research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, DFT calculations and Hirshfeld surface analysis of 2-(1-decyl-2-oxo­indolin-3-yl­­idene)propanedi­nitrile

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bOrganic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya st. 6, 117198 Moscow, Russian Federation, cDepartment of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan, dDepartment of Medical Education, Chung Shan Medical University Hospital, 402 Taichung, Taiwan, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: yns.elbakri@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 3 December 2018; accepted 5 December 2018; online 1 January 2019)

In the title mol­ecule, C21H25N3O, the 1-decyl substituents are in an extended conformation and inter­calate in the crystal packing to form hydro­phobic bands. The packing is further organized by ππ-stacking inter­actions between pyrrole and phenyl rings [centroid–centroid distance = 3.6178 (11) Å] and a C=O⋯π(pyrrole) inter­action [3.447 (2) Å]. Hirshfeld surface analysis indicates that the H⋯N/N⋯H inter­actions make the highest contribution (17.4%) to the crystal packing.

1. Chemical context

Knoevenagel condensation is a nucleophilic addition of an active hydrogen compound to a carbonyl group followed by dehydration in which a mol­ecule of water is eliminated (Jones, 1967[Jones, G. (1967). Organic Reactions, Vol. 15, pp. 204-599. New York: Wiley.]). The indole scaffold including isatin (1H-indole-2,3-dione) represents an important structural subunit for the discovery of new drug candidates (Pandeya et al., 2005[Pandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27-46.]). The carbonyl group in the 3-position of isatin is known to be active in various condensation reactions and thus the most common methods for the synthesis of 2-(2-oxoindolin-3-yl­idene)malono­nitriles are the condensation of isatins with malono­nitrile in the presence of a catalyst, such as piperidine acetate (Kayukov et al., 2011[Kayukov, Y. S., Kayukova, O. V., Kalyagina, E. S., Bardasov, I. N., Ershov, O. V., Nasakin, O. E. & Tafeenko, V. A. (2011). Russ. J. Org. Chem. 47, 392-401.]), DBU, Al2O3, N(CH2CH2OH)3 or chitosan (Abdelhamid, 2009[Abdelhamid, I. A. (2009). Synlett, pp. 625-627.]). Over the past few years, mol­ecular iodine has emerged as powerful catalyst in various organic transformations (Kidwai et al., 2007[Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S. & Singh, T. P. (2007). J. Mol. Catal. A Chem. 265, 177-182.]). As well as having the advantage of being inexpensive, non-toxic, and nature friendly, iodine affords the desired products in good to excellent yields with high selectivity.

[Scheme 2]

As a continuation of our research on the synthesis, functionilization, physico-chemical and biological properties of indole derivatives (Al Mamari et al., 2012a[Al Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012a). Tetrahedron Lett. 53, 2328-2331.],b[Al Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012b). Acta Cryst. E68, o1664.],c[Al Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012c). Acta Cryst. E68, o1638.],d[Al Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012d). Acta Cryst. E68, o1637.]; Rayni et al., 2017[Rayni, I., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). J. Mar. Chim. Heterocycl. 16, 207-214.], 2017a[Rayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170315.],b[Rayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170706.]; Zarrok et al., 2012[Zarrok, H., Al Mamari, K., Zarrouk, A., Salghi, R., Hammouti, B., Al-Deyab, S. S., Essassi, E. M., Bentiss, F. & Oudda, H. (2012). Int. J. Electrochem. Sci. 7, 10338-10357.]), we report our results on the Knoevenagel condensation of 1-decyl­indoline-2,3-dione with malono­nitrile using mol­ecular iodine as catalyst.

[Scheme 1]

2. Structural commentary

The 1-decyl substituent in the title compound (Fig. 1[link]) is fully extended in the crystal and the head end is nearly perpendic­ular to the plane of the five-membered ring as shown by the C8—N1—C12—C13 torsion angle of 112.3 (2)°. The indole portion is not quite planar, as indicated by the dihedral angle of 1.64 (10)° between the constituent rings and the r.m.s. deviation of 0.015 Å. As expected, the propanedi­nitrile group is essentially coplanar with the five-membered ring, the C8—C7—C9—C11 torsion angle being 179.71 (17)°.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

The mol­ecules pack with the 1-decyl chains inter­calating to form large hydro­phobic bands (Fig. 2[link]) approximately parallel to the b-axis direction. The indole portion participates in offset ππ-stacking inter­actions in the b-axis direction between the five-membered ring in one mol­ecule and the six-membered ring in the next (Fig. 3[link]) with a centroid–centroid distance of 3.6178 (11) Å and a dihedral angle of 1.64 (10)°. Reinforcing this is a C=O⋯π(ring) inter­action between C8=O1 and the five-membered ring in the adjacent mol­ecule along the b-axis direction (Fig. 3[link]) with a C⋯centroid distance of 3.447 (2) Å.

[Figure 2]
Figure 2
The packing viewed along the b axis.
[Figure 3]
Figure 3
Detail of the offset ππ-stacking (purple dotted lines) and C=O⋯π(ring) (green dotted lines) inter­actions [symmetry codes: (i) x, −1 + y, z; (ii) x, 1 + y, z].

4. Database survey

A search of the Cambridge Structural Database (Version 5.39 with updates through May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the fragment shown in Fig. 4[link] yielded 133 hits of which 34 are close to the title compound in that the substituents on the methyl­idene carbon are relatively small in size. The closest analogues are 2 [R = CH3 (Wang et al., 2013[Wang, D.-C., Tang, W., Su, P. & Ou-Yang, P.-K. (2013). Acta Cryst. E69, o1095.]); (CH2)5CH3 (Rayni et al., 2017b[Rayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170706.])], 3 (Hu et al., 2014[Hu, F.-L., Wei, Y. & Shi, M. (2014). Chem. Commun. 50, 8912-8914.]) and 4 (Lian et al., 2012[Lian, Z., Wei, Y. & Shi, M. (2012). Tetrahedron, 68, 2401-2408.]) although there are also some inter­esting related compounds such as 5 [R = (CH2)5CH3; Hasegawa et al., 2015[Hasegawa, T., Ashizawa, M. & Matsumoto, H. (2015). RSC Adv. 5, 61035-61043.]), (CH2)9CH3 (Bogdanov et al., 2014[Bogdanov, A. V., Pashirova, T. N., Musin, L. I., Krivolapov, D. B., Zakharova, L. Ya., Mironov, V. F. & Konovalov, A. I. (2014). Chem. Phys. Lett. 594, 69-73.]) and (CH2)3CH3 (Yuan & Fang, 2011[Yuan, M.-S. & Fang, Q. (2011). Acta Cryst. E67, o52.]), (CH2)6Br Bogdanov et al., 2013[Bogdanov, A. V., Yusupova, G. G., Romanova, I. P., Latypov, S. K., Krivolapov, D. P., Mironov, V. F. & Sinyashin, O. G. (2013). Synthesis, 45, 668-672.])]. In these, the indole fragment varies from being planar to having a dihedral angle between the two constituent rings of up to 3.30°. The substituent on the ring nitro­gen atom is generally in an extended conformation with the head end nearly perpendicular to the plane of the five-membered ring with torsion angles corresponding to the C8—N1—C12—C13 torsion angle in the title compound varying from 73.4–104.8°.

[Figure 4]
Figure 4
Search fragment and related compounds.

5. DFT optimization

The structure in the gas phase of the title compound was optimized by means of density functional theory (DFT). The DFT calculation was performed by the hybrid B3LYP method, which is based on the idea of Becke and considers a mixture of the exact (Hartree–Fock) and DFT exchange utilizing the B3 functional, together with the LYP correlation functional (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]; Miehlich et al., 1989[Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200-206.]). The B3LYP calculation was performed in conjunction with the basis set DZVP (Godbout et al., 1992[Godbout, N., Salahub, N. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560-571.]). It is noteworthy to mention that the double-ξ basis set used was designed for a DFT calculation. After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of imaginary frequencies is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were performed with the Gaussian16 program (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, Jr., J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT.]).

The result of the B3LYP geometry optimization for the title compound was compared with that determined in the crystallographic study. The B3LYP-optimized geometry of the title compound is shown in Fig. 5[link] with selected geometric parameters of the gas-phase and the solid-phase structures summarized in Table 1[link]. These show that the gas-phase structure shows a small deviation from the solid-phase one (Reichman et al., 1969[Reichman, S. & Schreiner, F. (1969). J. Chem. Phys. 51, 2355-2358.]; Liao & Zhang, 1998[Liao, M.-S. & Zhang, Q.-E. (1998). J. Phys. Chem. A, 102, 10647-10654.]).

Table 1
The B3LYP-optimized and X-ray structural parameters for 1 (Å, °)

  B3LYP X-ray
C1—C6 1.421 1.410 (2)
C6—C5 1.391 1.393 (3)
C5—C4 1.404 1.389 (3)
C4—C3 1.402 1.386 (3)
C3—C2 1.398 1.396 (3)
C2—C1 1.402 1.377 (3)
C1—N1 1.401 1.406 (2)
N1—C8 1.386 1.372 (2)
C8—O1 1.220 1.214 (2)
C8—C7 1.522 1.520 (2)
C7—C6 1.450 1.440 (2)
C7—C9 1.396 1.350 (3)
C9—C10 1.437 1.437 (3)
C9—C11 1.436 1.444 (3)
C10—N2 1.165 1.147 (3)
C11—N3 1.166 1.142 (3)
N1—C12 1.461 1.461 (2)
C12—C13 1.536 1.526 (2)
     
C7—C8—N1 106.1 105.90 (15)
C11—C9—C10 114.6 114.51 (16)
C8—N1—C1 110.5 110.66 (14)
[Figure 5]
Figure 5
The B3LYP-optimized geometry of the title compound (Å, °).

6. Hirshfeld surface calculations

Both the definition of a mol­ecule in a condensed phase and the recognition of distinct entities in mol­ecular liquids and crystals are fundamental concepts in chemistry. Based on Hirshfeld's partitioning scheme, a method was proposed to divide the electron distribution in a crystalline phase into mol­ecular fragments (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215-220.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). This method partitioned the crystal into regions where the electron distribution of a sum of spherical atoms for the mol­ecule dominates over the corresponding sum of the crystal. As it is derived from Hirshfeld's stockholder partitioning, the mol­ecular surface is named as the Hirshfeld surface. In this study, the Hirshfeld surface analysis of the title compound was performed utilizing the CrystalExplorer program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]).

The standard resolution mol­ecular Hirshfeld surface (dnorm) of the title compound is shown in Fig. 6[link]. The 3D dnorm surface is used to identify close inter­molecular inter­actions. The value of dnorm is negative (positive) when inter­molecular contacts are shorter (longer) than the van der Waals radii. The dnorm value is mapped onto the Hirshfeld surface using red, white and blue. The red regions represent closer contacts with a negative dnorm value while the blue regions represent longer contacts with a positive dnorm value and the white regions represent contacts equal to the van der Waals separation and have a dnorm value of zero. As shown in Fig. 6[link], the major inter­actions in the title compound are inter­molecular H⋯O and H⋯N hydrogen bonds.

[Figure 6]
Figure 6
The dnorm Hirshfeld surface of the title compound (red: negative, white: zero, blue: positive; scale: −0.0774 to 1.3395 a.u.).

The 2D fingerprint plots highlight particular atom-pair contacts and enable the separation of contributions from different inter­action types that overlap in the full fingerprint. Using the standard 0.6–2.6 view with the de and di distance scales displayed on the graph axes and including the reciprocal contacts, the contribution of the H⋯N contacts is larger than that of the H⋯O contacts (Fig. 7[link]). Inter­estingly, we found that there is a negligible contribution of N⋯N contacts (Govers, 1975[Govers, H. A. J. (1975). Acta Cryst. A31, 380-385.]; Cartwright & Wilkinson, 2010[Cartwright, M. & Wilkinson, J. (2010). Propellants, Explosives, Pyrotech. 35, 326-332.]). This inter­action might be considered as a stabilizing hyperconjugative one between a π-bonding orbital of one C≡N group and a π*-bonding orbital of another [C≡N group π(CN) → π*(C′N′); Jeong & Kwon, 2000[Jeong, M. & Kwon, Y. (2000). Chem. Phys. Lett. 324, 183-188.]].

[Figure 7]
Figure 7
The two-dimensional fingerprint plot of the title compound (a) full and decomposed into (b) H⋯O/O⋯H contacts, (c) H⋯N/N⋯H contacts and (d) N⋯N contacts.

7. Synthesis and crystallization

A mixture of 1-decyl­indole-2,3-dione (0,5g, 2.1 mmol), malono­nitrile (0,14g, 2.1 mmol), and I2 (0.05g, 0.21 mmol) in ethanol (10 mL) was heated at 333 K. After completion of the reaction (monitored by TLC), the mixture was treated with aqueous Na2S2O3 solution and extracted with ethyl acetate (2 × 10 mL). The extract was dried over sodium sulfate, filtered and the solvent was evaporated in vacuo. The purified product was recrystallized from ethanol solution to afford the title compound as orange, plate-like crystals.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Trial refinements of the model with the one-component reflection file extracted from the full twinned data with TWINABS and with the full, two-component reflection file indicated that the former gave better results both in terms of lower values of R1 and wR2 and in lower s.u. values for derived parameters.

Table 2
Experimental details

Crystal data
Chemical formula C21H25N3O
Mr 335.44
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 44.4837 (12), 4.7293 (1), 18.3432 (5)
β (°) 106.965 (2)
V3) 3691.05 (17)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.59
Crystal size (mm) 0.29 × 0.08 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.75, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 25556, 3592, 2656
Rint 0.054
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.134, 1.05
No. of reflections 3592
No. of parameters 326
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.24, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL 2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-(1-decyl-2-oxoindolin-3-ylidene)propanedinitrile top
Crystal data top
C21H25N3OF(000) = 1440
Mr = 335.44Dx = 1.207 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 44.4837 (12) ÅCell parameters from 9886 reflections
b = 4.7293 (1) Åθ = 4.2–72.3°
c = 18.3432 (5) ŵ = 0.59 mm1
β = 106.965 (2)°T = 150 K
V = 3691.05 (17) Å3Plate, orange
Z = 80.29 × 0.08 × 0.03 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3592 independent reflections
Radiation source: INCOATEC IµS micro–focus source2656 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 10.4167 pixels mm-1θmax = 72.3°, θmin = 2.1°
ω scansh = 545
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 55
Tmin = 0.75, Tmax = 0.98l = 2122
25556 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.134All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.6236P]
where P = (Fo2 + 2Fc2)/3
3592 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. Analysis of 1401 reflections having I/σ(I) > 15 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the a axis. The raw data were processed using the multi-component version ofSAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Trial refinements with the single-component reflection file extracted from the full data set with TWINABS and with the complete two-component reflection file showed the former refinement to be the better one.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36446 (3)0.1282 (3)0.67635 (8)0.0362 (3)
N10.34709 (3)0.1596 (3)0.75794 (8)0.0271 (3)
N20.34275 (4)0.2025 (5)0.49015 (10)0.0470 (5)
N30.27212 (4)0.4371 (5)0.45464 (10)0.0495 (5)
C10.32328 (4)0.3634 (4)0.74915 (10)0.0262 (4)
C20.31433 (4)0.5037 (4)0.80525 (10)0.0286 (4)
H20.3249 (5)0.469 (5)0.8594 (13)0.032 (5)*
C30.28988 (4)0.6993 (4)0.78192 (11)0.0317 (4)
H30.2834 (5)0.807 (5)0.8209 (13)0.041 (6)*
C40.27473 (4)0.7480 (4)0.70550 (11)0.0319 (4)
H40.2582 (5)0.880 (5)0.6893 (12)0.034 (5)*
C50.28324 (4)0.5999 (4)0.64921 (11)0.0303 (4)
H50.2723 (5)0.633 (5)0.5964 (14)0.039 (6)*
C60.30782 (4)0.4059 (4)0.67108 (10)0.0267 (4)
C70.32211 (4)0.2166 (4)0.62943 (10)0.0273 (4)
C80.34757 (4)0.0565 (4)0.68839 (10)0.0283 (4)
C90.31586 (4)0.1659 (4)0.55402 (10)0.0301 (4)
C100.33204 (4)0.0402 (5)0.52187 (10)0.0346 (4)
C110.29150 (4)0.3188 (5)0.49872 (11)0.0354 (4)
C120.36711 (4)0.0513 (4)0.83047 (10)0.0296 (4)
H12A0.3786 (5)0.129 (5)0.8172 (12)0.036 (6)*
H12B0.3527 (5)0.000 (5)0.8620 (12)0.032 (5)*
C130.39191 (4)0.2618 (4)0.87386 (10)0.0298 (4)
H13A0.4035 (5)0.161 (5)0.9230 (13)0.039 (6)*
H13B0.3805 (5)0.432 (5)0.8878 (12)0.032 (5)*
C140.41561 (4)0.3492 (4)0.83250 (11)0.0317 (4)
H14A0.4257 (5)0.170 (5)0.8154 (13)0.044 (6)*
H14B0.4049 (5)0.453 (5)0.7845 (13)0.034 (5)*
C150.44154 (4)0.5345 (4)0.88269 (11)0.0323 (4)
H15A0.4527 (5)0.429 (5)0.9310 (14)0.044 (6)*
H15B0.4321 (5)0.709 (5)0.9023 (12)0.034 (5)*
C160.46614 (4)0.6289 (4)0.84511 (11)0.0335 (4)
H16A0.4555 (6)0.739 (5)0.7968 (14)0.047 (6)*
H16B0.4759 (5)0.461 (5)0.8270 (12)0.040 (6)*
C170.49228 (4)0.8068 (5)0.89736 (11)0.0330 (4)
H17A0.5025 (6)0.692 (5)0.9449 (15)0.052 (7)*
H17B0.4824 (5)0.979 (5)0.9136 (13)0.042 (6)*
C180.51688 (4)0.9018 (5)0.85996 (11)0.0355 (5)
H18A0.5257 (6)0.730 (5)0.8419 (14)0.048 (6)*
H18B0.5063 (6)1.017 (5)0.8130 (15)0.051 (7)*
C190.54344 (4)1.0786 (5)0.91077 (11)0.0341 (4)
H19A0.5547 (5)0.968 (5)0.9594 (14)0.046 (6)*
H19B0.5334 (5)1.249 (5)0.9312 (13)0.041 (6)*
C200.56740 (5)1.1722 (5)0.87134 (13)0.0403 (5)
H20A0.5768 (6)0.999 (6)0.8527 (14)0.052 (7)*
H20B0.5552 (5)1.280 (5)0.8244 (14)0.046 (6)*
C210.59341 (5)1.3554 (6)0.92162 (16)0.0483 (6)
H21A0.5840 (6)1.529 (6)0.9393 (15)0.061 (8)*
H21B0.6081 (7)1.418 (6)0.8951 (17)0.067 (8)*
H21C0.6055 (6)1.242 (6)0.9663 (17)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0383 (7)0.0343 (8)0.0341 (7)0.0090 (6)0.0073 (5)0.0011 (6)
N10.0288 (7)0.0250 (8)0.0238 (8)0.0017 (6)0.0020 (5)0.0023 (6)
N20.0512 (10)0.0557 (13)0.0322 (9)0.0028 (9)0.0092 (8)0.0079 (8)
N30.0471 (9)0.0669 (14)0.0292 (9)0.0081 (10)0.0030 (7)0.0083 (9)
C10.0261 (7)0.0224 (9)0.0276 (9)0.0019 (7)0.0039 (6)0.0026 (7)
C20.0316 (8)0.0280 (10)0.0245 (9)0.0024 (8)0.0057 (7)0.0030 (7)
C30.0320 (8)0.0307 (10)0.0333 (10)0.0019 (8)0.0112 (7)0.0015 (8)
C40.0298 (8)0.0293 (10)0.0354 (10)0.0036 (8)0.0074 (7)0.0038 (7)
C50.0289 (8)0.0309 (11)0.0278 (10)0.0009 (7)0.0031 (7)0.0048 (7)
C60.0284 (8)0.0250 (9)0.0247 (9)0.0028 (7)0.0046 (6)0.0009 (7)
C70.0282 (8)0.0257 (9)0.0261 (9)0.0028 (7)0.0049 (7)0.0018 (7)
C80.0263 (8)0.0293 (10)0.0275 (9)0.0007 (7)0.0048 (6)0.0011 (7)
C90.0312 (8)0.0310 (10)0.0260 (9)0.0016 (8)0.0053 (7)0.0011 (7)
C100.0363 (9)0.0413 (12)0.0239 (9)0.0014 (9)0.0050 (7)0.0023 (8)
C110.0372 (9)0.0448 (12)0.0228 (9)0.0028 (9)0.0068 (7)0.0015 (8)
C120.0331 (8)0.0265 (10)0.0236 (9)0.0008 (8)0.0009 (7)0.0061 (7)
C130.0306 (8)0.0300 (10)0.0240 (9)0.0026 (8)0.0004 (7)0.0012 (7)
C140.0331 (9)0.0307 (10)0.0271 (10)0.0029 (8)0.0024 (7)0.0004 (8)
C150.0314 (8)0.0331 (11)0.0285 (10)0.0005 (8)0.0025 (7)0.0026 (8)
C160.0334 (9)0.0348 (11)0.0296 (10)0.0004 (8)0.0046 (7)0.0037 (8)
C170.0336 (9)0.0337 (11)0.0283 (10)0.0007 (8)0.0037 (7)0.0009 (8)
C180.0368 (9)0.0378 (12)0.0305 (10)0.0005 (9)0.0074 (8)0.0024 (8)
C190.0342 (9)0.0357 (12)0.0306 (10)0.0003 (8)0.0064 (7)0.0008 (8)
C200.0403 (10)0.0395 (13)0.0417 (12)0.0015 (10)0.0130 (9)0.0025 (9)
C210.0388 (11)0.0439 (14)0.0613 (16)0.0052 (10)0.0133 (10)0.0039 (12)
Geometric parameters (Å, º) top
O1—C81.214 (2)C13—H13B1.02 (2)
N1—C81.372 (2)C14—C151.525 (3)
N1—C11.406 (2)C14—H14A1.05 (2)
N1—C121.461 (2)C14—H14B1.00 (2)
N2—C101.147 (3)C15—C161.521 (3)
N3—C111.142 (3)C15—H15A1.01 (2)
C1—C21.377 (3)C15—H15B1.04 (2)
C1—C61.410 (2)C16—C171.526 (3)
C2—C31.396 (3)C16—H16A1.02 (3)
C2—H20.98 (2)C16—H16B1.01 (2)
C3—C41.386 (3)C17—C181.519 (3)
C3—H30.99 (2)C17—H17A1.02 (3)
C4—C51.389 (3)C17—H17B1.01 (2)
C4—H40.94 (2)C18—C191.524 (3)
C5—C61.393 (3)C18—H18A1.00 (3)
C5—H50.96 (2)C18—H18B1.01 (3)
C6—C71.440 (2)C19—C201.518 (3)
C7—C91.350 (3)C19—H19A1.03 (3)
C7—C81.520 (2)C19—H19B1.04 (2)
C9—C101.437 (3)C20—C211.522 (3)
C9—C111.444 (3)C20—H20A1.02 (3)
C12—C131.526 (2)C20—H20B1.01 (3)
C12—H12A1.06 (2)C21—H21A1.01 (3)
C12—H12B1.01 (2)C21—H21B0.97 (3)
C13—C141.525 (3)C21—H21C1.00 (3)
C13—H13A1.02 (2)
C8—N1—C1110.66 (14)C15—C14—H14A109.4 (13)
C8—N1—C12123.47 (15)C13—C14—H14B110.6 (12)
C1—N1—C12125.69 (15)C15—C14—H14B109.3 (13)
C2—C1—N1128.09 (16)H14A—C14—H14B105.7 (17)
C2—C1—C6121.89 (16)C16—C15—C14114.37 (16)
N1—C1—C6109.99 (15)C16—C15—H15A107.9 (13)
C1—C2—C3117.34 (17)C14—C15—H15A109.6 (13)
C1—C2—H2121.3 (12)C16—C15—H15B109.9 (12)
C3—C2—H2121.3 (12)C14—C15—H15B110.8 (12)
C4—C3—C2121.69 (18)H15A—C15—H15B103.6 (18)
C4—C3—H3119.3 (13)C15—C16—C17113.24 (16)
C2—C3—H3119.0 (13)C15—C16—H16A109.4 (13)
C3—C4—C5120.72 (18)C17—C16—H16A109.8 (14)
C3—C4—H4122.2 (13)C15—C16—H16B110.9 (13)
C5—C4—H4117.1 (13)C17—C16—H16B108.5 (13)
C4—C5—C6118.63 (17)H16A—C16—H16B104.6 (18)
C4—C5—H5119.9 (13)C18—C17—C16113.37 (16)
C6—C5—H5121.4 (13)C18—C17—H17A110.1 (14)
C5—C6—C1119.70 (17)C16—C17—H17A108.2 (14)
C5—C6—C7133.42 (17)C18—C17—H17B109.1 (13)
C1—C6—C7106.87 (15)C16—C17—H17B108.2 (13)
C9—C7—C6131.53 (16)H17A—C17—H17B107.6 (19)
C9—C7—C8121.89 (16)C17—C18—C19114.73 (17)
C6—C7—C8106.55 (15)C17—C18—H18A108.3 (14)
O1—C8—N1127.13 (16)C19—C18—H18A109.8 (14)
O1—C8—C7126.96 (17)C17—C18—H18B109.1 (14)
N1—C8—C7105.90 (15)C19—C18—H18B108.1 (15)
C7—C9—C10124.25 (16)H18A—C18—H18B106 (2)
C7—C9—C11121.24 (18)C20—C19—C18113.30 (17)
C10—C9—C11114.51 (16)C20—C19—H19A109.3 (13)
N2—C10—C9173.7 (2)C18—C19—H19A110.1 (14)
N3—C11—C9179.3 (3)C20—C19—H19B112.3 (13)
N1—C12—C13113.70 (15)C18—C19—H19B107.9 (12)
N1—C12—H12A106.2 (12)H19A—C19—H19B103.6 (18)
C13—C12—H12A108.8 (11)C19—C20—C21113.11 (19)
N1—C12—H12B106.6 (12)C19—C20—H20A109.7 (14)
C13—C12—H12B110.0 (12)C21—C20—H20A110.3 (14)
H12A—C12—H12B111.6 (17)C19—C20—H20B106.0 (13)
C14—C13—C12114.63 (16)C21—C20—H20B110.7 (14)
C14—C13—H13A108.8 (12)H20A—C20—H20B107 (2)
C12—C13—H13A105.0 (13)C20—C21—H21A110.0 (15)
C14—C13—H13B112.0 (12)C20—C21—H21B112.0 (18)
C12—C13—H13B108.1 (11)H21A—C21—H21B108 (2)
H13A—C13—H13B108.0 (17)C20—C21—H21C109.0 (16)
C13—C14—C15111.49 (16)H21A—C21—H21C110 (2)
C13—C14—H14A110.3 (13)H21B—C21—H21C107 (2)
C8—N1—C1—C2176.31 (17)C1—N1—C8—C71.67 (19)
C12—N1—C1—C21.2 (3)C12—N1—C8—C7176.95 (15)
C8—N1—C1—C61.9 (2)C9—C7—C8—O10.6 (3)
C12—N1—C1—C6177.06 (16)C6—C7—C8—O1177.92 (18)
N1—C1—C2—C3179.73 (17)C9—C7—C8—N1179.39 (17)
C6—C1—C2—C32.3 (3)C6—C7—C8—N10.88 (19)
C1—C2—C3—C41.1 (3)C6—C7—C9—C10177.85 (18)
C2—C3—C4—C50.7 (3)C8—C7—C9—C100.2 (3)
C3—C4—C5—C61.4 (3)C6—C7—C9—C111.6 (3)
C4—C5—C6—C10.3 (3)C8—C7—C9—C11179.71 (17)
C4—C5—C6—C7178.57 (19)C8—N1—C12—C13112.3 (2)
C2—C1—C6—C51.6 (3)C1—N1—C12—C1373.1 (2)
N1—C1—C6—C5179.93 (15)N1—C12—C13—C1462.1 (2)
C2—C1—C6—C7177.09 (16)C12—C13—C14—C15173.98 (15)
N1—C1—C6—C71.25 (19)C13—C14—C15—C16179.80 (16)
C5—C6—C7—C90.3 (3)C14—C15—C16—C17178.34 (16)
C1—C6—C7—C9178.09 (19)C15—C16—C17—C18179.93 (17)
C5—C6—C7—C8178.65 (19)C16—C17—C18—C19179.68 (17)
C1—C6—C7—C80.23 (18)C17—C18—C19—C20179.44 (18)
C1—N1—C8—O1177.13 (18)C18—C19—C20—C21178.45 (19)
C12—N1—C8—O11.8 (3)
The B3LYP-optimized and X-ray structural parameters for 1 (Å, °) top
B3LYPX-ray
C1—C61.4211.410 (2)
C6—C51.3911.393 (3)
C5—C41.4041.389 (3)
C4—C31.4021.386 (3)
C3—C21.3981.396 (3)
C2—C11.4021.377 (3)
C1—N11.4011.406 (2)
N1—C81.3861.372 (2)
C8—O11.2201.214 (2)
C8—C71.5221.520 (2)
C7—C61.4501.440 (2)
C7—C91.3961.350 (3)
C9—C101.4371.437 (3)
C9—C111.4361.444 (3)
C10—N21.1651.147 (3)
C11—N31.1661.142 (3)
N1—C121.4611.461 (2)
C12—C131.5361.526 (2)
C7—C8—N1106.1105.90 (15)
C11—C9—C10114.6114.51 (16)
C8—N1—C1110.5110.66 (14)
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. The publication was prepared with the support of the RUDN University Program 5–100.

References

First citationAbdelhamid, I. A. (2009). Synlett, pp. 625–627.  CrossRef Google Scholar
First citationAl Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012b). Acta Cryst. E68, o1664.  CrossRef IUCr Journals Google Scholar
First citationAl Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012c). Acta Cryst. E68, o1638.  CrossRef IUCr Journals Google Scholar
First citationAl Mamari, K., Ennajih, H., Bouhfid, R., Essassi, E. M. & Ng, S. W. (2012d). Acta Cryst. E68, o1637.  CrossRef IUCr Journals Google Scholar
First citationAl Mamari, K., Ennajih, H., Zouihri, H., Bouhfid, R., Ng, S. W. & Essassi, E. M. (2012a). Tetrahedron Lett. 53, 2328–2331.  Web of Science CrossRef CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBogdanov, A. V., Pashirova, T. N., Musin, L. I., Krivolapov, D. B., Zakharova, L. Ya., Mironov, V. F. & Konovalov, A. I. (2014). Chem. Phys. Lett. 594, 69–73.  CrossRef Google Scholar
First citationBogdanov, A. V., Yusupova, G. G., Romanova, I. P., Latypov, S. K., Krivolapov, D. P., Mironov, V. F. & Sinyashin, O. G. (2013). Synthesis, 45, 668–672.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCartwright, M. & Wilkinson, J. (2010). Propellants, Explosives, Pyrotech. 35, 326–332.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, Jr., J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian 16, Revision A.03. Gaussian, Inc., Wallingford CT.  Google Scholar
First citationGodbout, N., Salahub, N. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560–571.  CrossRef Google Scholar
First citationGovers, H. A. J. (1975). Acta Cryst. A31, 380–385.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHasegawa, T., Ashizawa, M. & Matsumoto, H. (2015). RSC Adv. 5, 61035–61043.  CrossRef Google Scholar
First citationHu, F.-L., Wei, Y. & Shi, M. (2014). Chem. Commun. 50, 8912–8914.  CrossRef Google Scholar
First citationJeong, M. & Kwon, Y. (2000). Chem. Phys. Lett. 324, 183–188.  CrossRef Google Scholar
First citationJones, G. (1967). Organic Reactions, Vol. 15, pp. 204–599. New York: Wiley.  Google Scholar
First citationKayukov, Y. S., Kayukova, O. V., Kalyagina, E. S., Bardasov, I. N., Ershov, O. V., Nasakin, O. E. & Tafeenko, V. A. (2011). Russ. J. Org. Chem. 47, 392–401.  CrossRef Google Scholar
First citationKidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S. & Singh, T. P. (2007). J. Mol. Catal. A Chem. 265, 177–182.  Web of Science CrossRef CAS Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationLian, Z., Wei, Y. & Shi, M. (2012). Tetrahedron, 68, 2401–2408.  CrossRef Google Scholar
First citationLiao, M.-S. & Zhang, Q.-E. (1998). J. Phys. Chem. A, 102, 10647–10654.  CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206.  CrossRef CAS Web of Science Google Scholar
First citationPandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27–46.  PubMed CAS Google Scholar
First citationRayni, I., El Bakri, Y., Essassi, E. M. & Mague, J. T. (2017). J. Mar. Chim. Heterocycl. 16, 207–214.  Google Scholar
First citationRayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170315.  Google Scholar
First citationRayni, I., El Bakri, Y., Sebhaoui, J., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170706.  Google Scholar
First citationReichman, S. & Schreiner, F. (1969). J. Chem. Phys. 51, 2355–2358.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWang, D.-C., Tang, W., Su, P. & Ou-Yang, P.-K. (2013). Acta Cryst. E69, o1095.  CrossRef IUCr Journals Google Scholar
First citationYuan, M.-S. & Fang, Q. (2011). Acta Cryst. E67, o52.  CrossRef IUCr Journals Google Scholar
First citationZarrok, H., Al Mamari, K., Zarrouk, A., Salghi, R., Hammouti, B., Al-Deyab, S. S., Essassi, E. M., Bentiss, F. & Oudda, H. (2012). Int. J. Electrochem. Sci. 7, 10338–10357.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds