research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2,3-bis­­(thio­phen-2-yl)pyrido[2,3-b]pyrazine and 7-bromo-2,3-bis­­(thio­phen-2-yl)pyrido[2,3-b]pyrazine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by C. Massera, Università di Parma, Italy (Received 18 September 2018; accepted 27 November 2018; online 1 January 2019)

The crystal structures of 2,3-bis­(thio­phen-2-yl)pyrido[2,3-b]pyrazine, C15H9N3S2 (1), and 7-bromo-2,3-bis­(thio­phen-2-yl)pyrido[2,3-b]pyrazine, C15H8BrN3S2 (2), are discussed. Both mol­ecules crystallize in space group P21/c. In 1, the thienyl rings are inclined to the mean plane of the pyrido­pyrazine moiety by 6.16 (7) and 86.66 (8)°, where as in 2 the corresponding dihedral angles are 33.29 (11) and 19.84 (9)°. The pyrido­pyrazine moiety is relatively planar in 1 with the two rings being inclined to each other by 1.33 (7)°. In 2, however, the pyrido­pyrazine moiety is buckled with the corresponding dihedral angle being larger at 8.78 (10)°. In the crystal of 1, the packing creates inter­secting bilayers; the layering results from the pyrido­pyrazine moieties being engaged in offset π-stacking, where the inter­planar distance is 3.431 (9) Å with an offset 1.14 Å. In the crystal of 2, the mol­ecules pack head-to-head and are linked by a series of C—H⋯Br and C—H⋯N inter­molecular inter­actions, forming layers parallel to the ab plane.

1. Chemical context

Nitro­gen-containing heterocyclic aryl substituents at the 2- and 2,3- positions on quinoxalines have been shown repeatedly to engage in bidentate behavior in binding metals, utilizing the quinoxaline nitro­gen atom. For example, 2-(2-pyrid­yl)quinoxaline has shown bidentate behavior with a variety of metals; focusing on silver, specifically, it can form 1:1 complexes assembling in one-dimensional chains (Shanmuga Sundara Raj et al., 1999[Shanmuga Sundara Raj, S., Fun, H.-K., Chen, X.-F., Zhu, X.-H. & You, X.-Z. (1999). Acta Cryst. C55, 2035-2037.]) or form 2:1 mononuclear complexes (Bi et al., 2009[Bi, W.-Y., Chai, W.-L., Lu, X.-Q., Song, J.-R. & Bao, F. (2009). J. Coord. Chem. 62, 1928-1938.]) to cite just a few. With that bidentate behavior in mind, we aimed to test the bonding capabilities of thienyl sulfur atoms at the 2-, and 2,3- positions on mono- and di-thienylquinoxalines. Thienyl-substituted quinoxalines have been shown to form bis-complexes with silver(I) (Crundwell et al., 2014[Crundwell, G., Cantalupo, S., D. C. Foss, P., McBurney, B., Kopp, K., L. Westcott, B., Updegraff III, J., Zeller, M. & D. Hunter, A. (2014). Open J. Inorg. Chem. 04, 10-17.]; Crundwell, 2013[Crundwell, G. (2013). Acta Cryst. E69, m164.]); however, so far we have not seen (N,S) bidentate behavior from the nitro­gen on the quinoxaline and sulfur on the thienyl ring with a metal.

Monothienyl and/or 2,3-dithienyl-substituted pyrido[2,3-b]pyrazines are inter­esting ligands related to their quinoxaline analogs since they have an additional heterocyclic nitro­gen atom. This could potentially create novel silver(I) frameworks and allow insight into the preference of silver when it binds to the heterocycles in these ligands. To date, little work has been done with monothienylpyrido[2,3-b]pyrazines or 2,3-dithien­yl­pyrido[2,3-b]pyrazines. The crystal structure of 3-(2-thien­yl)pyrido[2,3-b]pyrazine has been determined (Lassagne et al., 2015[Lassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680-2689.]). A few other 2,3-di­aryl­pyrido[2,3-b]pyrazines and their subsequent metal complexes have been characterized through diffraction studies. The crystal structure of 2,3-di(1H-2-pyrrol­yl)pyrido[2,3-b]pyrazine, which is a colormetric ion sensor, has been determined as well as a nickel(II) complex in which two ligands bind to the nickel via the outermost nitro­gen atom on the pyrido­pyrazine moiety (Ghosh et al., 2006[Ghosh, T., Maiya, B. G. & Samanta, A. (2006). Dalton Trans. pp. 795-801.]). Rhenium(I) complexes with the generic formula [ReBr(CO)3(L)] have been synthesized with a few 2,3-di­aryl­pyrido[2,3-b]pyrazines (Yeo et al., 2010[Yeo, B. R., Hallett, A. J., Kariuki, B. M. & Pope, S. J. A. (2010). Polyhedron, 29, 1088-1094.]). These complexes are inter­esting because they utilize both nitro­gen atoms on the same side of the pyrido­pyrazine moiety to bind the metal.

[Scheme 1]

2. Structural details

The mol­ecular structure of compound 1 is shown in Fig. 1[link]. One of the two thienyl rings (C8–C11/S1) is nearly coplanar with the pyrido­pyrazine ring [the dihedral angle being 6.16 (7)°], therefore making most of the mol­ecule appear flat. The r.m.s. deviation for all non-hydrogen atoms in the pyrido­pyrazine moiety and the nearly coplanar thio­phene ring (C8–C11/S1) is only 0.0123 (16) Å. The mean plane of the other thienyl ring (C12–C15/S2) is nearly perpendicular to the plane created by the rest of the mol­ecule, forming an angle of 86.67 (4)°. Finally, although unsubstituted thienyl ring-flip disorders are common on unsubstituted 2- or 3-thienyl rings (Crundwell et al., 2003[Crundwell, G. (2003). J. Chem. Crystallogr. 33, 239-244.]), there was not enough evidence of such a disorder to include it in the refinement model for 1.

[Figure 1]
Figure 1
A view of the mol­ecular structure of compound 1, with the atom labeling and displacement ellipsoids drawn at the 50% probability level.

The mol­ecular structure of compound 2 is shown in Fig. 2[link]. This bromo derivative is less planar than the unbrominated compound 1. The r.m.s. atomic displacement for the non-hydrogen atoms in the pyrido­pyrazine ring is 0.104 (2) Å. The mean planes of the thienyl rings (C8–C11/S1 and C12–C15/S2) form angles of 33.29 (11) and 19.84 (9)°, respectively, with the mean plane of the pyrido­pyrazine moiety. The later is buckled with the pyrazine and pyridine rings being inclined to each other by 8.78 (10)°, compared to only 1.33 (7) ° in 1.

[Figure 2]
Figure 2
A view of the mol­ecular structure of compound 2, with the atom labeling and displacement ellipsoids drawn at the 50% probability level.

All bond lengths and angles in both compounds 1 and 2 are within expected values and close to those reported for similar compounds (see Database survey).

3. Supra­molecular Features

In the crystal of 1, the packing can be described as a series of bilayers (Fig. 3[link]). Using Mercury software (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) for the analysis, in can be seen that the mol­ecules lie in planes with an offset π-stacking distance of 3.431 (9) Å, measured between the planar thienyl ring in one mol­ecule and a portion of the pyrido­pyrazine ring system of a neighboring mol­ecule. There are two other types of very weak inter­molecular inter­actions in the crystal. The thienyl-ring sulfur atom S1 points directly at a neighboring inversion-related co-planar thienyl-ring sulfur atom at a distance of 3.570 (8) Å, roughly comparable to the sum of the van der Waals radii (3.8 Å). In addition, the pyrido­pyrazine hydrogen atom H3 is in a position to inter­act with the sp2 carbon atom C15i on the tilted thienyl ring (C12–C15/S2) at (i) x + 1, −y + [{1\over 2}], z − [{1\over 2}], at a distance of 2.870 (8) Å and forming an angle C3—H3⋯C15i of 152.37 (8)°. These inter­actions are shown as colored dotted lines in Fig. 4[link].

[Figure 3]
Figure 3
A view along the a axis of the crystal packing of compound 1. Extra mol­ecules were added to illustrate the stacking that occurs in planes.
[Figure 4]
Figure 4
Inter­molecular inter­actions in the crystal of 1. The S⋯S inter­actions are shown as dotted yellow lines. The C—H⋯π (thienyl ring) inter­actions are shown in white.

In the crystal of the brominated derivative 2, mol­ecules pack through a number of inter­molecular inter­actions (Fig. 5[link], Table 1[link]). Several inter­actions between the bromine atoms and neighboring hydrogens create a head-to-head, sheet-like structure (Fig. 6[link]). Bromine atoms form C—H⋯Br contacts at distances of 3.005 and 3.049 Å with the hydrogen atoms on C5 and C3, respectively. Within the same plane there are also inter­actions between the pyrido­pyrazine nitro­gen atom, N1, and adjacent thienyl-ring hydrogen atoms on C15 at 2.645 Å. Finally, two types of inter­actions that connect mol­ecules between planes are also present. A thienyl-ring hydrogen (on C11) is in contact with an sp2 carbon (C14) in another layer at 2.775 Å and the π-system of the C12–C15/S2 thienyl ring is stacked over a neighboring pyrido­pyrazine moiety at 3.394 (9) Å. These inter­actions are shown as colored dotted lines in Fig. 6[link].

Table 1
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Br1i 0.93 3.01 3.836 (1) 150
C5—H5⋯Br1ii 0.93 3.05 3.851 (1) 145
C15—H15⋯N1iii 0.93 2.65 3.572 (1) 175
C11—H11⋯C14iv 0.93 2.78 3.637 (1) 155
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z; (iii) x-1, y, z-1; (iv) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
A view along the a axis of the crystal packing of compound 2. Extra mol­ecules were added to illustrate the stacking that occurs in planes.
[Figure 6]
Figure 6
Inter­molecular inter­actions in the crystal of 2, highlighting the two-dimensional network of C—H⋯Br (brown dotted lines) and C—H⋯N (blue dotted lines) inter­actions that lie in the same plane. The dangling contacts on the thienyl rings, indicating C—H⋯π (thienyl ring) and C—H⋯π (pyrido­pyrazine) inter­actions, are shown with white dotted lines.

4. Database Survey

A search of the CSD (Version 5.39, August 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the crystal structures of two other aryl­pyrido[2,3-b]pyrazines, in addition to those already mentioned in the Chemical context section. In 7-bromo-3-[4-(piperidin-1-yl)phen­yl]pyrido[2,3-b]pyrazine, the brominated pyrido­pyrazine ring remains coplanar with its aryl substituent (CSD refcode MUPVOK; Kekesi et al., 2014[Kekesi, L., Dancso, A., Illyes, E., Boros, S., Pato, J., Greff, Z., Nemeth, G., Garamvolgyi, R., Baska, F., Orfi, L. & Keri, G. (2014). Lett. Org. Chem. 11, 651-656.]). The same result is not found for 2,3-bis­(5-bromo-1H-indol-3-yl)-7-chloro­pyrido[2,3-b]pyrazine acetone monosolvate (JUGCOF; Manivannan et al., 2015[Manivannan, R., Satheshkumar, A., El-Mossalamy, E. H., Al-Harbi, L. M., Kosa, S. A. & Elango, K. P. (2015). New J. Chem. 39, 3936-3947.]), whose conformation resembles that of compound 2, with both substituents being inclined to the mean plane of the pyrido­pyrazine ring.

Pyrido[2,3-b]pyrazines without halogenated pyrido­pyrazine rings are prevalent in the literature. Examples include: 2-(4-fluoro­phen­yl)-3-(pyridin-4-yl)pyrido[2,3-b]pyrazine (BUD­YAB; Koch et al., 2009a[Koch, P., Schollmeyer, D. & Laufer, S. (2009a). Acta Cryst. E65, o2512.]), 4-[3-(4-fluoro­phen­yl)pyrido[2,3-b]pyrazin-2-yl]-N- iso­propyl­pyridin-2-amine (BUFBAG; Koch et al., 2009c[Koch, P., Schollmeyer, D. & Laufer, S. (2009c). Acta Cryst. E65, o2557.]), 3-(4-fluoro­phen­yl)-2-(pyridin-4-yl)pyrido[2,3-b]pyrazine (PUFNUA; Koch et al., 2009b[Koch, P., Schollmeyer, D. & Laufer, S. (2009b). Acta Cryst. E65, o2546.]), 4,4′-pyrido[2,3-b]pyrazine-2,3-diylbis(N,N-di­phenyl­aniline) (WUDQAO, WUDQAO01; Xu et al., 2015[Xu, L., Zhao, Y., Long, G., Wang, Y., Zhao, J., Li, D., Li, J., Ganguly, R., Li, Y., Sun, H., Sun, X. W. & Zhang, Q. (2015). RSC Adv. 5, 63080-63086.]) and 4′,4′′-(pyrido[2,3-b]pyrazine-2,3-di­yl)bis­[(1,1′-biphen­yl)-4-carbo­nitrile]­chloro­form monosolvate (YEMQUF; Gupta et al., 2018[Gupta, S. & Milton, M. D. (2018). New J. Chem. 42, 2838-2849.]). In all of these structures, both substituents are inclined to the mean plane of the pyrido­pyrazine ring, similar to the situation in compound 2.

5. Synthesis and crystallization

All reagents were purchased from Sigma Aldrich and used without purification. Both mol­ecules were synthesized by reacting equimolar amounts of the corresponding 2,3-di­amino­pyridines with 2,2′-thenil in refluxing glacial acetic acid.

2,3-Bis(thio­phen-2-yl)pyrido[2,3-b]pyrazine (1): To a 250 ml round-bottom flask equipped with a magnetic stir bar were added 0.570 g of 2,3-di­amino­pyridine (5.23 mmol), 1.160 g of 2,2′-thenil (5.23 mmol), and 150 ml of glacial acetic acid. The solution was stirred, heated to boiling, and refluxed for 3 h. The resulting yellowish-brown solution was poured into a 250 ml beaker filled with ice, neutralized with sodium hydroxide, and isolated using vacuum filtration. A rough yield of the yellow–brown solid was 1.332 g (77%). The product was purified via column chromatography (SiO2, 80% EtOAc/20% hexane, Rf = 0.75) to yield 1.010 g of compound 1 (m.p. 451 K). ATR–IR (cm−1) 3101, 1541, 1453, 1409, 1359, 1257, 1092; 1H NMR (300 MHz, CDCl3): δ 9.50 (d, 1H), 8.79 (d, 1H), 7.90 (dd, 1H), 7.59 (m, 2H), 7.38 (dd, 2H), 7.10 (m, 2H); 13C NMR (300 MHz, CDCl3): δ 154.28, 149.68, 149.31, 147.68, 141.17, 140.56, 137.63, 135.62, 130.60, 130.46, 129.96, 129.45, 127.70, 127.64, 125.12. Yellow plate-like crystals of 1 were obtained by slow evaporation of a solution in an equal volume mixture of toluene and ethanol.

7-Bromo-2,3-bis­(thio­phen-2-yl)pyrido[2,3-b]pyrazine (2): The above method was used for the brominated derivative by using 5-bromo-2,3-di­amino­pryidine as the starting di­amine (m.p. 445 K); ATR–IR (cm−1) 3099, 1539, 1427, 1410, 1331, 1311, 1237, 1172, 1072; 1H NMR (300 MHz, CDCl3): δ 9.10 (d, 1H), 8.58 (d, 1H), 7.59 (m, 2H), 7.46 (m, 2H), 7.10 (m, 2H); 13C NMR (300 MHz, CDCl3): δ 155.14, 149.73, 148.44, 148.03, 140.83, 140.36, 138.89, 135.82, 130.88, 130.66, 130.33, 130.07, 127.78, 127.72, 120.81. Yellow plate-like crystals of 2 were obtained by slow evaporation of a solution in an equal volume mixture of toluene and ethanol. 1H, FTIR, and COSY NMR spectra for 2 are given in the supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were constrained at ideal positions and refined using a riding model: C—H = 0.93Å with Uiso(H) = 1.2Ueq(C). In both compounds, some reflections were omitted because they were either partially obstructed by the beam stop or they had an Error/e.s.d. ratio higher than 5.00 where Error = Σ(D)(wD2/<wD2)0.5, D being Fc2 − Fo2.

Table 2
Experimental details

  1 2
Crystal data
Chemical formula C15H9N3S2 C15H8BrN3S2
Mr 295.37 374.27
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 293 293
a, b, c (Å) 5.25147 (12), 14.1093 (3), 17.7690 (3) 5.8336 (2), 29.4731 (10), 8.3160 (3)
β (°) 92.0296 (18) 95.466 (3)
V3) 1315.76 (4) 1423.30 (9)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.40 3.18
Crystal size (mm) 0.43 × 0.33 × 0.21 0.33 × 0.24 × 0.22
 
Data collection
Diffractometer Rigaku Xcalibur Sapphire3 Rigaku Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.948, 1.000 0.455, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19251, 4763, 3491 34519, 5255, 4166
Rint 0.021 0.034
(sin θ/λ)max−1) 0.773 0.785
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 1.01 0.043, 0.110, 1.08
No. of reflections 4763 5255
No. of parameters 181 190
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.40 0.63, −0.67
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,3-Bis(thiophen-2-yl)pyrido[2,3-b]pyrazine (1) top
Crystal data top
C15H9N3S2Dx = 1.491 Mg m3
Mr = 295.37Melting point: 451 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.25147 (12) ÅCell parameters from 6256 reflections
b = 14.1093 (3) Åθ = 4.5–32.1°
c = 17.7690 (3) ŵ = 0.40 mm1
β = 92.0296 (18)°T = 293 K
V = 1315.76 (4) Å3Plate, yellow
Z = 40.43 × 0.33 × 0.21 mm
F(000) = 608
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
4763 independent reflections
Radiation source: Enhance (Mo) X-ray Source3491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 16.1790 pixels mm-1θmax = 33.3°, θmin = 4.1°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 2121
Tmin = 0.948, Tmax = 1.000l = 2726
19251 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.306P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.44 e Å3
4763 reflectionsΔρmin = 0.40 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29005 (9)0.07264 (3)0.05184 (3)0.05601 (15)
S20.68406 (10)0.36939 (5)0.21271 (3)0.0735 (2)
N30.8135 (2)0.37660 (8)0.02149 (7)0.0390 (3)
N10.6466 (3)0.19393 (8)0.01845 (7)0.0407 (3)
C10.5489 (3)0.23948 (9)0.03890 (7)0.0358 (3)
C70.6384 (3)0.33311 (9)0.05955 (7)0.0356 (3)
C80.3498 (3)0.18831 (9)0.07804 (8)0.0371 (3)
C120.5459 (3)0.38619 (10)0.12539 (8)0.0401 (3)
C20.8310 (3)0.23713 (10)0.05676 (8)0.0387 (3)
C60.9139 (3)0.32947 (10)0.03738 (8)0.0381 (3)
N20.9315 (3)0.18788 (10)0.11470 (8)0.0531 (3)
C110.0556 (4)0.06156 (12)0.11368 (11)0.0539 (4)
H110.03800.00630.11980.065*
C90.1873 (3)0.21596 (11)0.13489 (9)0.0439 (3)
H90.18940.27530.15760.053*
C100.0188 (3)0.14123 (12)0.15320 (10)0.0523 (4)
H100.10500.14700.18910.063*
C51.1070 (3)0.37201 (11)0.07888 (10)0.0483 (3)
H51.16470.43290.06760.058*
C41.2062 (4)0.32159 (14)0.13583 (10)0.0532 (4)
H41.33480.34710.16420.064*
C31.1122 (4)0.23039 (14)0.15125 (10)0.0567 (4)
H31.18350.19730.19060.068*
C130.3588 (4)0.45253 (13)0.12665 (11)0.0561 (4)
H130.26290.47180.08440.067*
C150.4890 (4)0.45263 (18)0.25111 (12)0.0691 (6)
H150.49640.47010.30160.083*
C140.3271 (5)0.48905 (15)0.20032 (13)0.0655 (5)
H140.20470.53400.21160.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0634 (3)0.0423 (2)0.0634 (3)0.00914 (17)0.0164 (2)0.01125 (18)
S20.0567 (3)0.1255 (5)0.0382 (2)0.0178 (3)0.00148 (19)0.0182 (3)
N30.0466 (6)0.0332 (5)0.0375 (6)0.0006 (4)0.0055 (5)0.0017 (4)
N10.0509 (6)0.0359 (6)0.0356 (6)0.0007 (5)0.0059 (5)0.0035 (4)
C10.0410 (6)0.0336 (6)0.0327 (6)0.0021 (5)0.0022 (5)0.0003 (5)
C70.0407 (6)0.0335 (6)0.0327 (6)0.0022 (5)0.0018 (5)0.0016 (5)
C80.0419 (6)0.0331 (6)0.0365 (6)0.0003 (5)0.0031 (5)0.0011 (5)
C120.0448 (7)0.0396 (7)0.0363 (6)0.0041 (5)0.0049 (5)0.0068 (5)
C20.0473 (7)0.0361 (6)0.0329 (6)0.0031 (5)0.0053 (5)0.0010 (5)
C60.0455 (7)0.0352 (6)0.0337 (6)0.0023 (5)0.0046 (5)0.0013 (5)
N20.0690 (9)0.0478 (7)0.0437 (7)0.0010 (6)0.0165 (6)0.0107 (6)
C110.0544 (9)0.0437 (8)0.0639 (11)0.0095 (7)0.0064 (8)0.0063 (7)
C90.0480 (7)0.0358 (6)0.0487 (8)0.0013 (6)0.0157 (6)0.0026 (6)
C100.0527 (9)0.0508 (9)0.0544 (9)0.0041 (7)0.0159 (7)0.0061 (7)
C50.0544 (9)0.0436 (8)0.0474 (8)0.0045 (6)0.0103 (7)0.0025 (6)
C40.0563 (9)0.0572 (10)0.0474 (8)0.0011 (7)0.0173 (7)0.0046 (7)
C30.0684 (11)0.0590 (10)0.0439 (8)0.0037 (8)0.0201 (8)0.0072 (7)
C130.0728 (11)0.0462 (8)0.0495 (9)0.0139 (8)0.0069 (8)0.0080 (7)
C150.0678 (11)0.0904 (15)0.0505 (10)0.0221 (11)0.0229 (9)0.0331 (10)
C140.0807 (13)0.0528 (10)0.0645 (12)0.0034 (9)0.0221 (10)0.0199 (9)
Geometric parameters (Å, º) top
S1—C81.7229 (14)N2—C31.314 (2)
S1—C111.686 (2)C11—H110.9300
S2—C121.7060 (15)C11—C101.343 (3)
S2—C151.716 (2)C9—H90.9300
N3—C71.3131 (18)C9—C101.422 (2)
N3—C61.3613 (18)C10—H100.9300
N1—C11.3236 (18)C5—H50.9300
N1—C21.3486 (19)C5—C41.356 (2)
C1—C71.4452 (19)C4—H40.9300
C1—C81.466 (2)C4—C31.402 (3)
C7—C121.4852 (19)C3—H30.9300
C8—C91.401 (2)C13—H130.9300
C12—C131.358 (2)C13—C141.422 (3)
C2—C61.413 (2)C15—H150.9300
C2—N21.3637 (19)C15—C141.322 (4)
C6—C51.409 (2)C14—H140.9300
C11—S1—C892.41 (8)C10—C11—H11123.7
C12—S2—C1591.49 (10)C8—C9—H9124.5
C7—N3—C6117.71 (12)C8—C9—C10111.02 (14)
C1—N1—C2118.29 (12)C10—C9—H9124.5
N1—C1—C7120.52 (12)C11—C10—C9113.49 (16)
N1—C1—C8115.38 (12)C11—C10—H10123.3
C7—C1—C8124.10 (12)C9—C10—H10123.3
N3—C7—C1121.59 (12)C6—C5—H5121.0
N3—C7—C12115.14 (12)C4—C5—C6118.02 (15)
C1—C7—C12123.26 (12)C4—C5—H5121.0
C1—C8—S1117.68 (10)C5—C4—H4120.5
C9—C8—S1110.41 (11)C5—C4—C3119.03 (15)
C9—C8—C1131.91 (13)C3—C4—H4120.5
C7—C12—S2120.39 (11)N2—C3—C4125.32 (15)
C13—C12—S2111.44 (12)N2—C3—H3117.3
C13—C12—C7128.15 (15)C4—C3—H3117.3
N1—C2—C6120.97 (12)C12—C13—H13124.0
N1—C2—N2117.05 (13)C12—C13—C14111.93 (18)
N2—C2—C6121.98 (14)C14—C13—H13124.0
N3—C6—C2120.89 (13)S2—C15—H15124.0
N3—C6—C5119.97 (13)C14—C15—S2111.93 (15)
C5—C6—C2119.13 (13)C14—C15—H15124.0
C3—N2—C2116.51 (14)C13—C14—H14123.4
S1—C11—H11123.7C15—C14—C13113.20 (18)
C10—C11—S1112.65 (13)C15—C14—H14123.4
S1—C8—C9—C100.99 (18)C7—C12—C13—C14178.93 (16)
S1—C11—C10—C90.9 (2)C8—S1—C11—C100.26 (16)
S2—C12—C13—C140.7 (2)C8—C1—C7—N3178.50 (13)
S2—C15—C14—C131.6 (3)C8—C1—C7—C122.9 (2)
N3—C7—C12—S292.59 (15)C8—C9—C10—C111.2 (2)
N3—C7—C12—C1385.5 (2)C12—S2—C15—C141.07 (18)
N3—C6—C5—C4178.33 (15)C12—C13—C14—C151.5 (3)
N1—C1—C7—N31.6 (2)C2—N1—C1—C70.0 (2)
N1—C1—C7—C12176.99 (13)C2—N1—C1—C8179.89 (12)
N1—C1—C8—S16.41 (17)C2—C6—C5—C40.4 (2)
N1—C1—C8—C9172.69 (15)C2—N2—C3—C40.6 (3)
N1—C2—C6—N31.3 (2)C6—N3—C7—C11.7 (2)
N1—C2—C6—C5179.99 (14)C6—N3—C7—C12177.03 (12)
N1—C2—N2—C3179.52 (16)C6—C2—N2—C30.7 (2)
C1—N1—C2—C61.4 (2)C6—C5—C4—C30.5 (3)
C1—N1—C2—N2178.84 (14)N2—C2—C6—N3178.93 (14)
C1—C7—C12—S286.08 (16)N2—C2—C6—C50.3 (2)
C1—C7—C12—C1395.8 (2)C11—S1—C8—C1178.84 (12)
C1—C8—C9—C10178.15 (15)C11—S1—C8—C90.44 (13)
C7—N3—C6—C20.3 (2)C5—C4—C3—N20.0 (3)
C7—N3—C6—C5178.40 (13)C15—S2—C12—C7178.22 (13)
C7—C1—C8—S1173.50 (11)C15—S2—C12—C130.19 (15)
C7—C1—C8—C97.4 (2)
7-Bromo-2,3-bis(thiophen-2-yl)pyrido[2,3-b]pyrazine (2) top
Crystal data top
C15H8BrN3S2Dx = 1.747 Mg m3
Mr = 374.27Melting point: 445 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8336 (2) ÅCell parameters from 9441 reflections
b = 29.4731 (10) Åθ = 4.5–32.2°
c = 8.3160 (3) ŵ = 3.18 mm1
β = 95.466 (3)°T = 293 K
V = 1423.30 (9) Å3Plate, yellow
Z = 40.33 × 0.24 × 0.22 mm
F(000) = 744
Data collection top
Rigaku Xcalibur Sapphire3
diffractometer
5255 independent reflections
Radiation source: Enhance (Mo) X-ray Source4166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.1790 pixels mm-1θmax = 33.9°, θmin = 4.2°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
k = 4545
Tmin = 0.455, Tmax = 1.000l = 1212
34519 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.940P]
where P = (Fo2 + 2Fc2)/3
5255 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69446 (4)0.018840 (9)0.30276 (3)0.04319 (9)
S20.62946 (10)0.11087 (2)0.49251 (7)0.04132 (14)
S11.54351 (12)0.19256 (2)0.09942 (10)0.05248 (18)
N30.8311 (3)0.08963 (6)0.1758 (2)0.0312 (3)
C120.8921 (3)0.13124 (7)0.4089 (3)0.0294 (4)
C70.9600 (3)0.12031 (7)0.2402 (2)0.0290 (4)
C21.1218 (4)0.08478 (7)0.0484 (3)0.0314 (4)
C60.9043 (3)0.07298 (7)0.0283 (2)0.0290 (4)
C131.0082 (4)0.15121 (8)0.5255 (3)0.0354 (4)
H131.15490.16350.50560.042*
N11.2404 (3)0.11997 (7)0.0083 (2)0.0342 (4)
N21.2152 (4)0.06423 (8)0.1847 (3)0.0428 (5)
C11.1566 (4)0.13963 (7)0.1436 (3)0.0298 (4)
C50.7682 (4)0.04198 (8)0.0495 (3)0.0327 (4)
H50.61980.03460.00660.039*
C40.8620 (4)0.02319 (7)0.1898 (3)0.0330 (4)
C81.2653 (4)0.18271 (7)0.1791 (3)0.0331 (4)
C140.8825 (4)0.15116 (8)0.6789 (3)0.0386 (5)
H140.93660.16370.77070.046*
C150.6754 (4)0.13092 (8)0.6780 (3)0.0395 (5)
H150.56990.12830.76860.047*
C31.0885 (4)0.03388 (9)0.2503 (3)0.0413 (5)
H31.15210.01860.34190.050*
C91.1615 (5)0.22302 (8)0.2534 (3)0.0445 (6)
H91.01130.22550.30130.053*
C101.3303 (6)0.25845 (9)0.2402 (4)0.0575 (8)
H101.30040.28740.28170.069*
C111.5344 (6)0.24684 (10)0.1638 (4)0.0589 (8)
H111.65840.26670.14790.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04705 (15)0.04449 (14)0.03805 (13)0.00908 (10)0.00417 (10)0.01197 (10)
S20.0361 (3)0.0475 (3)0.0388 (3)0.0120 (2)0.0047 (2)0.0046 (2)
S10.0458 (3)0.0422 (3)0.0694 (5)0.0123 (3)0.0051 (3)0.0048 (3)
N30.0301 (8)0.0319 (9)0.0308 (8)0.0037 (7)0.0023 (6)0.0041 (7)
C120.0274 (9)0.0279 (9)0.0320 (9)0.0004 (7)0.0016 (7)0.0012 (7)
C70.0294 (9)0.0272 (9)0.0301 (9)0.0005 (7)0.0007 (7)0.0005 (7)
C20.0304 (9)0.0329 (10)0.0299 (9)0.0045 (8)0.0019 (7)0.0015 (8)
C60.0291 (9)0.0282 (9)0.0291 (9)0.0034 (7)0.0003 (7)0.0006 (7)
C130.0326 (10)0.0393 (11)0.0337 (10)0.0016 (9)0.0010 (8)0.0031 (9)
N10.0333 (9)0.0353 (9)0.0327 (9)0.0084 (7)0.0031 (7)0.0012 (7)
N20.0382 (10)0.0502 (12)0.0376 (10)0.0112 (9)0.0093 (8)0.0104 (9)
C10.0306 (9)0.0267 (9)0.0323 (10)0.0038 (7)0.0037 (7)0.0003 (7)
C50.0306 (9)0.0343 (10)0.0323 (10)0.0057 (8)0.0012 (8)0.0021 (8)
C40.0370 (10)0.0316 (10)0.0306 (10)0.0021 (8)0.0041 (8)0.0027 (8)
C80.0367 (10)0.0285 (9)0.0345 (10)0.0057 (8)0.0058 (8)0.0030 (8)
C140.0479 (13)0.0365 (11)0.0313 (10)0.0003 (9)0.0031 (9)0.0030 (8)
C150.0481 (13)0.0368 (11)0.0314 (11)0.0015 (10)0.0085 (9)0.0011 (8)
C30.0432 (12)0.0451 (13)0.0334 (11)0.0070 (10)0.0076 (9)0.0106 (9)
C90.0523 (14)0.0343 (12)0.0476 (13)0.0153 (10)0.0085 (11)0.0000 (10)
C100.075 (2)0.0290 (12)0.072 (2)0.0045 (12)0.0257 (16)0.0035 (12)
C110.0594 (18)0.0402 (14)0.080 (2)0.0221 (13)0.0240 (16)0.0075 (14)
Geometric parameters (Å, º) top
Br1—C41.884 (2)N1—C11.318 (3)
S2—C121.729 (2)N2—C31.312 (3)
S2—C151.697 (2)C1—C81.462 (3)
S1—C81.718 (2)C5—H50.9300
S1—C111.686 (3)C5—C41.358 (3)
N3—C71.321 (3)C4—C31.404 (3)
N3—C61.352 (3)C8—C91.446 (4)
C12—C71.457 (3)C14—H140.9300
C12—C131.368 (3)C14—C151.348 (3)
C7—C11.452 (3)C15—H150.9300
C2—C61.408 (3)C3—H30.9300
C2—N11.356 (3)C9—H90.9300
C2—N21.353 (3)C9—C101.432 (4)
C6—C51.408 (3)C10—H100.9300
C13—H130.9300C10—C111.339 (5)
C13—C141.410 (3)C11—H110.9300
C15—S2—C1291.95 (11)C4—C5—H5121.3
C11—S1—C892.17 (14)C5—C4—Br1120.71 (17)
C7—N3—C6118.26 (18)C5—C4—C3120.3 (2)
C7—C12—S2117.37 (15)C3—C4—Br1118.93 (17)
C13—C12—S2110.13 (16)C1—C8—S1118.76 (17)
C13—C12—C7132.08 (19)C9—C8—S1111.58 (17)
N3—C7—C12115.37 (18)C9—C8—C1128.9 (2)
N3—C7—C1119.60 (18)C13—C14—H14123.7
C1—C7—C12125.02 (18)C15—C14—C13112.6 (2)
N1—C2—C6119.96 (19)C15—C14—H14123.7
N2—C2—C6122.8 (2)S2—C15—H15123.9
N2—C2—N1117.08 (19)C14—C15—S2112.24 (17)
N3—C6—C2120.93 (19)C14—C15—H15123.9
N3—C6—C5120.64 (18)N2—C3—C4123.5 (2)
C5—C6—C2118.38 (19)N2—C3—H3118.3
C12—C13—H13123.5C4—C3—H3118.3
C12—C13—C14113.0 (2)C8—C9—H9126.0
C14—C13—H13123.5C10—C9—C8108.0 (3)
C1—N1—C2118.22 (18)C10—C9—H9126.0
C3—N2—C2117.1 (2)C9—C10—H10122.5
C7—C1—C8124.32 (19)C11—C10—C9115.1 (3)
N1—C1—C7120.60 (18)C11—C10—H10122.5
N1—C1—C8114.94 (19)S1—C11—H11123.4
C6—C5—H5121.3C10—C11—S1113.1 (2)
C4—C5—C6117.4 (2)C10—C11—H11123.4
Br1—C4—C3—N2176.7 (2)C6—C2—N2—C33.8 (4)
S2—C12—C7—N310.8 (3)C6—C5—C4—Br1179.77 (16)
S2—C12—C7—C1170.70 (17)C6—C5—C4—C31.6 (3)
S2—C12—C13—C141.8 (3)C13—C12—C7—N3161.0 (2)
S1—C8—C9—C101.7 (3)C13—C12—C7—C117.6 (4)
N3—C7—C1—N116.0 (3)C13—C14—C15—S20.8 (3)
N3—C7—C1—C8159.4 (2)N1—C2—C6—N313.7 (3)
N3—C6—C5—C4173.5 (2)N1—C2—C6—C5168.7 (2)
C12—S2—C15—C141.6 (2)N1—C2—N2—C3172.1 (2)
C12—C7—C1—N1162.4 (2)N1—C1—C8—S125.5 (3)
C12—C7—C1—C822.2 (3)N1—C1—C8—C9143.6 (2)
C12—C13—C14—C150.7 (3)N2—C2—C6—N3170.5 (2)
C7—N3—C6—C25.8 (3)N2—C2—C6—C57.0 (4)
C7—N3—C6—C5176.7 (2)N2—C2—N1—C1177.9 (2)
C7—C12—C13—C14174.0 (2)C1—C8—C9—C10171.4 (2)
C7—C1—C8—S1158.88 (17)C5—C4—C3—N25.1 (4)
C7—C1—C8—C932.0 (4)C8—S1—C11—C101.2 (3)
C2—C6—C5—C44.0 (3)C8—C9—C10—C110.9 (4)
C2—N1—C1—C78.1 (3)C15—S2—C12—C7175.40 (18)
C2—N1—C1—C8167.7 (2)C15—S2—C12—C131.91 (19)
C2—N2—C3—C42.3 (4)C9—C10—C11—S10.3 (4)
C6—N3—C7—C12170.23 (19)C11—S1—C8—C1172.6 (2)
C6—N3—C7—C18.4 (3)C11—S1—C8—C91.7 (2)
C6—C2—N1—C16.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Br1i0.933.013.836 (1)150
C5—H5···Br1ii0.933.053.851 (1)145
C15—H15···N1iii0.932.653.572 (1)175
C11—H11···C14iv0.932.783.637 (1)155
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z; (iii) x1, y, z1; (iv) x+1, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: CSU-AAUP .

References

First citationBi, W.-Y., Chai, W.-L., Lu, X.-Q., Song, J.-R. & Bao, F. (2009). J. Coord. Chem. 62, 1928–1938.  CrossRef Google Scholar
First citationCrundwell, G. (2003). J. Chem. Crystallogr. 33, 239–244.  CrossRef Google Scholar
First citationCrundwell, G. (2013). Acta Cryst. E69, m164.  CrossRef IUCr Journals Google Scholar
First citationCrundwell, G., Cantalupo, S., D. C. Foss, P., McBurney, B., Kopp, K., L. Westcott, B., Updegraff III, J., Zeller, M. & D. Hunter, A. (2014). Open J. Inorg. Chem. 04, 10–17.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, T., Maiya, B. G. & Samanta, A. (2006). Dalton Trans. pp. 795–801.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, S. & Milton, M. D. (2018). New J. Chem. 42, 2838–2849.  CrossRef Google Scholar
First citationKekesi, L., Dancso, A., Illyes, E., Boros, S., Pato, J., Greff, Z., Nemeth, G., Garamvolgyi, R., Baska, F., Orfi, L. & Keri, G. (2014). Lett. Org. Chem. 11, 651–656.  CrossRef Google Scholar
First citationKoch, P., Schollmeyer, D. & Laufer, S. (2009a). Acta Cryst. E65, o2512.  CrossRef IUCr Journals Google Scholar
First citationKoch, P., Schollmeyer, D. & Laufer, S. (2009b). Acta Cryst. E65, o2546.  CrossRef IUCr Journals Google Scholar
First citationKoch, P., Schollmeyer, D. & Laufer, S. (2009c). Acta Cryst. E65, o2557.  CrossRef IUCr Journals Google Scholar
First citationLassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680–2689.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationManivannan, R., Satheshkumar, A., El-Mossalamy, E. H., Al-Harbi, L. M., Kosa, S. A. & Elango, K. P. (2015). New J. Chem. 39, 3936–3947.  CrossRef Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShanmuga Sundara Raj, S., Fun, H.-K., Chen, X.-F., Zhu, X.-H. & You, X.-Z. (1999). Acta Cryst. C55, 2035–2037.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Zhao, Y., Long, G., Wang, Y., Zhao, J., Li, D., Li, J., Ganguly, R., Li, Y., Sun, H., Sun, X. W. & Zhang, Q. (2015). RSC Adv. 5, 63080–63086.  CrossRef Google Scholar
First citationYeo, B. R., Hallett, A. J., Kariuki, B. M. & Pope, S. J. A. (2010). Polyhedron, 29, 1088–1094.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds