research communications
Synthesis,
DFT calculations and Hirshfeld surface analysis of 2-(1-decyl-2-oxoindolin-3-ylidene)propanedinitrileaLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bOrganic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation, cDepartment of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan, dDepartment of Medical Education, Chung Shan Medical University Hospital, 402 Taichung, Taiwan, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: yns.elbakri@gmail.com
In the title molecule, C21H25N3O, the 1-decyl substituents are in an extended conformation and intercalate in the crystal packing to form hydrophobic bands. The packing is further organized by π–π-stacking interactions between pyrrole and phenyl rings [centroid–centroid distance = 3.6178 (11) Å] and a C=O⋯π(pyrrole) interaction [3.447 (2) Å]. Hirshfeld surface analysis indicates that the H⋯N/N⋯H interactions make the highest contribution (17.4%) to the crystal packing.
Keywords: crystal structure; π-stacking; indole; Hirshfeld surface analysis.
CCDC reference: 1883193
1. Chemical context
Knoevenagel condensation is a nucleophilic addition of an active hydrogen compound to a carbonyl group followed by dehydration in which a molecule of water is eliminated (Jones, 1967). The indole scaffold including isatin (1H-indole-2,3-dione) represents an important structural subunit for the discovery of new drug candidates (Pandeya et al., 2005). The carbonyl group in the 3-position of isatin is known to be active in various condensation reactions and thus the most common methods for the synthesis of 2-(2-oxoindolin-3-ylidene)malononitriles are the condensation of isatins with malononitrile in the presence of a catalyst, such as piperidine acetate (Kayukov et al., 2011), DBU, Al2O3, N(CH2CH2OH)3 or chitosan (Abdelhamid, 2009). Over the past few years, molecular iodine has emerged as powerful catalyst in various organic transformations (Kidwai et al., 2007). As well as having the advantage of being inexpensive, non-toxic, and nature friendly, iodine affords the desired products in good to excellent yields with high selectivity.
As a continuation of our research on the synthesis, functionilization, physico-chemical and biological properties of indole derivatives (Al Mamari et al., 2012a,b,c,d; Rayni et al., 2017, 2017a,b; Zarrok et al., 2012), we report our results on the Knoevenagel condensation of 1-decylindoline-2,3-dione with malononitrile using molecular iodine as catalyst.
2. Structural commentary
The 1-decyl substituent in the title compound (Fig. 1) is fully extended in the crystal and the head end is nearly perpendicular to the plane of the five-membered ring as shown by the C8—N1—C12—C13 torsion angle of 112.3 (2)°. The indole portion is not quite planar, as indicated by the dihedral angle of 1.64 (10)° between the constituent rings and the r.m.s. deviation of 0.015 Å. As expected, the propanedinitrile group is essentially coplanar with the five-membered ring, the C8—C7—C9—C11 torsion angle being 179.71 (17)°.
3. Supramolecular features
The molecules pack with the 1-decyl chains intercalating to form large hydrophobic bands (Fig. 2) approximately parallel to the b-axis direction. The indole portion participates in offset π–π-stacking interactions in the b-axis direction between the five-membered ring in one molecule and the six-membered ring in the next (Fig. 3) with a centroid–centroid distance of 3.6178 (11) Å and a dihedral angle of 1.64 (10)°. Reinforcing this is a C=O⋯π(ring) interaction between C8=O1 and the five-membered ring in the adjacent molecule along the b-axis direction (Fig. 3) with a C⋯centroid distance of 3.447 (2) Å.
4. Database survey
A search of the Cambridge Structural Database (Version 5.39 with updates through May 2018; Groom et al., 2016) with the fragment shown in Fig. 4 yielded 133 hits of which 34 are close to the title compound in that the substituents on the methylidene carbon are relatively small in size. The closest analogues are 2 [R = CH3 (Wang et al., 2013); (CH2)5CH3 (Rayni et al., 2017b)], 3 (Hu et al., 2014) and 4 (Lian et al., 2012) although there are also some interesting related compounds such as 5 [R = (CH2)5CH3; Hasegawa et al., 2015), (CH2)9CH3 (Bogdanov et al., 2014) and (CH2)3CH3 (Yuan & Fang, 2011), (CH2)6Br Bogdanov et al., 2013)]. In these, the indole fragment varies from being planar to having a dihedral angle between the two constituent rings of up to 3.30°. The substituent on the ring nitrogen atom is generally in an extended conformation with the head end nearly perpendicular to the plane of the five-membered ring with torsion angles corresponding to the C8—N1—C12—C13 torsion angle in the title compound varying from 73.4–104.8°.
5. DFT optimization
The structure in the gas phase of the title compound was optimized by means of density functional theory (DFT). The DFT calculation was performed by the hybrid B3LYP method, which is based on the idea of Becke and considers a mixture of the exact (Hartree–Fock) and DFT exchange utilizing the B3 functional, together with the LYP correlation functional (Becke, 1993; Lee et al., 1988; Miehlich et al., 1989). The B3LYP calculation was performed in conjunction with the basis set DZVP (Godbout et al., 1992). It is noteworthy to mention that the double-ξ basis set used was designed for a DFT calculation. After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the Gaussian16 program (Frisch et al., 2016).
The result of the B3LYP geometry optimization for the title compound was compared with that determined in the crystallographic study. The B3LYP-optimized geometry of the title compound is shown in Fig. 5 with selected geometric parameters of the gas-phase and the solid-phase structures summarized in Table 1. These show that the gas-phase structure shows a small deviation from the solid-phase one (Reichman et al., 1969; Liao & Zhang, 1998).
|
6. Hirshfeld surface calculations
Both the definition of a molecule in a condensed phase and the recognition of distinct entities in molecular liquids and crystals are fundamental concepts in chemistry. Based on Hirshfeld's partitioning scheme, a method was proposed to divide the electron distribution in a crystalline phase into molecular fragments (Spackman & Byrom, 1997; McKinnon et al., 2004; Spackman & Jayatilaka, 2009). This method partitioned the crystal into regions where the electron distribution of a sum of spherical atoms for the molecule dominates over the corresponding sum of the crystal. As it is derived from Hirshfeld's stockholder partitioning, the molecular surface is named as the Hirshfeld surface. In this study, the Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017).
The standard resolution molecular Hirshfeld surface (dnorm) of the title compound is shown in Fig. 6. The 3D dnorm surface is used to identify close intermolecular interactions. The value of dnorm is negative (positive) when intermolecular contacts are shorter (longer) than the van der Waals radii. The dnorm value is mapped onto the Hirshfeld surface using red, white and blue. The red regions represent closer contacts with a negative dnorm value while the blue regions represent longer contacts with a positive dnorm value and the white regions represent contacts equal to the van der Waals separation and have a dnorm value of zero. As shown in Fig. 6, the major interactions in the title compound are intermolecular H⋯O and H⋯N hydrogen bonds.
The 2D fingerprint plots highlight particular atom-pair contacts and enable the separation of contributions from different interaction types that overlap in the full fingerprint. Using the standard 0.6–2.6 view with the de and di distance scales displayed on the graph axes and including the reciprocal contacts, the contribution of the H⋯N contacts is larger than that of the H⋯O contacts (Fig. 7). Interestingly, we found that there is a negligible contribution of N⋯N contacts (Govers, 1975; Cartwright & Wilkinson, 2010). This interaction might be considered as a stabilizing hyperconjugative one between a π-bonding orbital of one C≡N group and a π*-bonding orbital of another [C≡N group π(CN) → π*(C′N′); Jeong & Kwon, 2000].
7. Synthesis and crystallization
A mixture of 1-decylindole-2,3-dione (0,5g, 2.1 mmol), malononitrile (0,14g, 2.1 mmol), and I2 (0.05g, 0.21 mmol) in ethanol (10 mL) was heated at 333 K. After completion of the reaction (monitored by TLC), the mixture was treated with aqueous Na2S2O3 solution and extracted with ethyl acetate (2 × 10 mL). The extract was dried over sodium sulfate, filtered and the solvent was evaporated in vacuo. The purified product was recrystallized from ethanol solution to afford the title compound as orange, plate-like crystals.
8. Refinement
Crystal data, data collection and structure . Trial refinements of the model with the one-component reflection file extracted from the full twinned data with TWINABS and with the full, two-component reflection file indicated that the former gave better results both in terms of lower values of R1 and wR2 and in lower s.u. values for derived parameters.
details are summarized in Table 2Supporting information
CCDC reference: 1883193
https://doi.org/10.1107/S2056989018017267/vm2214sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018017267/vm2214Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017267/vm2214Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989018017267/vm2214Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C21H25N3O | F(000) = 1440 |
Mr = 335.44 | Dx = 1.207 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
a = 44.4837 (12) Å | Cell parameters from 9886 reflections |
b = 4.7293 (1) Å | θ = 4.2–72.3° |
c = 18.3432 (5) Å | µ = 0.59 mm−1 |
β = 106.965 (2)° | T = 150 K |
V = 3691.05 (17) Å3 | Plate, orange |
Z = 8 | 0.29 × 0.08 × 0.03 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 3592 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2656 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.054 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.3°, θmin = 2.1° |
ω scans | h = −54→5 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | k = −5→5 |
Tmin = 0.75, Tmax = 0.98 | l = −21→22 |
25556 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.134 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0647P)2 + 0.6236P] where P = (Fo2 + 2Fc2)/3 |
3592 reflections | (Δ/σ)max = 0.001 |
326 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Experimental. Analysis of 1401 reflections having I/σ(I) > 15 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the a axis. The raw data were processed using the multi-component version ofSAINT under control of the two-component orientation file generated by CELL_NOW. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Trial refinements with the single-component reflection file extracted from the full data set with TWINABS and with the complete two-component reflection file showed the former refinement to be the better one. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.36446 (3) | −0.1282 (3) | 0.67635 (8) | 0.0362 (3) | |
N1 | 0.34709 (3) | 0.1596 (3) | 0.75794 (8) | 0.0271 (3) | |
N2 | 0.34275 (4) | −0.2025 (5) | 0.49015 (10) | 0.0470 (5) | |
N3 | 0.27212 (4) | 0.4371 (5) | 0.45464 (10) | 0.0495 (5) | |
C1 | 0.32328 (4) | 0.3634 (4) | 0.74915 (10) | 0.0262 (4) | |
C2 | 0.31433 (4) | 0.5037 (4) | 0.80525 (10) | 0.0286 (4) | |
H2 | 0.3249 (5) | 0.469 (5) | 0.8594 (13) | 0.032 (5)* | |
C3 | 0.28988 (4) | 0.6993 (4) | 0.78192 (11) | 0.0317 (4) | |
H3 | 0.2834 (5) | 0.807 (5) | 0.8209 (13) | 0.041 (6)* | |
C4 | 0.27473 (4) | 0.7480 (4) | 0.70550 (11) | 0.0319 (4) | |
H4 | 0.2582 (5) | 0.880 (5) | 0.6893 (12) | 0.034 (5)* | |
C5 | 0.28324 (4) | 0.5999 (4) | 0.64921 (11) | 0.0303 (4) | |
H5 | 0.2723 (5) | 0.633 (5) | 0.5964 (14) | 0.039 (6)* | |
C6 | 0.30782 (4) | 0.4059 (4) | 0.67108 (10) | 0.0267 (4) | |
C7 | 0.32211 (4) | 0.2166 (4) | 0.62943 (10) | 0.0273 (4) | |
C8 | 0.34757 (4) | 0.0565 (4) | 0.68839 (10) | 0.0283 (4) | |
C9 | 0.31586 (4) | 0.1659 (4) | 0.55402 (10) | 0.0301 (4) | |
C10 | 0.33204 (4) | −0.0402 (5) | 0.52187 (10) | 0.0346 (4) | |
C11 | 0.29150 (4) | 0.3188 (5) | 0.49872 (11) | 0.0354 (4) | |
C12 | 0.36711 (4) | 0.0513 (4) | 0.83047 (10) | 0.0296 (4) | |
H12A | 0.3786 (5) | −0.129 (5) | 0.8172 (12) | 0.036 (6)* | |
H12B | 0.3527 (5) | 0.000 (5) | 0.8620 (12) | 0.032 (5)* | |
C13 | 0.39191 (4) | 0.2618 (4) | 0.87386 (10) | 0.0298 (4) | |
H13A | 0.4035 (5) | 0.161 (5) | 0.9230 (13) | 0.039 (6)* | |
H13B | 0.3805 (5) | 0.432 (5) | 0.8878 (12) | 0.032 (5)* | |
C14 | 0.41561 (4) | 0.3492 (4) | 0.83250 (11) | 0.0317 (4) | |
H14A | 0.4257 (5) | 0.170 (5) | 0.8154 (13) | 0.044 (6)* | |
H14B | 0.4049 (5) | 0.453 (5) | 0.7845 (13) | 0.034 (5)* | |
C15 | 0.44154 (4) | 0.5345 (4) | 0.88269 (11) | 0.0323 (4) | |
H15A | 0.4527 (5) | 0.429 (5) | 0.9310 (14) | 0.044 (6)* | |
H15B | 0.4321 (5) | 0.709 (5) | 0.9023 (12) | 0.034 (5)* | |
C16 | 0.46614 (4) | 0.6289 (4) | 0.84511 (11) | 0.0335 (4) | |
H16A | 0.4555 (6) | 0.739 (5) | 0.7968 (14) | 0.047 (6)* | |
H16B | 0.4759 (5) | 0.461 (5) | 0.8270 (12) | 0.040 (6)* | |
C17 | 0.49228 (4) | 0.8068 (5) | 0.89736 (11) | 0.0330 (4) | |
H17A | 0.5025 (6) | 0.692 (5) | 0.9449 (15) | 0.052 (7)* | |
H17B | 0.4824 (5) | 0.979 (5) | 0.9136 (13) | 0.042 (6)* | |
C18 | 0.51688 (4) | 0.9018 (5) | 0.85996 (11) | 0.0355 (5) | |
H18A | 0.5257 (6) | 0.730 (5) | 0.8419 (14) | 0.048 (6)* | |
H18B | 0.5063 (6) | 1.017 (5) | 0.8130 (15) | 0.051 (7)* | |
C19 | 0.54344 (4) | 1.0786 (5) | 0.91077 (11) | 0.0341 (4) | |
H19A | 0.5547 (5) | 0.968 (5) | 0.9594 (14) | 0.046 (6)* | |
H19B | 0.5334 (5) | 1.249 (5) | 0.9312 (13) | 0.041 (6)* | |
C20 | 0.56740 (5) | 1.1722 (5) | 0.87134 (13) | 0.0403 (5) | |
H20A | 0.5768 (6) | 0.999 (6) | 0.8527 (14) | 0.052 (7)* | |
H20B | 0.5552 (5) | 1.280 (5) | 0.8244 (14) | 0.046 (6)* | |
C21 | 0.59341 (5) | 1.3554 (6) | 0.92162 (16) | 0.0483 (6) | |
H21A | 0.5840 (6) | 1.529 (6) | 0.9393 (15) | 0.061 (8)* | |
H21B | 0.6081 (7) | 1.418 (6) | 0.8951 (17) | 0.067 (8)* | |
H21C | 0.6055 (6) | 1.242 (6) | 0.9663 (17) | 0.062 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0383 (7) | 0.0343 (8) | 0.0341 (7) | 0.0090 (6) | 0.0073 (5) | −0.0011 (6) |
N1 | 0.0288 (7) | 0.0250 (8) | 0.0238 (8) | 0.0017 (6) | 0.0020 (5) | 0.0023 (6) |
N2 | 0.0512 (10) | 0.0557 (13) | 0.0322 (9) | 0.0028 (9) | 0.0092 (8) | −0.0079 (8) |
N3 | 0.0471 (9) | 0.0669 (14) | 0.0292 (9) | 0.0081 (10) | 0.0030 (7) | 0.0083 (9) |
C1 | 0.0261 (7) | 0.0224 (9) | 0.0276 (9) | −0.0019 (7) | 0.0039 (6) | 0.0026 (7) |
C2 | 0.0316 (8) | 0.0280 (10) | 0.0245 (9) | −0.0024 (8) | 0.0057 (7) | 0.0030 (7) |
C3 | 0.0320 (8) | 0.0307 (10) | 0.0333 (10) | −0.0019 (8) | 0.0112 (7) | −0.0015 (8) |
C4 | 0.0298 (8) | 0.0293 (10) | 0.0354 (10) | 0.0036 (8) | 0.0074 (7) | 0.0038 (7) |
C5 | 0.0289 (8) | 0.0309 (11) | 0.0278 (10) | −0.0009 (7) | 0.0031 (7) | 0.0048 (7) |
C6 | 0.0284 (8) | 0.0250 (9) | 0.0247 (9) | −0.0028 (7) | 0.0046 (6) | 0.0009 (7) |
C7 | 0.0282 (8) | 0.0257 (9) | 0.0261 (9) | −0.0028 (7) | 0.0049 (7) | 0.0018 (7) |
C8 | 0.0263 (8) | 0.0293 (10) | 0.0275 (9) | −0.0007 (7) | 0.0048 (6) | 0.0011 (7) |
C9 | 0.0312 (8) | 0.0310 (10) | 0.0260 (9) | −0.0016 (8) | 0.0053 (7) | 0.0011 (7) |
C10 | 0.0363 (9) | 0.0413 (12) | 0.0239 (9) | −0.0014 (9) | 0.0050 (7) | −0.0023 (8) |
C11 | 0.0372 (9) | 0.0448 (12) | 0.0228 (9) | −0.0028 (9) | 0.0068 (7) | −0.0015 (8) |
C12 | 0.0331 (8) | 0.0265 (10) | 0.0236 (9) | 0.0008 (8) | −0.0009 (7) | 0.0061 (7) |
C13 | 0.0306 (8) | 0.0300 (10) | 0.0240 (9) | 0.0026 (8) | 0.0004 (7) | 0.0012 (7) |
C14 | 0.0331 (9) | 0.0307 (10) | 0.0271 (10) | 0.0029 (8) | 0.0024 (7) | −0.0004 (8) |
C15 | 0.0314 (8) | 0.0331 (11) | 0.0285 (10) | 0.0005 (8) | 0.0025 (7) | −0.0026 (8) |
C16 | 0.0334 (9) | 0.0348 (11) | 0.0296 (10) | 0.0004 (8) | 0.0046 (7) | −0.0037 (8) |
C17 | 0.0336 (9) | 0.0337 (11) | 0.0283 (10) | 0.0007 (8) | 0.0037 (7) | −0.0009 (8) |
C18 | 0.0368 (9) | 0.0378 (12) | 0.0305 (10) | 0.0005 (9) | 0.0074 (8) | −0.0024 (8) |
C19 | 0.0342 (9) | 0.0357 (12) | 0.0306 (10) | −0.0003 (8) | 0.0064 (7) | −0.0008 (8) |
C20 | 0.0403 (10) | 0.0395 (13) | 0.0417 (12) | −0.0015 (10) | 0.0130 (9) | −0.0025 (9) |
C21 | 0.0388 (11) | 0.0439 (14) | 0.0613 (16) | −0.0052 (10) | 0.0133 (10) | −0.0039 (12) |
O1—C8 | 1.214 (2) | C13—H13B | 1.02 (2) |
N1—C8 | 1.372 (2) | C14—C15 | 1.525 (3) |
N1—C1 | 1.406 (2) | C14—H14A | 1.05 (2) |
N1—C12 | 1.461 (2) | C14—H14B | 1.00 (2) |
N2—C10 | 1.147 (3) | C15—C16 | 1.521 (3) |
N3—C11 | 1.142 (3) | C15—H15A | 1.01 (2) |
C1—C2 | 1.377 (3) | C15—H15B | 1.04 (2) |
C1—C6 | 1.410 (2) | C16—C17 | 1.526 (3) |
C2—C3 | 1.396 (3) | C16—H16A | 1.02 (3) |
C2—H2 | 0.98 (2) | C16—H16B | 1.01 (2) |
C3—C4 | 1.386 (3) | C17—C18 | 1.519 (3) |
C3—H3 | 0.99 (2) | C17—H17A | 1.02 (3) |
C4—C5 | 1.389 (3) | C17—H17B | 1.01 (2) |
C4—H4 | 0.94 (2) | C18—C19 | 1.524 (3) |
C5—C6 | 1.393 (3) | C18—H18A | 1.00 (3) |
C5—H5 | 0.96 (2) | C18—H18B | 1.01 (3) |
C6—C7 | 1.440 (2) | C19—C20 | 1.518 (3) |
C7—C9 | 1.350 (3) | C19—H19A | 1.03 (3) |
C7—C8 | 1.520 (2) | C19—H19B | 1.04 (2) |
C9—C10 | 1.437 (3) | C20—C21 | 1.522 (3) |
C9—C11 | 1.444 (3) | C20—H20A | 1.02 (3) |
C12—C13 | 1.526 (2) | C20—H20B | 1.01 (3) |
C12—H12A | 1.06 (2) | C21—H21A | 1.01 (3) |
C12—H12B | 1.01 (2) | C21—H21B | 0.97 (3) |
C13—C14 | 1.525 (3) | C21—H21C | 1.00 (3) |
C13—H13A | 1.02 (2) | ||
C8—N1—C1 | 110.66 (14) | C15—C14—H14A | 109.4 (13) |
C8—N1—C12 | 123.47 (15) | C13—C14—H14B | 110.6 (12) |
C1—N1—C12 | 125.69 (15) | C15—C14—H14B | 109.3 (13) |
C2—C1—N1 | 128.09 (16) | H14A—C14—H14B | 105.7 (17) |
C2—C1—C6 | 121.89 (16) | C16—C15—C14 | 114.37 (16) |
N1—C1—C6 | 109.99 (15) | C16—C15—H15A | 107.9 (13) |
C1—C2—C3 | 117.34 (17) | C14—C15—H15A | 109.6 (13) |
C1—C2—H2 | 121.3 (12) | C16—C15—H15B | 109.9 (12) |
C3—C2—H2 | 121.3 (12) | C14—C15—H15B | 110.8 (12) |
C4—C3—C2 | 121.69 (18) | H15A—C15—H15B | 103.6 (18) |
C4—C3—H3 | 119.3 (13) | C15—C16—C17 | 113.24 (16) |
C2—C3—H3 | 119.0 (13) | C15—C16—H16A | 109.4 (13) |
C3—C4—C5 | 120.72 (18) | C17—C16—H16A | 109.8 (14) |
C3—C4—H4 | 122.2 (13) | C15—C16—H16B | 110.9 (13) |
C5—C4—H4 | 117.1 (13) | C17—C16—H16B | 108.5 (13) |
C4—C5—C6 | 118.63 (17) | H16A—C16—H16B | 104.6 (18) |
C4—C5—H5 | 119.9 (13) | C18—C17—C16 | 113.37 (16) |
C6—C5—H5 | 121.4 (13) | C18—C17—H17A | 110.1 (14) |
C5—C6—C1 | 119.70 (17) | C16—C17—H17A | 108.2 (14) |
C5—C6—C7 | 133.42 (17) | C18—C17—H17B | 109.1 (13) |
C1—C6—C7 | 106.87 (15) | C16—C17—H17B | 108.2 (13) |
C9—C7—C6 | 131.53 (16) | H17A—C17—H17B | 107.6 (19) |
C9—C7—C8 | 121.89 (16) | C17—C18—C19 | 114.73 (17) |
C6—C7—C8 | 106.55 (15) | C17—C18—H18A | 108.3 (14) |
O1—C8—N1 | 127.13 (16) | C19—C18—H18A | 109.8 (14) |
O1—C8—C7 | 126.96 (17) | C17—C18—H18B | 109.1 (14) |
N1—C8—C7 | 105.90 (15) | C19—C18—H18B | 108.1 (15) |
C7—C9—C10 | 124.25 (16) | H18A—C18—H18B | 106 (2) |
C7—C9—C11 | 121.24 (18) | C20—C19—C18 | 113.30 (17) |
C10—C9—C11 | 114.51 (16) | C20—C19—H19A | 109.3 (13) |
N2—C10—C9 | 173.7 (2) | C18—C19—H19A | 110.1 (14) |
N3—C11—C9 | 179.3 (3) | C20—C19—H19B | 112.3 (13) |
N1—C12—C13 | 113.70 (15) | C18—C19—H19B | 107.9 (12) |
N1—C12—H12A | 106.2 (12) | H19A—C19—H19B | 103.6 (18) |
C13—C12—H12A | 108.8 (11) | C19—C20—C21 | 113.11 (19) |
N1—C12—H12B | 106.6 (12) | C19—C20—H20A | 109.7 (14) |
C13—C12—H12B | 110.0 (12) | C21—C20—H20A | 110.3 (14) |
H12A—C12—H12B | 111.6 (17) | C19—C20—H20B | 106.0 (13) |
C14—C13—C12 | 114.63 (16) | C21—C20—H20B | 110.7 (14) |
C14—C13—H13A | 108.8 (12) | H20A—C20—H20B | 107 (2) |
C12—C13—H13A | 105.0 (13) | C20—C21—H21A | 110.0 (15) |
C14—C13—H13B | 112.0 (12) | C20—C21—H21B | 112.0 (18) |
C12—C13—H13B | 108.1 (11) | H21A—C21—H21B | 108 (2) |
H13A—C13—H13B | 108.0 (17) | C20—C21—H21C | 109.0 (16) |
C13—C14—C15 | 111.49 (16) | H21A—C21—H21C | 110 (2) |
C13—C14—H14A | 110.3 (13) | H21B—C21—H21C | 107 (2) |
C8—N1—C1—C2 | 176.31 (17) | C1—N1—C8—C7 | 1.67 (19) |
C12—N1—C1—C2 | 1.2 (3) | C12—N1—C8—C7 | 176.95 (15) |
C8—N1—C1—C6 | −1.9 (2) | C9—C7—C8—O1 | −0.6 (3) |
C12—N1—C1—C6 | −177.06 (16) | C6—C7—C8—O1 | 177.92 (18) |
N1—C1—C2—C3 | 179.73 (17) | C9—C7—C8—N1 | −179.39 (17) |
C6—C1—C2—C3 | −2.3 (3) | C6—C7—C8—N1 | −0.88 (19) |
C1—C2—C3—C4 | 1.1 (3) | C6—C7—C9—C10 | −177.85 (18) |
C2—C3—C4—C5 | 0.7 (3) | C8—C7—C9—C10 | 0.2 (3) |
C3—C4—C5—C6 | −1.4 (3) | C6—C7—C9—C11 | 1.6 (3) |
C4—C5—C6—C1 | 0.3 (3) | C8—C7—C9—C11 | 179.71 (17) |
C4—C5—C6—C7 | 178.57 (19) | C8—N1—C12—C13 | 112.3 (2) |
C2—C1—C6—C5 | 1.6 (3) | C1—N1—C12—C13 | −73.1 (2) |
N1—C1—C6—C5 | 179.93 (15) | N1—C12—C13—C14 | −62.1 (2) |
C2—C1—C6—C7 | −177.09 (16) | C12—C13—C14—C15 | −173.98 (15) |
N1—C1—C6—C7 | 1.25 (19) | C13—C14—C15—C16 | 179.80 (16) |
C5—C6—C7—C9 | −0.3 (3) | C14—C15—C16—C17 | −178.34 (16) |
C1—C6—C7—C9 | 178.09 (19) | C15—C16—C17—C18 | −179.93 (17) |
C5—C6—C7—C8 | −178.65 (19) | C16—C17—C18—C19 | −179.68 (17) |
C1—C6—C7—C8 | −0.23 (18) | C17—C18—C19—C20 | −179.44 (18) |
C1—N1—C8—O1 | −177.13 (18) | C18—C19—C20—C21 | 178.45 (19) |
C12—N1—C8—O1 | −1.8 (3) |
B3LYP | X-ray | |
C1—C6 | 1.421 | 1.410 (2) |
C6—C5 | 1.391 | 1.393 (3) |
C5—C4 | 1.404 | 1.389 (3) |
C4—C3 | 1.402 | 1.386 (3) |
C3—C2 | 1.398 | 1.396 (3) |
C2—C1 | 1.402 | 1.377 (3) |
C1—N1 | 1.401 | 1.406 (2) |
N1—C8 | 1.386 | 1.372 (2) |
C8—O1 | 1.220 | 1.214 (2) |
C8—C7 | 1.522 | 1.520 (2) |
C7—C6 | 1.450 | 1.440 (2) |
C7—C9 | 1.396 | 1.350 (3) |
C9—C10 | 1.437 | 1.437 (3) |
C9—C11 | 1.436 | 1.444 (3) |
C10—N2 | 1.165 | 1.147 (3) |
C11—N3 | 1.166 | 1.142 (3) |
N1—C12 | 1.461 | 1.461 (2) |
C12—C13 | 1.536 | 1.526 (2) |
C7—C8—N1 | 106.1 | 105.90 (15) |
C11—C9—C10 | 114.6 | 114.51 (16) |
C8—N1—C1 | 110.5 | 110.66 (14) |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. The publication was prepared with the support of the RUDN University Program 5–100.
References
Abdelhamid, I. A. (2009). Synlett, pp. 625–627. CrossRef Google Scholar
Al Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012b). Acta Cryst. E68, o1664. CrossRef IUCr Journals Google Scholar
Al Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012c). Acta Cryst. E68, o1638. CrossRef IUCr Journals Google Scholar
Al Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012d). Acta Cryst. E68, o1637. CrossRef IUCr Journals Google Scholar
Al Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012a). Tetrahedron Lett. 53, 2328–2331. Web of Science CrossRef CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Bogdanov, A. V., Pashirova, T. N., Musin, L. I., Krivolapov, D. B., Zakharova, L. Ya., Mironov, V. F. & Konovalov, A. I. (2014). Chem. Phys. Lett. 594, 69–73. CrossRef Google Scholar
Bogdanov, A. V., Yusupova, G. G., Romanova, I. P., Latypov, S. K., Krivolapov, D. P., Mironov, V. F. & Sinyashin, O. G. (2013). Synthesis, 45, 668–672. CrossRef Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Cartwright, M. & Wilkinson, J. (2010). Propellants, Explosives, Pyrotech. 35, 326–332. Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, Jr., J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT. Google Scholar
Godbout, N., Salahub, N. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560–571. CrossRef Google Scholar
Govers, H. A. J. (1975). Acta Cryst. A31, 380–385. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hasegawa, T., Ashizawa, M. & Matsumoto, H. (2015). RSC Adv. 5, 61035–61043. CrossRef Google Scholar
Hu, F.-L., Wei, Y. & Shi, M. (2014). Chem. Commun. 50, 8912–8914. CrossRef Google Scholar
Jeong, M. & Kwon, Y. (2000). Chem. Phys. Lett. 324, 183–188. CrossRef Google Scholar
Jones, G. (1967). Organic Reactions, Vol. 15, pp. 204–599. New York: Wiley. Google Scholar
Kayukov, Y. S., Kayukova, O. V., Kalyagina, E. S., Bardasov, I. N., Ershov, O. V., Nasakin, O. E. & Tafeenko, V. A. (2011). Russ. J. Org. Chem. 47, 392–401. CrossRef Google Scholar
Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S. & Singh, T. P. (2007). J. Mol. Catal. A Chem. 265, 177–182. Web of Science CrossRef CAS Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789. CrossRef CAS Web of Science Google Scholar
Lian, Z., Wei, Y. & Shi, M. (2012). Tetrahedron, 68, 2401–2408. CrossRef Google Scholar
Liao, M.-S. & Zhang, Q.-E. (1998). J. Phys. Chem. A, 102, 10647–10654. CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206. CrossRef CAS Web of Science Google Scholar
Pandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27–46. PubMed CAS Google Scholar
Rayni, I., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). J. Mar. Chim. Heterocycl. 16, 207–214. Google Scholar
Rayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170315. Google Scholar
Rayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170706. Google Scholar
Reichman, S. & Schreiner, F. (1969). J. Chem. Phys. 51, 2355–2358. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220. CrossRef CAS Web of Science Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Wang, D.-C., Tang, W., Su, P. & Ou-Yang, P.-K. (2013). Acta Cryst. E69, o1095. CrossRef IUCr Journals Google Scholar
Yuan, M.-S. & Fang, Q. (2011). Acta Cryst. E67, o52. CrossRef IUCr Journals Google Scholar
Zarrok, H., Al Mamari, K., Zarrouk, A., Salghi, R., Hammouti, B., Al-Deyab, S. S., Essassi, E. M., Bentiss, F. & Oudda, H. (2012). Int. J. Electrochem. Sci. 7, 10338–10357. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.