The crude product was further purified by column chromatography using silica gel with a gradient solvent elution [100% di­chloro­methane (CH2Cl2) and then di­chloro­methane/2-propanol (CH2Cl2/C3H8O, 9:1 v/v)]; the fractions were dried under vacuum to yield 72 mg of a dark-orange solid product (47% yield), determined pure by NMR analysis. Part of the purified product was re-dissolved in heptane and cooled to 203 K for crystallization. Red crystalline blocks suitable for X-ray analysis were obtained, m.p. 522 K (decomposition) determined using a Fisher–Johns melting-point apparatus with calibrated thermometer. 1H NMR (600 MHz, CDCl3) δ 8.20–8.21 (d, J = 7.6 Hz, 1 H), 7.66–7.69 (t, J = 7.8 Hz, 1 H), 7.58–7.61 (t, J = 7.6 Hz, 1 H), 7.39–7.40 (d, J = 7.9 Hz, 1 H), 6.20 (br s, 1H), 5.47 (br s, 1 H), 2.22 (br s, 3 H), 2.16 (br s, 6 H), 1.73–1.79 (m, 6 H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atom was located in a difference-Fourier map and refined as riding, with N—H = 0.88 Å, and with Uiso(H) = 1.2 Ueq(N). All other H atoms were placed geometrically and refined using a riding-atom approximation, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C20H21NO2
Mr 307.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.8487 (5), 10.8187 (4), 11.8469 (5)
β (°) 112.248 (1)
V3) 1524.20 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.702, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31552, 3494, 2412
Rint 0.075
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.121, 1.05
No. of reflections 3494
No. of parameters 208
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.32
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: shelXle (Hübschle et al., 2011); software used to prepare material for publication: SHELXL (Sheldrick, 2015b).

4-[(Adamantan-1-yl)amino]naphthalene-1,2-dione top
Crystal data top
C20H21NO2F(000) = 656
Mr = 307.38Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.8487 (5) ÅCell parameters from 80 reflections
b = 10.8187 (4) Åθ = 3.5–20.0°
c = 11.8469 (5) ŵ = 0.09 mm1
β = 112.248 (1)°T = 100 K
V = 1524.20 (10) Å3Block, translucent intense orange-red
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
3494 independent reflections
Radiation source: Incoatec Microsource2412 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.075
Detector resolution: 10.4167 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1414
Tmin = 0.702, Tmax = 0.746l = 1515
31552 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.826P]
where P = (Fo2 + 2Fc2)/3
3494 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38228 (11)0.03240 (12)0.55184 (12)0.0167 (3)
O20.15850 (11)0.07574 (12)0.43684 (12)0.0174 (3)
N10.45787 (13)0.36387 (14)0.33029 (14)0.0130 (3)
H10.42410.42680.28370.016*
C20.35129 (15)0.11642 (16)0.47491 (16)0.0115 (4)
C30.42405 (15)0.18810 (17)0.43727 (16)0.0119 (4)
H30.50140.16640.46680.014*
C40.38867 (15)0.28844 (16)0.35958 (16)0.0106 (4)
C50.26636 (15)0.32093 (16)0.30318 (16)0.0099 (4)
C60.22581 (16)0.41901 (17)0.22207 (17)0.0136 (4)
H60.27680.46710.19960.016*
C70.11207 (16)0.44738 (17)0.17363 (17)0.0145 (4)
H70.08610.51490.11880.017*
C80.03608 (16)0.37845 (18)0.20441 (17)0.0148 (4)
H80.04160.39910.1720.018*
C90.07435 (16)0.27905 (17)0.28295 (17)0.0135 (4)
H90.02240.23040.30340.016*
C100.18809 (15)0.24991 (16)0.33209 (16)0.0107 (4)
C110.22506 (16)0.14264 (16)0.41573 (16)0.0114 (4)
C120.58113 (15)0.35926 (16)0.36293 (16)0.0105 (4)
C130.61093 (15)0.48247 (17)0.31748 (17)0.0131 (4)
H13A0.56590.49180.22920.016*
H13B0.59220.5520.36080.016*
C140.73627 (15)0.48667 (17)0.33974 (17)0.0133 (4)
H140.75420.5670.30930.016*
C150.80594 (16)0.47438 (18)0.47649 (17)0.0156 (4)
H15A0.88710.4760.49120.019*
H15B0.78960.54440.5210.019*
C160.77630 (16)0.35233 (18)0.52241 (17)0.0140 (4)
H160.82150.34410.61180.017*
C170.80384 (16)0.24419 (18)0.45448 (17)0.0145 (4)
H17A0.88520.24410.47030.017*
H17B0.78510.1650.48420.017*
C180.65032 (15)0.35023 (18)0.50031 (16)0.0133 (4)
H18A0.63180.27260.53290.016*
H18B0.63210.42060.5430.016*
C190.61046 (15)0.25234 (17)0.29482 (16)0.0118 (4)
H19A0.59230.17240.32380.014*
H19B0.56550.25920.20630.014*
C200.76438 (16)0.37983 (17)0.27165 (17)0.0144 (4)
H20A0.84530.3820.28530.017*
H20B0.72050.3880.1830.017*
C210.73612 (15)0.25706 (17)0.31772 (17)0.0128 (4)
H210.75510.18720.27360.015*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0177 (7)0.0131 (7)0.0193 (7)0.0022 (6)0.0070 (6)0.0057 (6)
O20.0172 (7)0.0148 (7)0.0198 (8)0.0043 (6)0.0068 (6)0.0024 (6)
N10.0103 (8)0.0108 (8)0.0171 (8)0.0015 (6)0.0042 (7)0.0050 (6)
C20.0149 (10)0.0087 (9)0.0118 (9)0.0001 (7)0.0059 (8)0.0028 (7)
C30.0101 (10)0.0113 (9)0.0140 (10)0.0008 (8)0.0041 (8)0.0008 (8)
C40.0123 (10)0.0103 (9)0.0103 (9)0.0008 (7)0.0055 (8)0.0043 (7)
C50.0121 (9)0.0091 (9)0.0091 (9)0.0001 (7)0.0046 (8)0.0027 (7)
C60.0144 (10)0.0111 (9)0.0159 (10)0.0012 (8)0.0065 (8)0.0005 (8)
C70.0165 (10)0.0122 (10)0.0140 (10)0.0032 (8)0.0048 (8)0.0029 (8)
C80.0108 (9)0.0174 (10)0.0154 (10)0.0017 (8)0.0040 (8)0.0020 (8)
C90.0146 (10)0.0121 (9)0.0154 (10)0.0025 (8)0.0076 (8)0.0028 (8)
C100.0125 (9)0.0091 (9)0.0109 (9)0.0012 (7)0.0050 (8)0.0038 (7)
C110.0157 (10)0.0103 (9)0.0091 (9)0.0028 (8)0.0058 (8)0.0038 (7)
C120.0088 (9)0.0100 (9)0.0121 (9)0.0004 (7)0.0034 (7)0.0003 (7)
C130.0137 (10)0.0084 (9)0.0172 (10)0.0003 (7)0.0060 (8)0.0022 (7)
C140.0144 (10)0.0092 (9)0.0177 (10)0.0019 (7)0.0075 (8)0.0028 (8)
C150.0124 (10)0.0166 (10)0.0171 (10)0.0040 (8)0.0050 (8)0.0043 (8)
C160.0126 (10)0.0188 (10)0.0093 (9)0.0014 (8)0.0027 (8)0.0010 (8)
C170.0100 (9)0.0141 (10)0.0200 (10)0.0021 (8)0.0064 (8)0.0042 (8)
C180.0139 (10)0.0156 (10)0.0111 (9)0.0027 (8)0.0055 (8)0.0007 (8)
C190.0141 (10)0.0109 (9)0.0102 (9)0.0027 (8)0.0042 (8)0.0003 (7)
C200.0141 (10)0.0169 (10)0.0139 (10)0.0012 (8)0.0073 (8)0.0014 (8)
C210.0150 (10)0.0099 (9)0.0151 (10)0.0024 (8)0.0075 (8)0.0008 (7)
Geometric parameters (Å, º) top
O1—C21.241 (2)C13—C141.531 (3)
O2—C111.216 (2)C13—H13A0.99
N1—C41.346 (2)C13—H13B0.99
N1—C121.482 (2)C14—C201.529 (3)
N1—H10.88C14—C151.531 (3)
C2—C31.411 (3)C14—H141.0
C2—C111.530 (3)C15—C161.530 (3)
C3—C41.384 (3)C15—H15A0.99
C3—H30.95C15—H15B0.99
C4—C51.498 (3)C16—C171.535 (3)
C5—C61.393 (3)C16—C181.539 (3)
C5—C101.407 (2)C16—H161.0
C6—C71.387 (3)C17—C211.528 (3)
C6—H60.95C17—H17A0.99
C7—C81.383 (3)C17—H17B0.99
C7—H70.95C18—H18A0.99
C8—C91.385 (3)C18—H18B0.99
C8—H80.95C19—C211.533 (2)
C9—C101.389 (3)C19—H19A0.99
C9—H90.95C19—H19B0.99
C10—C111.482 (3)C20—C211.531 (3)
C12—C181.534 (3)C20—H20A0.99
C12—C191.537 (2)C20—H20B0.99
C12—C131.539 (2)C21—H211.0
C4—N1—C12131.11 (16)C13—C14—C15109.58 (15)
C4—N1—H1114.4C20—C14—H14109.5
C12—N1—H1114.4C13—C14—H14109.5
O1—C2—C3124.61 (17)C15—C14—H14109.5
O1—C2—C11117.51 (16)C16—C15—C14109.06 (15)
C3—C2—C11117.87 (16)C16—C15—H15A109.9
C4—C3—C2123.46 (17)C14—C15—H15A109.9
C4—C3—H3118.3C16—C15—H15B109.9
C2—C3—H3118.3C14—C15—H15B109.9
N1—C4—C3124.37 (17)H15A—C15—H15B108.3
N1—C4—C5115.26 (16)C15—C16—C17109.47 (15)
C3—C4—C5120.37 (16)C15—C16—C18109.85 (16)
C6—C5—C10117.95 (17)C17—C16—C18109.63 (15)
C6—C5—C4122.78 (16)C15—C16—H16109.3
C10—C5—C4119.27 (16)C17—C16—H16109.3
C7—C6—C5120.93 (17)C18—C16—H16109.3
C7—C6—H6119.5C21—C17—C16109.55 (15)
C5—C6—H6119.5C21—C17—H17A109.8
C8—C7—C6120.67 (18)C16—C17—H17A109.8
C8—C7—H7119.7C21—C17—H17B109.8
C6—C7—H7119.7C16—C17—H17B109.8
C7—C8—C9119.31 (18)H17A—C17—H17B108.2
C7—C8—H8120.3C12—C18—C16109.22 (14)
C9—C8—H8120.3C12—C18—H18A109.8
C8—C9—C10120.49 (17)C16—C18—H18A109.8
C8—C9—H9119.8C12—C18—H18B109.8
C10—C9—H9119.8C16—C18—H18B109.8
C9—C10—C5120.63 (17)H18A—C18—H18B108.3
C9—C10—C11118.54 (16)C21—C19—C12109.46 (14)
C5—C10—C11120.83 (17)C21—C19—H19A109.8
O2—C11—C10122.06 (17)C12—C19—H19A109.8
O2—C11—C2120.08 (16)C21—C19—H19B109.8
C10—C11—C2117.85 (15)C12—C19—H19B109.8
N1—C12—C18114.32 (15)H19A—C19—H19B108.2
N1—C12—C19109.79 (14)C14—C20—C21109.42 (14)
C18—C12—C19110.51 (15)C14—C20—H20A109.8
N1—C12—C13105.21 (14)C21—C20—H20A109.8
C18—C12—C13107.78 (15)C14—C20—H20B109.8
C19—C12—C13108.98 (14)C21—C20—H20B109.8
C14—C13—C12110.50 (15)H20A—C20—H20B108.2
C14—C13—H13A109.5C17—C21—C20109.90 (15)
C12—C13—H13A109.5C17—C21—C19108.87 (14)
C14—C13—H13B109.5C20—C21—C19109.98 (15)
C12—C13—H13B109.5C17—C21—H21109.4
H13A—C13—H13B108.1C20—C21—H21109.4
C20—C14—C13109.26 (15)C19—C21—H21109.4
C20—C14—C15109.40 (15)
O1—C2—C3—C4173.98 (18)C4—N1—C12—C1971.4 (2)
C11—C2—C3—C46.9 (3)C4—N1—C12—C13171.49 (17)
C12—N1—C4—C33.9 (3)N1—C12—C13—C14176.98 (14)
C12—N1—C4—C5177.13 (16)C18—C12—C13—C1460.65 (19)
C2—C3—C4—N1174.46 (17)C19—C12—C13—C1459.31 (19)
C2—C3—C4—C54.5 (3)C12—C13—C14—C2059.72 (19)
N1—C4—C5—C62.6 (2)C12—C13—C14—C1560.13 (19)
C3—C4—C5—C6178.38 (17)C20—C14—C15—C1660.95 (19)
N1—C4—C5—C10177.72 (15)C13—C14—C15—C1658.82 (19)
C3—C4—C5—C101.3 (2)C14—C15—C16—C1760.51 (19)
C10—C5—C6—C71.5 (3)C14—C15—C16—C1859.93 (19)
C4—C5—C6—C7178.80 (17)C15—C16—C17—C2159.66 (19)
C5—C6—C7—C80.3 (3)C18—C16—C17—C2160.90 (19)
C6—C7—C8—C91.0 (3)N1—C12—C18—C16177.36 (15)
C7—C8—C9—C101.1 (3)C19—C12—C18—C1658.19 (19)
C8—C9—C10—C50.1 (3)C13—C12—C18—C1660.80 (19)
C8—C9—C10—C11179.99 (17)C15—C16—C18—C1261.65 (19)
C6—C5—C10—C91.4 (3)C17—C16—C18—C1258.69 (19)
C4—C5—C10—C9178.86 (16)N1—C12—C19—C21173.69 (14)
C6—C5—C10—C11178.73 (16)C18—C12—C19—C2159.31 (19)
C4—C5—C10—C111.0 (2)C13—C12—C19—C2158.95 (18)
C9—C10—C11—O24.3 (3)C13—C14—C20—C2159.63 (19)
C5—C10—C11—O2175.85 (16)C15—C14—C20—C2160.33 (19)
C9—C10—C11—C2176.47 (16)C16—C17—C21—C2059.08 (19)
C5—C10—C11—C23.4 (2)C16—C17—C21—C1961.43 (19)
O1—C2—C11—O26.1 (3)C14—C20—C21—C1759.49 (19)
C3—C2—C11—O2173.12 (16)C14—C20—C21—C1960.35 (19)
O1—C2—C11—C10174.65 (16)C12—C19—C21—C1760.33 (19)
C3—C2—C11—C106.1 (2)C12—C19—C21—C2060.13 (18)
C4—N1—C12—C1853.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5–C10 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.593.385 (3)142
C8—H8···O2ii0.952.473.231 (2)137
C13—H13A···O1i0.992.513.400 (2)150
C15—H15B···Cg1iii0.992.743.587 (2)144
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1.
 

Funding information

The Centro de Investigaciones en Productos Naturales (CIPRONA), the Centro de Electroquímica y Energía Química (CELEQ) and the Escuela de Química, Universidad de Costa Rica (UCR) provided support.

References

First citationAime, S., Gaultier, J. & Hauw, C. (1970). Acta Cryst. B26, 1597–1609.  CrossRef IUCr Journals Google Scholar
First citationAsahi, Y., Tanaka, M. & Shinozaki, K. (1984). Chem. Pharm. Bull. 32, 3093–3099.  CrossRef Google Scholar
First citationBechtel, F., Chasseau, D., Gaultier, J. & Hauw, C. (1976). Acta Cryst. B32, 1738–1748.  CrossRef IUCr Journals Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBullock, F. J., Tweedie, J. F., McRitchie, D. D. & Tucker, M. A. (1970). J. Med. Chem. 13, 97–103.  CrossRef Google Scholar
First citationFolin, O. (1922). J. Biol. Chem. 51, 377–391.  Google Scholar
First citationFragoso, T. P., de Mesquita Carneiro, J. W. & Vargas, M. D. (2010). J. Mol. Model. 16, 825–830.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHartke, K. & Lohmann, U. (1983). Chem. Lett. 12, 693–696.  CrossRef Google Scholar
First citationHatfield, M. J., Chen, J., Fratt, E. M., Chi, L., Bollinger, J. C., Binder, R. J., Bowling, J., Hyatt, J. L., Scarborough, J., Jeffries, C. & Potter, P. M. (2017). J. Med. Chem. 60, 1568–1579.  Web of Science CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLamoureux, G., Alvarado-Rojas, M. & Pineda, L. W. (2018). Acta Cryst. E74, 973–976.  CrossRef IUCr Journals Google Scholar
First citationLamoureux, G. & Artavia, G. (2010). Curr. Med. Chem. 17, 2967–2978.  CrossRef CAS PubMed Google Scholar
First citationLamoureux, G., Perez, A. L., Araya, M. & Agüero, C. (2008). J. Phys. Org. Chem. 21, 1022–1028.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, P., Baheti, A. & Thomas, K. R. (2011). J. Org. Chem. 76, 6134–6145.  CrossRef Google Scholar
First citationUkhin, L. Y., Morkovnik, Z. S., Philipenko, O. S., Aldoshin, S. M. & Shishkin, O. V. (1997). Mendeleev Commun. 7, 153–154.  CrossRef Google Scholar
First citationYano, H., Yamasaki, M., Shimomura, Y., Iwasaki, M., Ohta, M., Furuno, Y., Kouno, K., Ono, Y. & Ueda, Y. (1980). Chem. Pharm. Bull. 28, 1207–1213.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds