research communications
Redetermination of Sr2PdO3 from single-crystal X-ray data
aMax Planck Institut for Chemical Physics of Solids, Nöthnitzer Straβe 40, 01187, Dresden, Germany, bInstitute for Chemistry of New Materials, University of Osnabrück, Barbarastrasse, 7, 49076 Osnabrück, Germany, and cMax Planck Institut for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
*Correspondence e-mail: gohil.thakur@cpfs.mpg.de
The 2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the orthorhombic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes interspersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.
redetermination of SrCCDC reference: 1882781
1. Chemical context
Low-dimensional transition-metal oxides with chain structures have received attention since they can enable interesting physical phenomena such as spin 1/2 antiferromagnetic Heisenberg coupling (Motoyama et al., 1996; Takigawa et al., 1996), superconductivity (Hiroi et al., 1993), ultrafast non-linear optical response (Ogasawara et al., 2000) or even glucose sensing (El-Ads et al., 2016). The particularly relevant sub-family based on square-planar MO4 (M = divalent metal) primary building units is dominated by oxidocuprates(II), while the chemistry of respective palladates(II), showing the same preference for a square-planar coordination by oxygen, is much less explored.
Here we address Sr2PdO3, which has previously been obtained as a microcrystalline material (Wasel-Nielen & Hoppe, 1970; Muller & Roy, 1971; Nagata et al., 2002). Based on evaluations of powder X-ray diffractograms, Sr2PdO3 was identified as being isostructural with Sr2CuO3 (Teske & Müller-Buschbaum, 1969; Weller & Lines, 1989) and Sr2FeO3 (Tassel et al., 2013). However, structural details derived from the given atomic parameters have only been reported with large uncertainties (Muller & Roy, 1971; Nagata et al., 2002). Therefore, a redetermination of Sr2PdO3 based on single crystal X-ray data seemed appropriate.
2. Structural commentary
The 2PdO3 is essentially the same as determined previously (Wasel-Nielen & Hoppe, 1970; Muller & Roy, 1971; Nagata et al., 2002). The lattice parameters (Table 1) are almost identical to those in the previous reports but with higher precision. The PdII atom occupies the 2d crystallographic sites with mmm We would like to point out that we chose a different cell setting as compared to all the previous reports, where the PdII atom was chosen to be located at the cell origin (site 2a; 0, 0, 0; hence the different site designations). The PdII atom forms distorted PdO4 square planes, which are linked by sharing oxygen atoms in the trans-position to form infinite chains extending along the b-axis direction as shown in Fig. 1. Corresponding to this connectivity pattern, the Pd—O bond lengths are longer for the shared oxygen atoms, 2.052 (2) Å, and shorter for the terminal ones, 1.9911 (2) Å. The Sr atom is situated at the 4j Wyckoff site having mm2 It is seven-coordinate in a monocapped trigonal–prismatic fashion by oxygen with three different bond lengths (Table 1, Fig. 2). In addition to the square-planar first coordination of PdII with oxygen, the second consists of eight SrII atoms present at the corner of a cuboid with dimension 3.5342 (2) × 3.7887 (2) × 3.9822 (3) Å3 (Fig. 2). Of the two kinds of oxygen atoms, both surrounded by six metal ions that form distorted octahedra, O1 is coordinated by one PdII atom [2.052 (2) Å] and five SrII atoms with one short [2.474 (2) Å] and four long distances [2.6668 (2) Å] (Fig. 3). O2 is connected to four equidistant SrII [2.5906 (3) Å] and two PdII atoms [1.9911 (2) Å] (Fig. 3). In our current much more precise values of the cell parameters along with the z parameters of Sr and O1 have been determined, consequently, yielding very precise values for the bond lengths (see Table 1). The quality of the current is also clearly reflected by better reliability factors (see Table 2) as compared to the previous refinements. The atomic arrangement described here is same as provided by Wasel-Nielen & Hoppe (1970).
of Sr
|
The structural features discussed above are closely related to those of the K2NiF4 type of structure, which is regarded as the prototype structure for all the high Tc cuprates. K2NiF4 consists of layers of corner-shared NiF6 octahedra extending in the ab plane. One can derive the Sr2PdO3 structure from the K2NiF4 structure by systematically removing the bridging F atoms from the NiF6 octahedra lying in the a-axis direction (Fig. 4). This would reduce the dimensionality of the layer, resulting in linear chains of square planes connected by edges along only one direction.
3. Synthesis and crystallization
Millimeter-sized block-shaped crystals of dark-yellow colour with composition Sr2PdO3 as confirmed by SEM–EDS, were obtained from a mixture of different phases while attempting to synthesize SrPd3O4 using a KOH (Smallwood et al., 2000). SrCO3 and Pd metal powder were mixed in the molar ratio of 2:3, placed in an alumina crucible, and 15 grams of KOH pellets were added on top. The crucible was heated in a muffle furnace to 1023 K in 24 h with a 6 h dwell time. The furnace was then cooled slowly to 873 K over 125 h after which it was switched off and allowed to cool naturally. The product was washed several times with water to remove the solidified and subsequently rinsed with ethanol.
Supporting information
CCDC reference: 1882781
https://doi.org/10.1107/S2056989018017176/wm5474sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018017176/wm5474Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Sr2PdO3 | Dx = 6.057 Mg m−3 |
Mr = 329.64 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Immm | Cell parameters from 1490 reflections |
a = 3.5342 (2) Å | θ = 3.2–29.9° |
b = 3.9822 (3) Å | µ = 34.15 mm−1 |
c = 12.8414 (8) Å | T = 296 K |
V = 180.73 (2) Å3 | Block, yellow-brown |
Z = 2 | 0.18 × 0.16 × 0.12 mm |
F(000) = 292 |
Bruker APEXII CCD diffractometer | 176 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.035 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 29.9°, θmin = 3.2° |
Tmin = 0.062, Tmax = 0.102 | h = −4→4 |
8304 measured reflections | k = −5→5 |
178 independent reflections | l = −18→18 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0092P)2 + 0.2817P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.009 | (Δ/σ)max < 0.001 |
wR(F2) = 0.021 | Δρmax = 0.43 e Å−3 |
S = 1.27 | Δρmin = −0.51 e Å−3 |
178 reflections | Extinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
16 parameters | Extinction coefficient: 0.0059 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.5000 | 0.0000 | 0.5000 | 0.00493 (11) | |
Sr1 | 0.5000 | 0.0000 | 0.14752 (2) | 0.00656 (11) | |
O1 | 0.5000 | 0.0000 | 0.34021 (18) | 0.0085 (5) | |
O2 | 0.5000 | 0.5000 | 0.5000 | 0.0128 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.00765 (19) | 0.00396 (17) | 0.00320 (18) | 0.000 | 0.000 | 0.000 |
Sr1 | 0.00752 (17) | 0.00760 (16) | 0.00456 (17) | 0.000 | 0.000 | 0.000 |
O1 | 0.0117 (13) | 0.0101 (12) | 0.0037 (11) | 0.000 | 0.000 | 0.000 |
O2 | 0.021 (2) | 0.0035 (15) | 0.0134 (18) | 0.000 | 0.000 | 0.000 |
Pd1—O2i | 1.9911 (1) | Sr1—O1ix | 2.6668 (2) |
Pd1—O2 | 1.9911 (1) | Sr1—O1vii | 2.6668 (2) |
Pd1—O1 | 2.052 (2) | Sr1—Pd1xi | 3.2674 (2) |
Pd1—O1ii | 2.052 (2) | Sr1—Pd1xii | 3.2674 (2) |
Pd1—Sr1iii | 3.2674 (2) | Sr1—Pd1xiii | 3.2674 (2) |
Pd1—Sr1iv | 3.2674 (2) | Sr1—Pd1xiv | 3.2674 (2) |
Pd1—Sr1v | 3.2674 (2) | Sr1—Sr1xv | 3.5342 (2) |
Pd1—Sr1vi | 3.2674 (2) | O1—Sr1viii | 2.6668 (2) |
Pd1—Sr1vii | 3.2674 (2) | O1—Sr1iii | 2.6668 (2) |
Pd1—Sr1viii | 3.2674 (2) | O1—Sr1vii | 2.6668 (2) |
Pd1—Sr1ix | 3.2674 (2) | O1—Sr1ix | 2.6668 (2) |
Pd1—Sr1x | 3.2674 (2) | O2—Pd1xvi | 1.9911 (1) |
Sr1—O1 | 2.474 (2) | O2—Sr1ix | 2.5906 (3) |
Sr1—O2xi | 2.5906 (3) | O2—Sr1iv | 2.5906 (3) |
Sr1—O2xii | 2.5906 (3) | O2—Sr1viii | 2.5906 (3) |
Sr1—O1viii | 2.6668 (2) | O2—Sr1vi | 2.5906 (3) |
Sr1—O1iii | 2.6668 (2) | ||
O2i—Pd1—O2 | 180.0 | O1—Sr1—O1vii | 86.61 (5) |
O2i—Pd1—O1 | 90.0 | O2xi—Sr1—O1vii | 119.68 (4) |
O2—Pd1—O1 | 90.0 | O2xii—Sr1—O1vii | 65.87 (4) |
O2i—Pd1—O1ii | 90.0 | O1viii—Sr1—O1vii | 96.597 (9) |
O2—Pd1—O1ii | 90.0 | O1iii—Sr1—O1vii | 83.000 (8) |
O1—Pd1—O1ii | 180.0 | O1ix—Sr1—O1vii | 173.22 (10) |
O2i—Pd1—Sr1iii | 52.455 (3) | O1—Sr1—Pd1xi | 125.435 (5) |
O2—Pd1—Sr1iii | 127.545 (3) | O2xi—Sr1—Pd1xi | 37.546 (3) |
O1—Pd1—Sr1iii | 54.565 (5) | O2xii—Sr1—Pd1xi | 86.845 (8) |
O1ii—Pd1—Sr1iii | 125.435 (5) | O1viii—Sr1—Pd1xi | 147.95 (5) |
O2i—Pd1—Sr1iv | 127.545 (3) | O1iii—Sr1—Pd1xi | 38.82 (5) |
O2—Pd1—Sr1iv | 52.455 (3) | O1ix—Sr1—Pd1xi | 97.52 (3) |
O1—Pd1—Sr1iv | 125.435 (5) | O1vii—Sr1—Pd1xi | 86.43 (3) |
O1ii—Pd1—Sr1iv | 54.565 (5) | O1—Sr1—Pd1xii | 125.435 (5) |
Sr1iii—Pd1—Sr1iv | 180.0 | O2xi—Sr1—Pd1xii | 86.845 (8) |
O2i—Pd1—Sr1v | 52.455 (4) | O2xii—Sr1—Pd1xii | 37.546 (3) |
O2—Pd1—Sr1v | 127.545 (3) | O1viii—Sr1—Pd1xii | 97.52 (3) |
O1—Pd1—Sr1v | 125.435 (5) | O1iii—Sr1—Pd1xii | 86.43 (3) |
O1ii—Pd1—Sr1v | 54.565 (5) | O1ix—Sr1—Pd1xii | 147.95 (5) |
Sr1iii—Pd1—Sr1v | 70.871 (10) | O1vii—Sr1—Pd1xii | 38.82 (5) |
Sr1iv—Pd1—Sr1v | 109.129 (10) | Pd1xi—Sr1—Pd1xii | 65.481 (6) |
O2i—Pd1—Sr1vi | 127.545 (3) | O1—Sr1—Pd1xiii | 125.435 (5) |
O2—Pd1—Sr1vi | 52.455 (4) | O2xi—Sr1—Pd1xiii | 86.845 (9) |
O1—Pd1—Sr1vi | 125.435 (5) | O2xii—Sr1—Pd1xiii | 37.546 (3) |
O1ii—Pd1—Sr1vi | 54.565 (5) | O1viii—Sr1—Pd1xiii | 38.82 (5) |
Sr1iii—Pd1—Sr1vi | 114.520 (6) | O1iii—Sr1—Pd1xiii | 147.95 (5) |
Sr1iv—Pd1—Sr1vi | 65.480 (6) | O1ix—Sr1—Pd1xiii | 86.43 (3) |
Sr1v—Pd1—Sr1vi | 75.090 (7) | O1vii—Sr1—Pd1xiii | 97.52 (3) |
O2i—Pd1—Sr1vii | 52.455 (3) | Pd1xi—Sr1—Pd1xiii | 109.130 (10) |
O2—Pd1—Sr1vii | 127.545 (3) | Pd1xii—Sr1—Pd1xiii | 75.091 (7) |
O1—Pd1—Sr1vii | 54.565 (5) | O1—Sr1—Pd1xiv | 125.435 (5) |
O1ii—Pd1—Sr1vii | 125.435 (5) | O2xi—Sr1—Pd1xiv | 37.546 (3) |
Sr1iii—Pd1—Sr1vii | 65.480 (5) | O2xii—Sr1—Pd1xiv | 86.845 (8) |
Sr1iv—Pd1—Sr1vii | 114.520 (6) | O1viii—Sr1—Pd1xiv | 86.43 (3) |
Sr1v—Pd1—Sr1vii | 104.910 (7) | O1iii—Sr1—Pd1xiv | 97.52 (3) |
Sr1vi—Pd1—Sr1vii | 180.0 | O1ix—Sr1—Pd1xiv | 38.82 (5) |
O2i—Pd1—Sr1viii | 127.545 (3) | O1vii—Sr1—Pd1xiv | 147.95 (5) |
O2—Pd1—Sr1viii | 52.455 (3) | Pd1xi—Sr1—Pd1xiv | 75.091 (7) |
O1—Pd1—Sr1viii | 54.565 (5) | Pd1xii—Sr1—Pd1xiv | 109.130 (10) |
O1ii—Pd1—Sr1viii | 125.435 (5) | Pd1xiii—Sr1—Pd1xiv | 65.481 (6) |
Sr1iii—Pd1—Sr1viii | 109.129 (10) | O1—Sr1—Sr1xv | 90.0 |
Sr1iv—Pd1—Sr1viii | 70.871 (10) | O2xi—Sr1—Sr1xv | 133.011 (5) |
Sr1v—Pd1—Sr1viii | 180.0 | O2xii—Sr1—Sr1xv | 46.991 (5) |
Sr1vi—Pd1—Sr1viii | 104.910 (7) | O1viii—Sr1—Sr1xv | 48.500 (3) |
Sr1vii—Pd1—Sr1viii | 75.090 (7) | O1iii—Sr1—Sr1xv | 131.500 (4) |
O2i—Pd1—Sr1ix | 127.545 (4) | O1ix—Sr1—Sr1xv | 131.500 (4) |
O2—Pd1—Sr1ix | 52.455 (3) | O1vii—Sr1—Sr1xv | 48.500 (4) |
O1—Pd1—Sr1ix | 54.565 (5) | Pd1xi—Sr1—Sr1xv | 122.741 (3) |
O1ii—Pd1—Sr1ix | 125.435 (5) | Pd1xii—Sr1—Sr1xv | 57.260 (3) |
Sr1iii—Pd1—Sr1ix | 75.090 (7) | Pd1xiii—Sr1—Sr1xv | 57.260 (3) |
Sr1iv—Pd1—Sr1ix | 104.910 (7) | Pd1xiv—Sr1—Sr1xv | 122.741 (3) |
Sr1v—Pd1—Sr1ix | 114.520 (6) | Pd1—O1—Sr1 | 180.0 |
Sr1vi—Pd1—Sr1ix | 70.871 (10) | Pd1—O1—Sr1viii | 86.61 (5) |
Sr1vii—Pd1—Sr1ix | 109.129 (10) | Sr1—O1—Sr1viii | 93.39 (5) |
Sr1viii—Pd1—Sr1ix | 65.480 (6) | Pd1—O1—Sr1iii | 86.61 (5) |
O2i—Pd1—Sr1x | 52.455 (3) | Sr1—O1—Sr1iii | 93.39 (5) |
O2—Pd1—Sr1x | 127.545 (3) | Sr1viii—O1—Sr1iii | 173.23 (10) |
O1—Pd1—Sr1x | 125.435 (5) | Pd1—O1—Sr1vii | 86.61 (5) |
O1ii—Pd1—Sr1x | 54.565 (5) | Sr1—O1—Sr1vii | 93.39 (5) |
Sr1iii—Pd1—Sr1x | 104.910 (7) | Sr1viii—O1—Sr1vii | 96.597 (9) |
Sr1iv—Pd1—Sr1x | 75.090 (7) | Sr1iii—O1—Sr1vii | 83.001 (8) |
Sr1v—Pd1—Sr1x | 65.480 (5) | Pd1—O1—Sr1ix | 86.61 (5) |
Sr1vi—Pd1—Sr1x | 109.129 (10) | Sr1—O1—Sr1ix | 93.39 (5) |
Sr1vii—Pd1—Sr1x | 70.871 (10) | Sr1viii—O1—Sr1ix | 83.001 (8) |
Sr1viii—Pd1—Sr1x | 114.520 (6) | Sr1iii—O1—Sr1ix | 96.597 (9) |
Sr1ix—Pd1—Sr1x | 180.0 | Sr1vii—O1—Sr1ix | 173.23 (10) |
O1—Sr1—O2xi | 136.990 (5) | Pd1xvi—O2—Pd1 | 180.0 |
O1—Sr1—O2xii | 136.990 (5) | Pd1xvi—O2—Sr1ix | 90.0 |
O2xi—Sr1—O2xii | 86.020 (11) | Pd1—O2—Sr1ix | 90.0 |
O1—Sr1—O1viii | 86.61 (5) | Pd1xvi—O2—Sr1iv | 90.0 |
O2xi—Sr1—O1viii | 119.68 (4) | Pd1—O2—Sr1iv | 90.0 |
O2xii—Sr1—O1viii | 65.87 (4) | Sr1ix—O2—Sr1iv | 180.0 |
O1—Sr1—O1iii | 86.61 (5) | Pd1xvi—O2—Sr1viii | 90.0 |
O2xi—Sr1—O1iii | 65.87 (4) | Pd1—O2—Sr1viii | 90.0 |
O2xii—Sr1—O1iii | 119.68 (4) | Sr1ix—O2—Sr1viii | 86.018 (11) |
O1viii—Sr1—O1iii | 173.22 (10) | Sr1iv—O2—Sr1viii | 93.982 (11) |
O1—Sr1—O1ix | 86.61 (5) | Pd1xvi—O2—Sr1vi | 90.0 |
O2xi—Sr1—O1ix | 65.87 (4) | Pd1—O2—Sr1vi | 90.0 |
O2xii—Sr1—O1ix | 119.68 (4) | Sr1ix—O2—Sr1vi | 93.982 (11) |
O1viii—Sr1—O1ix | 83.000 (8) | Sr1iv—O2—Sr1vi | 86.018 (11) |
O1iii—Sr1—O1ix | 96.597 (9) | Sr1viii—O2—Sr1vi | 180.0 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z+1; (iii) −x+1/2, −y−1/2, −z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x−1/2, y−1/2, z+1/2; (vi) x−1/2, y+1/2, z+1/2; (vii) −x+3/2, −y−1/2, −z+1/2; (viii) −x+3/2, −y+1/2, −z+1/2; (ix) −x+1/2, −y+1/2, −z+1/2; (x) x+1/2, y−1/2, z+1/2; (xi) x−1/2, y−1/2, z−1/2; (xii) x+1/2, y−1/2, z−1/2; (xiii) x+1/2, y+1/2, z−1/2; (xiv) x−1/2, y+1/2, z−1/2; (xv) x+1, y, z; (xvi) x, y+1, z. |
1970 worka | 1971 workb | 2002 workc | This work | |
a | 3.977 | 3.97 | 3.985 | 3.5342 (2) |
b | 3.53 | 3.544 | 3.539 | 3.9822 (3) |
c | 12.82 | 12.84 | 12.847 | 12.8414 (8) |
Pd—O1 (×2) | 2.08 | 2.045 | 2.068 | 2.052 (2) |
Pd—O2 (×2) | 1.99 | 1.985 | 1.993 | 1.9911 (1) |
Sr—O1 | 2.45 | 2.504 | 2.467 | 2.474 (2) |
Sr—O1 (×4) | 2.67 | 2.668 | 2.671 | 2.6668 (2) |
Sr—O2 (×2) | 2.58 | 2.57 | 2.588 | 2.5906 (3) |
References: (a) Wasel-Nielen & Hoppe (1970); (b) Muller & Roy (1971); (c) Nagata et al. (2002). |
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El-Ads, E. H., Galal, A. & Atta, N. F. (2016). RSC Adv. 6, 16183–16196. Google Scholar
Hiroi, Z., Takano, M., Azuma, M. & Takeda, Y. (1993). Nature, 364, 315–317. CrossRef Google Scholar
Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 3212–3215. CrossRef Google Scholar
Muller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28–38. CrossRef Google Scholar
Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50–56. CrossRef Google Scholar
Ogasawara, T., Ashida, M., Motoyama, N., Eisaki, H., Uchida, S., Tokura, Y., Ghosh, H., Shukla, A., Mazumdar, S. & Kuwata-Gonokami, M. (2000). Phys. Rev. Lett. 85, 2204–2207. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smallwood, P. L., Smith, M. D. & zur Loye, H. C. (2000). J. Cryst. Growth, 216, 299–303. CrossRef Google Scholar
Takigawa, M., Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 4612–4615. CrossRef Google Scholar
Tassel, C., Seinberg, L., Hayashi, N., Ganesanpotti, S., Ajiro, Y., Kobayashi, Y. & Kageyama, H. (2013). Inorg. Chem. 52, 6096–6102. CrossRef Google Scholar
Teske, C. L. & Müller-Buschbaum, Hk. (1969). Z. Anorg. Allg. Chem. 371, 325–332. CrossRef Google Scholar
Wasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209–213. Google Scholar
Weller, M. T. & Lines, D. R. (1989). J. Solid State Chem. 82, 21–29. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.