research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (RS)-4-(3-carb­­oxy-1-ethyl-6,8-di­fluoro-4-oxo-1,4-di­hydro­quinolin-7-yl)-2-methyl­piperazin-1-ium 3-carb­­oxy-5-fluoro­benzoate

CROSSMARK_Color_square_no_text.svg

aSchool of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, People's Republic of China, and bJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou, University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: zhangzh@cczu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 October 2018; accepted 29 November 2018; online 1 January 2019)

In the title organic salt, C17H20F2N3O3+·C8H4FO4, proton transfer leads to one protonated lomefloxacin mol­ecule (HLf+) and one 3-carb­oxy-5-fluoro­benzoate (5-F-Hip) anion in the asymmetric unit. The HLf+ cation is bent, with a dihedral angle of 38.3 (1)° between the quinoline ring and the piperazinium moiety. In the crystal, two kinds of N—H⋯O and O—H⋯O hydrogen-bonded chains cross-link each other to produce a three-dimensional network structure that is additionally stabilized by weak C—H⋯O and C—H⋯F hydrogen bonds, as well as ππ inter­actions. The methyl group attached to the piperazinium ring is disordered over two sets of sites [refined ratio: 0.645 (5):0.335 (5)], indicating the presence of both enanti­omers of the cation in the structure.

1. Chemical context

Lomefloxacin [Lf; systematic name: (RS)-4-(3-carb­oxy-1-ethyl-6,8-di­fluoro-4-oxo-1,4-di­hydro­quinolin-7-yl)-2-methyl­piperazine] belongs to the fluoro­quinolones that represent an important family of highly effective broad-spectrum anti­bacterial agents (Ross & Riley, 1990[Ross, D. L. & Riley, C. M. (1990). Int. J. Pharm. 63, 237-250.]; Reddy et al., 2011[Reddy, J. S., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, K. A., Kumar, K. A., Goud, N. R. & Nangia, A. (2011). J. Pharm. Sci. 100, 3160-3176.]; Huang et al., 2013[Huang, X. F., Zhang, Z. H., Zhang, Q. Q., Wang, L. Z., He, M. Y., Chen, Q., Song, G. Q., Wei, L., Wang, F. & Du, M. (2013). CrystEngComm, 15, 6090-6100.]). Lomefloxacin is very useful for the treatment of a variety of infections, although its therapeutic action as a drug is limited due to poor aqueous solubility (1.03 mg ml−1, Ross & Riley, 1990[Ross, D. L. & Riley, C. M. (1990). Int. J. Pharm. 63, 237-250.]). Using salts of lomefloxacin may overcome this problem. Several binary and ternary salts of lomefloxacin have been reported with supra­molecular arrangements of the cationic and anionic moieties, such as the terephthalate (Zhou et al., 2006[Zhou, T., Zhao, L. & Guo, J. X. (2006). Z. Kristallogr. New Cryst. Struct. 221, 495-496.]), isophthalate (Zhang et al., 2015[Zhang, Z.-H., Zhang, Q., Zhang, Q.-Q., Chen, C., He, M.-Y., Chen, Q., Song, G.-Q., Xuan, X.-P. & Huang, X.-F. (2015). Acta Cryst. B71, 437-446.]), picrate (Jasinski et al., 2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011). Acta Cryst. E67, o483-o484.]) or hydro­chloride (Holstein et al., 2012[Holstein, J. J., Hübschle, C. B. & Dittrich, B. (2012). CrystEngComm, 14, 2520-2531.]). However, the number of compounds related to solubility improvement is rather limited (Zhang et al., 2015[Zhang, Z.-H., Zhang, Q., Zhang, Q.-Q., Chen, C., He, M.-Y., Chen, Q., Song, G.-Q., Xuan, X.-P. & Huang, X.-F. (2015). Acta Cryst. B71, 437-446.]).

[Scheme 1]

In this context, we have used 3-carb­oxy-5-fluoro­benzoic acid (5-F-H2ip) for a proton-transfer reaction, and report here synthesis and crystal structure of the produced salt (HLf)+·(5-F-Hip), (I)[link].

2. Structural commentary

The structures of the mol­ecular entities of (I)[link] are displayed in Fig. 1[link]. Unlike other lomefloxacin salts (Zhang et al., 2015[Zhang, Z.-H., Zhang, Q., Zhang, Q.-Q., Chen, C., He, M.-Y., Chen, Q., Song, G.-Q., Xuan, X.-P. & Huang, X.-F. (2015). Acta Cryst. B71, 437-446.]), the title compound reveals no guest solvents residing in the crystal structure. In the asymmetric unit, there is one HLf+ cation and one 5-F-Hip anion, i.e. only one proton has been transferred from the free acid. Within the HLf+ moiety, a non-planar conformation of the mol­ecule is formed with a dihedral angle of 38.3 (1)° between the aromatic ring plane and the piperazinium ring (the latter exhibits a chair conformation). An intra­molecular S(6) hydrogen-bonding pattern (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) is found between the carb­oxy­lic group and the carbonyl O atom (O2—H2⋯O1; Table 1[link]). The 5-F-Hip anion is nearly planar (r.m.s. deviation = 0.132 Å), with the highest deviation of 0.2645 (13) Å for the carboxyl­ate O6 atom.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O7i 0.82 1.75 2.557 (2) 167
O2—H2⋯O1 0.82 1.78 2.535 (3) 153
N1—H1B⋯O7ii 0.89 2.48 3.046 (2) 122
N1—H1B⋯O6ii 0.89 1.91 2.790 (2) 170
N1—H1A⋯O3iii 0.89 1.94 2.811 (2) 165
C21—H21⋯O4iv 0.93 2.61 3.534 (3) 173
C17—H17C⋯F1 0.96 2.45 2.985 (3) 115
C17—H17B⋯F3v 0.96 2.53 3.380 (3) 148
C16—H16B⋯F1v 0.97 2.48 3.394 (3) 157
C16—H16B⋯F1 0.97 2.16 2.682 (2) 112
C16—H16A⋯O6vi 0.97 2.35 3.287 (3) 162
C14—H14⋯O6vi 0.93 2.59 3.448 (3) 154
C4—H4A⋯O4v 0.97 2.60 3.274 (3) 127
C2—H2B⋯F2 0.97 2.30 2.883 (2) 118
C2—H2A⋯F3 0.97 2.57 3.078 (2) 113
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y, z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y, -z+1; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structures of the cation and anion in the title salt. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal structure, N1—H1A⋯O3iii inter­actions between the amino function of the piperazinium moiety and the non-protonated O atom of the carb­oxy­lic group of a neighboring HLf+ cation result in a head-to-tail chain motif with descriptor C(13). Adjacent 5-F-Hip moieties also form a head-to-tail chain, based on a C(8) pattern, involving O5—H5⋯O7i bonds between the carb­oxy­lic acid function and the carboxyl­ate function. The two kinds of chains inter­link with each other through N1—H1B⋯O6ii inter­actions between the second H atom of the amino group of the cation and one of the carboxyl­ate O atoms of the anion to form a three-dimensional network structure. Within this array (Fig. 2[link]), additional weak C—H⋯O and C—H⋯F inter­actions are present (Table 1[link]) as additional stabilization forces, along with ππ inter­actions between fluoro­quinolone benzene rings of the cations and and phenyl rings of the anions with a centroid-to-centroid separation of 3.7895 (12) Å.

[Figure 2]
Figure 2
A perspective view of (I)[link] showing the N—H⋯O and O—H⋯O hydrogen-bonding inter­actions (dotted lines) between the two kinds of chains. `Acidic' chains, i.e. chains involving only the anion, are shown in red for clarity.

4. Database survey

Two crystal structures (Zhang et al., 2015[Zhang, Z.-H., Zhang, Q., Zhang, Q.-Q., Chen, C., He, M.-Y., Chen, Q., Song, G.-Q., Xuan, X.-P. & Huang, X.-F. (2015). Acta Cryst. B71, 437-446.]) based on lomefloxacin and isophthalic acid have been reported in the CSD (Verson 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) viz. CURKAD [4-(3-carb­oxy-1-ethyl-6,8-di­fluoro-4-oxo-1,4-di­hydro­quinolin-7-yl)-2-methyl­piperazin-1-ium 3-carb­oxy­benzoate hydrate] and CURKIL [4-(3-carb­oxy-1-ethyl-6,8-di­fluoro-4-oxo-1,4-di­hydro­quinolin-7-yl)-2-methyl­piperazin-1-ium 2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate isophthalic acid methanol solvate monohydrate]. Both CURKAD and the title compound are proton-transfer compounds from isophthalic acids to the piperazine NH groups. In the structure of CURKIL, the isophthalic acid moiety remains protonated, and co-crystallized barbituric acid is the proton donor in this case. With respect to the supra­molecular networks in these structures, the contribution of the extra fluorine atom in (I)[link] leads to additional hydrogen bonds of the type C—H⋯F.

5. Synthesis and crystallization

A methanol solution (6 ml) of 5-fluoro­isophthalic acid (5-F-H2ip; 20 mg, 0.1 mmol) was mixed with a slurry of lomefloxacin (Lf) (35 mg, 0.1 mmol) in 5 ml water under stirring. The mixture was exposed to ultrasound for ca 20 min, and was then filtered and left to slowly evaporate. Colourless block-like single crystals suitable for X-ray analysis were obtained after several weeks. Yield: 65% (35 mg, based on Lf). Analysis calculated for C25H24F3N3O7: C, 56.08; H, 4.52; N, 7.85%. Found: C, 56.06; H, 4.50; N, 7.82%. FT–IR (KBr pellet, cm−1): 3431b, 3070 (w), 2475 (w), 1718 (s), 1620 (vs, 1539 (m), 1456 (s), 1371 (m), 1275 (s), 1090 (m), 959 (m), 901 (w), 766 (m), 689 (m), 521 (w).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C were placed geometrically and refined in a riding model: C—H = 0.96–0.98 Å; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). All O-bound and N-bound H atoms were initially found in difference electron-density maps, and then refined using a riding model [O—H = 0.82 Å and N—H = 0.89 Å; Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O)]. The methyl group bound to the piperazinium ring is disordered over two positions with occupancies of 0.645 (5) and 0.355 (5).

Table 2
Experimental details

Crystal data
Chemical formula C17H20F2N3O3+·C8H4FO4
Mr 535.47
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 10.4324 (12), 16.5656 (19), 14.0448 (17)
β (°) 100.707 (3)
V3) 2384.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.22 × 0.20 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.970, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 16570, 6292, 4335
Rint 0.035
(sin θ/λ)max−1) 0.711
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.161, 0.98
No. of reflections 6292
No. of parameters 358
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.28
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(RS)-4-(3-Carboxy-1-ethyl-6,8-difluoro-4-oxo-1,4-dihydroquinolin-7-yl)-2-methylpiperazin-1-ium 3-carboxy-5-fluorobenzoate top
Crystal data top
C17H20F2N3O3+·C8H4FO4F(000) = 1112
Mr = 535.47Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4324 (12) ÅCell parameters from 5522 reflections
b = 16.5656 (19) Åθ = 2.2–29.9°
c = 14.0448 (17) ŵ = 0.13 mm1
β = 100.707 (3)°T = 296 K
V = 2384.9 (5) Å3Block, colorless
Z = 40.22 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
4335 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
θmax = 30.4°, θmin = 1.9°
Tmin = 0.970, Tmax = 0.980h = 1414
16570 measured reflectionsk = 2321
6292 independent reflectionsl = 1913
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.085P)2 + 0.686P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
6292 reflectionsΔρmax = 0.29 e Å3
358 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.2703 (2)0.12846 (10)0.77391 (12)0.0390 (4)
H2A0.17930.14290.75310.047*
H2B0.32320.17100.75360.047*
C30.21645 (19)0.01366 (11)0.75432 (12)0.0385 (4)
H3A0.23830.06360.72490.046*
H3B0.12510.00210.72990.046*
C40.23908 (19)0.02326 (11)0.86352 (12)0.0391 (4)
H4A0.18000.06370.88040.047*
H4B0.32770.04160.88680.047*
C10.30073 (19)0.12083 (11)0.88315 (12)0.0398 (4)0.645 (5)
H10.39250.10550.90300.048*0.645 (5)
C50.2784 (4)0.1988 (2)0.9320 (2)0.0587 (11)0.645 (5)
H5A0.28900.19031.00060.088*0.645 (5)
H5B0.19150.21770.90740.088*0.645 (5)
H5C0.34030.23830.91910.088*0.645 (5)
C1'0.30073 (19)0.12083 (11)0.88315 (12)0.0398 (4)0.355 (5)
H1'0.27280.17120.90980.048*0.355 (5)
C5'0.4401 (7)0.1112 (5)0.9223 (4)0.064 (2)0.355 (5)
H5'10.48580.15930.91010.096*0.355 (5)
H5'20.47340.06600.89170.096*0.355 (5)
H5'30.45250.10200.99090.096*0.355 (5)
C60.32692 (16)0.05742 (10)0.63571 (11)0.0314 (3)
C70.25702 (16)0.02250 (11)0.55222 (12)0.0348 (4)
C80.29167 (16)0.02851 (11)0.46031 (11)0.0360 (4)
C90.39760 (17)0.07840 (11)0.45220 (12)0.0375 (4)
C100.46920 (18)0.11506 (11)0.53468 (13)0.0378 (4)
H100.53960.14810.52950.045*
C110.43600 (17)0.10242 (11)0.62229 (12)0.0354 (4)
C120.4354 (2)0.09342 (13)0.35878 (13)0.0468 (5)
C130.3573 (2)0.05467 (14)0.27828 (13)0.0511 (5)
C140.2580 (2)0.00583 (15)0.29119 (13)0.0533 (6)
H140.21030.01910.23660.064*
C150.3820 (3)0.06630 (18)0.17808 (15)0.0690 (8)
C160.12118 (19)0.07161 (18)0.37829 (15)0.0621 (7)
H16A0.07630.08160.31240.075*
H16B0.05760.05140.41480.075*
C170.1759 (2)0.14920 (18)0.4221 (2)0.0711 (8)
H17A0.23990.16920.38690.107*
H17B0.10700.18800.41920.107*
H17C0.21610.14030.48850.107*
C180.15025 (16)0.22254 (10)0.33449 (12)0.0331 (4)
C190.25938 (16)0.27147 (10)0.33760 (12)0.0331 (4)
H190.28830.28410.28060.040*
C200.32544 (16)0.30154 (10)0.42577 (11)0.0325 (3)
C210.28309 (17)0.28192 (11)0.51078 (12)0.0352 (4)
H210.32710.30080.57030.042*
C220.17472 (17)0.23394 (12)0.50507 (12)0.0389 (4)
C230.10696 (17)0.20350 (11)0.41930 (12)0.0374 (4)
H230.03400.17100.41820.045*
C240.07378 (18)0.18979 (11)0.24192 (13)0.0398 (4)
C250.44349 (18)0.35535 (11)0.43029 (12)0.0390 (4)
F10.14586 (10)0.01682 (8)0.56051 (8)0.0542 (3)
F20.51182 (11)0.13417 (7)0.70199 (8)0.0502 (3)
F30.13353 (12)0.21463 (9)0.58853 (8)0.0600 (4)
N10.21749 (14)0.05481 (9)0.91112 (10)0.0366 (3)
H1A0.23540.04850.97510.044*
H1B0.13390.06880.89450.044*
N20.29693 (15)0.05198 (8)0.72827 (10)0.0349 (3)
N30.22256 (15)0.00954 (12)0.37700 (10)0.0466 (4)
O10.52996 (17)0.13801 (11)0.35126 (11)0.0634 (4)
O20.4753 (2)0.11777 (15)0.16934 (12)0.0864 (6)
H20.50610.13670.22260.130*
O30.3194 (2)0.03032 (14)0.10876 (11)0.0906 (7)
O40.03217 (17)0.16034 (13)0.23770 (11)0.0770 (6)
O50.13137 (13)0.19749 (9)0.16727 (9)0.0483 (3)
H50.08520.17780.11920.073*
O60.46630 (13)0.38375 (9)0.35255 (9)0.0500 (4)
O70.51218 (16)0.36907 (10)0.51142 (10)0.0619 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0599 (11)0.0327 (9)0.0257 (8)0.0003 (8)0.0111 (8)0.0032 (7)
C30.0511 (10)0.0366 (9)0.0280 (8)0.0052 (8)0.0074 (7)0.0045 (7)
C40.0526 (10)0.0355 (9)0.0297 (8)0.0002 (8)0.0089 (7)0.0023 (7)
C10.0533 (10)0.0421 (10)0.0244 (8)0.0045 (8)0.0079 (7)0.0076 (7)
C50.087 (3)0.052 (2)0.0429 (18)0.0161 (17)0.0286 (17)0.0244 (15)
C1'0.0533 (10)0.0421 (10)0.0244 (8)0.0045 (8)0.0079 (7)0.0076 (7)
C5'0.066 (4)0.091 (5)0.033 (3)0.029 (4)0.006 (3)0.000 (3)
C60.0390 (8)0.0346 (8)0.0204 (7)0.0060 (7)0.0047 (6)0.0019 (6)
C70.0321 (8)0.0470 (10)0.0252 (8)0.0041 (7)0.0050 (6)0.0063 (7)
C80.0358 (8)0.0502 (10)0.0201 (7)0.0152 (7)0.0005 (6)0.0052 (7)
C90.0411 (9)0.0482 (10)0.0240 (8)0.0183 (8)0.0084 (7)0.0030 (7)
C100.0411 (9)0.0401 (9)0.0337 (9)0.0066 (7)0.0111 (7)0.0017 (7)
C110.0418 (9)0.0362 (9)0.0262 (8)0.0040 (7)0.0011 (7)0.0031 (7)
C120.0539 (11)0.0578 (12)0.0312 (9)0.0269 (10)0.0143 (8)0.0094 (8)
C130.0613 (12)0.0703 (14)0.0233 (8)0.0313 (11)0.0119 (8)0.0059 (8)
C140.0551 (12)0.0824 (15)0.0194 (8)0.0299 (11)0.0009 (8)0.0088 (9)
C150.0890 (18)0.0935 (19)0.0263 (10)0.0476 (16)0.0155 (11)0.0118 (11)
C160.0340 (10)0.113 (2)0.0366 (10)0.0000 (11)0.0000 (8)0.0361 (12)
C170.0545 (13)0.0898 (19)0.0727 (16)0.0240 (13)0.0213 (12)0.0368 (15)
C180.0350 (8)0.0344 (8)0.0284 (8)0.0011 (7)0.0014 (7)0.0012 (6)
C190.0377 (8)0.0372 (9)0.0236 (7)0.0006 (7)0.0036 (6)0.0052 (6)
C200.0367 (8)0.0331 (8)0.0262 (8)0.0031 (7)0.0016 (6)0.0046 (6)
C210.0406 (9)0.0405 (9)0.0225 (7)0.0050 (7)0.0010 (6)0.0017 (6)
C220.0399 (9)0.0517 (11)0.0261 (8)0.0057 (8)0.0091 (7)0.0082 (7)
C230.0345 (8)0.0428 (10)0.0344 (9)0.0006 (7)0.0054 (7)0.0068 (7)
C240.0452 (10)0.0417 (10)0.0307 (8)0.0073 (8)0.0023 (7)0.0016 (7)
C250.0415 (9)0.0446 (10)0.0271 (8)0.0048 (8)0.0038 (7)0.0082 (7)
F10.0424 (6)0.0885 (9)0.0324 (6)0.0148 (6)0.0091 (5)0.0211 (6)
F20.0567 (7)0.0588 (7)0.0332 (6)0.0169 (5)0.0034 (5)0.0103 (5)
F30.0566 (7)0.0962 (10)0.0305 (6)0.0063 (7)0.0170 (5)0.0108 (6)
N10.0432 (8)0.0460 (8)0.0210 (6)0.0023 (6)0.0072 (6)0.0016 (6)
N20.0506 (8)0.0330 (7)0.0219 (6)0.0036 (6)0.0087 (6)0.0057 (5)
N30.0396 (8)0.0754 (12)0.0227 (7)0.0143 (8)0.0002 (6)0.0126 (7)
O10.0681 (10)0.0823 (11)0.0460 (8)0.0089 (9)0.0270 (8)0.0126 (8)
O20.1021 (15)0.1232 (18)0.0419 (9)0.0267 (13)0.0340 (10)0.0196 (10)
O30.1254 (16)0.1244 (17)0.0205 (7)0.0381 (14)0.0098 (9)0.0027 (9)
O40.0699 (10)0.1159 (15)0.0427 (8)0.0525 (11)0.0038 (8)0.0062 (9)
O50.0497 (8)0.0640 (9)0.0298 (6)0.0099 (6)0.0036 (6)0.0103 (6)
O60.0497 (8)0.0677 (9)0.0292 (6)0.0176 (7)0.0014 (6)0.0136 (6)
O70.0681 (9)0.0778 (11)0.0312 (7)0.0309 (8)0.0134 (7)0.0147 (7)
Geometric parameters (Å, º) top
C2—N21.469 (2)C12—O11.252 (3)
C2—C11.513 (2)C12—C131.419 (3)
C2—C1'1.513 (2)C13—C141.353 (3)
C2—H2A0.9700C13—C151.490 (3)
C2—H2B0.9700C14—N31.349 (2)
C3—N21.461 (2)C14—H140.9300
C3—C41.516 (2)C15—O31.222 (4)
C3—H3A0.9700C15—O21.317 (4)
C3—H3B0.9700C16—N31.478 (3)
C4—N11.492 (2)C16—C171.492 (4)
C4—H4A0.9700C16—H16A0.9700
C4—H4B0.9700C16—H16B0.9700
C1—N11.494 (2)C17—H17A0.9600
C1—C51.501 (3)C17—H17B0.9600
C1—H10.9800C17—H17C0.9600
C5—H5A0.9600C18—C231.386 (2)
C5—H5B0.9600C18—C191.392 (2)
C5—H5C0.9600C18—C241.495 (2)
C1'—C5'1.465 (7)C19—C201.393 (2)
C1'—N11.494 (2)C19—H190.9300
C1'—H1'0.9800C20—C211.386 (2)
C5'—H5'10.9600C20—C251.512 (2)
C5'—H5'20.9600C21—C221.372 (3)
C5'—H5'30.9600C21—H210.9300
C6—C71.387 (2)C22—F31.3594 (19)
C6—N21.395 (2)C22—C231.374 (3)
C6—C111.402 (2)C23—H230.9300
C7—F11.354 (2)C24—O41.200 (2)
C7—C81.407 (2)C24—O51.308 (2)
C8—C91.402 (3)C25—O71.249 (2)
C8—N31.405 (2)C25—O61.252 (2)
C9—C101.395 (3)N1—H1A0.8900
C9—C121.460 (2)N1—H1B0.8900
C10—C111.355 (2)O2—H20.8200
C10—H100.9300O5—H50.8200
C11—F21.351 (2)
N2—C2—C1110.44 (14)O1—C12—C9121.66 (19)
N2—C2—C1'110.44 (14)C13—C12—C9115.34 (19)
N2—C2—H2A109.6C14—C13—C12120.31 (17)
C1—C2—H2A109.6C14—C13—C15118.4 (2)
N2—C2—H2B109.6C12—C13—C15121.3 (2)
C1—C2—H2B109.6N3—C14—C13125.18 (19)
H2A—C2—H2B108.1N3—C14—H14117.4
N2—C3—C4110.04 (14)C13—C14—H14117.4
N2—C3—H3A109.7O3—C15—O2122.4 (2)
C4—C3—H3A109.7O3—C15—C13122.0 (3)
N2—C3—H3B109.7O2—C15—C13115.6 (2)
C4—C3—H3B109.7N3—C16—C17112.61 (17)
H3A—C3—H3B108.2N3—C16—H16A109.1
N1—C4—C3110.75 (14)C17—C16—H16A109.1
N1—C4—H4A109.5N3—C16—H16B109.1
C3—C4—H4A109.5C17—C16—H16B109.1
N1—C4—H4B109.5H16A—C16—H16B107.8
C3—C4—H4B109.5C16—C17—H17A109.5
H4A—C4—H4B108.1C16—C17—H17B109.5
N1—C1—C5111.26 (18)H17A—C17—H17B109.5
N1—C1—C2107.76 (14)C16—C17—H17C109.5
C5—C1—C2111.7 (2)H17A—C17—H17C109.5
N1—C1—H1108.7H17B—C17—H17C109.5
C5—C1—H1108.7C23—C18—C19120.05 (15)
C2—C1—H1108.7C23—C18—C24117.27 (15)
C1—C5—H5A109.5C19—C18—C24122.67 (15)
C1—C5—H5B109.5C18—C19—C20120.20 (15)
H5A—C5—H5B109.5C18—C19—H19119.9
C1—C5—H5C109.5C20—C19—H19119.9
H5A—C5—H5C109.5C21—C20—C19119.84 (16)
H5B—C5—H5C109.5C21—C20—C25119.31 (15)
C5'—C1'—N1114.0 (3)C19—C20—C25120.85 (14)
C5'—C1'—C2113.4 (3)C22—C21—C20118.46 (16)
N1—C1'—C2107.76 (14)C22—C21—H21120.8
C5'—C1'—H1'107.1C20—C21—H21120.8
N1—C1'—H1'107.1F3—C22—C21118.36 (16)
C2—C1'—H1'107.1F3—C22—C23118.42 (16)
C1'—C5'—H5'1109.5C21—C22—C23123.22 (15)
C1'—C5'—H5'2109.5C22—C23—C18118.23 (16)
H5'1—C5'—H5'2109.5C22—C23—H23120.9
C1'—C5'—H5'3109.5C18—C23—H23120.9
H5'1—C5'—H5'3109.5O4—C24—O5123.81 (17)
H5'2—C5'—H5'3109.5O4—C24—C18121.90 (17)
C7—C6—N2125.94 (15)O5—C24—C18114.29 (15)
C7—C6—C11114.87 (14)O7—C25—O6123.89 (17)
N2—C6—C11119.18 (14)O7—C25—C20118.06 (15)
F1—C7—C6116.89 (14)O6—C25—C20118.06 (15)
F1—C7—C8118.88 (15)C4—N1—C1'111.92 (13)
C6—C7—C8124.17 (16)C4—N1—C1111.92 (13)
C9—C8—N3119.17 (15)C4—N1—H1A109.2
C9—C8—C7117.20 (15)C1—N1—H1A109.2
N3—C8—C7123.56 (17)C4—N1—H1B109.2
C10—C9—C8119.86 (15)C1—N1—H1B109.2
C10—C9—C12118.66 (18)H1A—N1—H1B107.9
C8—C9—C12121.49 (17)C6—N2—C3121.34 (13)
C11—C10—C9119.92 (17)C6—N2—C2116.36 (13)
C11—C10—H10120.0C3—N2—C2111.61 (13)
C9—C10—H10120.0C14—N3—C8118.45 (18)
F2—C11—C10118.87 (16)C14—N3—C16117.24 (17)
F2—C11—C6117.42 (14)C8—N3—C16124.05 (16)
C10—C11—C6123.71 (16)C15—O2—H2109.5
O1—C12—C13123.00 (18)C24—O5—H5109.5
N2—C3—C4—N154.3 (2)C18—C19—C20—C25179.48 (16)
N2—C2—C1—N159.2 (2)C19—C20—C21—C221.1 (3)
N2—C2—C1—C5178.3 (2)C25—C20—C21—C22179.11 (16)
N2—C2—C1'—C5'67.9 (4)C20—C21—C22—F3179.86 (15)
N2—C2—C1'—N159.2 (2)C20—C21—C22—C230.8 (3)
N2—C6—C7—F13.7 (3)F3—C22—C23—C18179.23 (16)
C11—C6—C7—F1175.55 (15)C21—C22—C23—C180.2 (3)
N2—C6—C7—C8179.07 (16)C19—C18—C23—C220.2 (3)
C11—C6—C7—C81.7 (3)C24—C18—C23—C22179.07 (16)
F1—C7—C8—C9171.85 (15)C23—C18—C24—O412.6 (3)
C6—C7—C8—C95.3 (3)C19—C18—C24—O4166.2 (2)
F1—C7—C8—N35.2 (3)C23—C18—C24—O5168.50 (16)
C6—C7—C8—N3177.68 (16)C19—C18—C24—O512.6 (3)
N3—C8—C9—C10178.45 (15)C21—C20—C25—O712.1 (3)
C7—C8—C9—C104.4 (2)C19—C20—C25—O7167.74 (18)
N3—C8—C9—C121.7 (2)C21—C20—C25—O6167.64 (17)
C7—C8—C9—C12175.47 (15)C19—C20—C25—O612.5 (3)
C8—C9—C10—C110.1 (3)C3—C4—N1—C1'55.9 (2)
C12—C9—C10—C11179.77 (16)C3—C4—N1—C155.9 (2)
C9—C10—C11—F2175.67 (15)C5'—C1'—N1—C469.3 (3)
C9—C10—C11—C63.9 (3)C2—C1'—N1—C457.47 (19)
C7—C6—C11—F2176.49 (15)C5—C1—N1—C4179.7 (2)
N2—C6—C11—F24.2 (2)C2—C1—N1—C457.47 (19)
C7—C6—C11—C103.1 (3)C7—C6—N2—C322.2 (3)
N2—C6—C11—C10176.24 (16)C11—C6—N2—C3158.57 (16)
C10—C9—C12—O10.1 (3)C7—C6—N2—C2119.34 (19)
C8—C9—C12—O1179.95 (17)C11—C6—N2—C259.9 (2)
C10—C9—C12—C13179.44 (16)C4—C3—N2—C6159.44 (15)
C8—C9—C12—C130.4 (2)C4—C3—N2—C257.40 (19)
O1—C12—C13—C14178.65 (19)C1—C2—N2—C6153.88 (15)
C9—C12—C13—C141.8 (3)C1'—C2—N2—C6153.88 (15)
O1—C12—C13—C151.3 (3)C1—C2—N2—C361.0 (2)
C9—C12—C13—C15178.26 (17)C1'—C2—N2—C361.0 (2)
C12—C13—C14—N31.2 (3)C13—C14—N3—C81.0 (3)
C15—C13—C14—N3178.91 (19)C13—C14—N3—C16173.3 (2)
C14—C13—C15—O33.4 (3)C9—C8—N3—C142.4 (2)
C12—C13—C15—O3176.5 (2)C7—C8—N3—C14174.54 (17)
C14—C13—C15—O2176.5 (2)C9—C8—N3—C16171.48 (18)
C12—C13—C15—O23.6 (3)C7—C8—N3—C1611.6 (3)
C23—C18—C19—C200.1 (3)C17—C16—N3—C14104.7 (2)
C24—C18—C19—C20178.77 (16)C17—C16—N3—C869.3 (2)
C18—C19—C20—C210.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O7i0.821.752.557 (2)167
O2—H2···O10.821.782.535 (3)153
N1—H1B···O7ii0.892.483.046 (2)122
N1—H1B···O6ii0.891.912.790 (2)170
N1—H1A···O3iii0.891.942.811 (2)165
C21—H21···O4iv0.932.613.534 (3)173
C17—H17C···F10.962.452.985 (3)115
C17—H17B···F3v0.962.533.380 (3)148
C16—H16B···F1v0.972.483.394 (3)157
C16—H16B···F10.972.162.682 (2)112
C16—H16A···O6vi0.972.353.287 (3)162
C14—H14···O6vi0.932.593.448 (3)154
C4—H4A···O4v0.972.603.274 (3)127
C2—H2B···F20.972.302.883 (2)118
C2—H2A···F30.972.573.078 (2)113
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z+1; (vi) x+1/2, y1/2, z+1/2.
 

Funding information

We acknowledge financial support from Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (grant No. BM2012110).

References

First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolstein, J. J., Hübschle, C. B. & Dittrich, B. (2012). CrystEngComm, 14, 2520–2531.  Web of Science CrossRef CAS Google Scholar
First citationHuang, X. F., Zhang, Z. H., Zhang, Q. Q., Wang, L. Z., He, M. Y., Chen, Q., Song, G. Q., Wei, L., Wang, F. & Du, M. (2013). CrystEngComm, 15, 6090–6100.  Web of Science CrossRef CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Hakim Al-arique, Q. N. M. (2011). Acta Cryst. E67, o483–o484.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReddy, J. S., Ganesh, S. V., Nagalapalli, R., Dandela, R., Solomon, K. A., Kumar, K. A., Goud, N. R. & Nangia, A. (2011). J. Pharm. Sci. 100, 3160–3176.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRoss, D. L. & Riley, C. M. (1990). Int. J. Pharm. 63, 237–250.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-H., Zhang, Q., Zhang, Q.-Q., Chen, C., He, M.-Y., Chen, Q., Song, G.-Q., Xuan, X.-P. & Huang, X.-F. (2015). Acta Cryst. B71, 437–446.  CrossRef IUCr Journals Google Scholar
First citationZhou, T., Zhao, L. & Guo, J. X. (2006). Z. Kristallogr. New Cryst. Struct. 221, 495–496.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds