research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of N,N′-[ethane-1,2-diylbis(­­oxy)]bis­­(4-methyl­benzene­sulfonamide)

CROSSMARK_Color_square_no_text.svg

aOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Chemistry, 55139, Samsun, Turkey, bOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Kurupelit, Samsun, Turkey, and cTaras Shevchenko National University of Kyiv, Department of Chemistry, 64, Vladimirska Str., Kiev 01601, Ukraine
*Correspondence e-mail: tsapyuk@ukr.net

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 5 November 2018; accepted 10 December 2018; online 1 January 2019)

In the mol­ecule of the title compound, C16H20N2O6S2, the mid-point of the C—C bond of the central ethane moiety is located on a twofold rotation axis. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into supra­molecular chains propagating along the [101] direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H⋯H (43.1%), O⋯H/H⋯O (40.9%), C⋯H/H⋯C (8.8%) and C⋯C (5.5%) inter­actions.

1. Chemical context

Sulfonamides are synthetic mol­ecules which include the SO2–NH group and are called sulfa drugs. These effective drug mol­ecules have an important role in the medical field, including as promising chemotherapeutic agents, and have been used in the treatment of many bacterial infections due to their physical, chemical and biological properties (Mahmood et al., 2016[Mahmood, A., Akram, T. & de Lima, E. B. (2016). J. Mol. Struct. 1108, 496-507.]; Ghorab et al., 2018[Ghorab, M. M., Ragab, F. A., Heiba, H. I., Elsayed, M. S. A. & Ghorab, W. M. (2018). Bioorg. Chem. 80, 276-287.]). Recently, sulfonamides have also been used in the organic synthesis reactions for the synthesis of linear or cyclic oligomers and the introduction of nucleophilic heteroatom functionality to the synthesized mol­ecule (Ni et al., 2015[Ni, R., Mitsuda, N., Kashiwagi, T., Igawa, K. & Tomooka, K. (2015). Angew. Chem. Int. Ed. 54, 1190-1194.]). N,N′-di­tosyl­alkane di­amine is a disulfonamide synthesized by the tosyl­ation of di­amine, and this synthetic mol­ecule has anti­bacterial properties (Alyar et al., 2011[Alyar, S., Özbek, N., Kuzukıran, K. & Karacan, N. (2011). Med. Chem. Res. 20, 175-183.]) and has also been used in many organic synthesis reactions (Rong et al., 1998[Rong, G., Keese, R. & Stoeckli-Evans, H. (1998). Eur. J. Inorg. Chem. pp, 1967-1973.]). In this study, the synthesis, crystal structure and Hirshfeld surface analysis are reported for the new potential sulfa drug, N,N′-[ethane-1,2-diylbis(­oxy)]bis­(4-methyl­benzene­sulf­on­a­mide).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The mol­ecular point group symmetry is C2v (mm2) (H atoms excluded), with the twofold rotation axis bisecting the central C1—C1i bond. The mol­ecule is Z-shaped with the N1—S1—C2—C3 torsion angle being −60.6 (3)°. The C1—O1 bond length of 1.429 (3) Å and the O1—N1 bond length of 1.426 (2) Å are close to the values reported for similar compounds (see the Database survey). The S1—O2 and S1—O3 distances are 1.4376 (17) and 1.4168 (19) Å, respectively while the S1—N1 and S1—C2 distances are 1.647 (3) Å and 1.747 (3) Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 20% probability level. Symmetry code: (a) −x, y, −z − [{1\over 2}].

3. Supra­molecular features

The crystal packing of the title compound features inter­molecular N—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]), which connect the mol­ecules into supra­molecular chains propagating along the [101] direction. The chains are linked by pairs of C—H⋯O hydrogen bonds (Table 1[link], Fig. 3[link]), forming a framework with small cavities of 99 Å3, ca 5% of the unit-cell volume.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.83 (3) 2.17 (3) 2.974 (3) 162 (3)
C1—H1A⋯O2ii 0.97 2.56 3.401 (4) 146
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A view of the chain structure formed by N—H⋯O hydrogen bonding.
[Figure 3]
Figure 3
A view along the b-axis of the crystal packing of the title compound. The hydrogen bonds (Table 1[link]) are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural database (CSD, version 5.39, update May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures similar to the title compound gave hits including 1S,2S,4S,5S)-2,5-bis­[(p-toluene­sulfon­yl)amino]­bicyclo­(2.2.1)heptane (Ber­k­essel et al., 2004[Berkessel, A., Schröder, M., Sklorz, C. A., Tabanella, S., Vogl, N., Lex, J. & Neudörfl, J. M. (2004). J. Org. Chem. 69, 3050-3056.]), 1,6-anhydro-2,5-dide­oxy-3,4-O-iso­propyl­idene-2,5-bis­[(4-methyl­benzene­sulfon­yl)amino]-1-thio­hexitol (Sureshkumar et al., 2005[Sureshkumar, D., Koutha, S. M. & Chandrasekaran, S. (2005). J. Am. Chem. Soc. 127, 12760-12761.]), (1R,3S)-1-(toluene­sulfonyl­amido)-3-(toluene­sulfonyl­amido­meth­yl)-3,5,5-tri­methyl­cyclo­hexane (Berkessel et al., 2006[Berkessel, A., Roland, K., Schröder, M., Neudörfl, J. M. & Lex, J. (2006). J. Org. Chem. 71, 9312-9318.]) and N,N′-propyl­ene­dioxy­bis­(2,4,6-tri-methyl­benzene­sulfonamide) (Wardell et al., 2004[Wardell, S. M. S. V., Rangel e Silva, M. V. D., Prado, P. F., Low, J. N. & Glidewell, C. (2004). Acta Cryst. C60, o325-o327.]). In the latter compound, the C1—O1 bond length is 1.4448 (19) Å, in agreement with the value found in this study. In addition, the S1—O11 and S1—O12 distances are 1.4312 (12) and 1.4263 (13) Å, respectively and the S1—N1 and S1—C11distances are 1.6608 (14) and 1.7799 (16) Å, respectively.

5. Hirshfeld surface analysis

Hirshfeld surface analysis is a method for visualizing the inter­actions present in the crystal structure and providing qu­anti­tative information about them. The dnorm representation of the Hirshfeld surface reveals the close contacts of hydrogen-bond donors and acceptors, but other close contacts are also evident. The mol­ecular Hirshfeld surfaces were generated using a standard (high) surface resolution with the three-dimensional dnorm surfaces mapped over a fixed colour scale of −0.464 (red) to 2.052 (blue) Å using the CrystalExplorer (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.]). The red spots on the surface indicate the inter­molecular contacts involved in the hydrogen bonds. In Figs. 4[link] and 5[link], the identified red spot is attributed to the H⋯O close contacts which are due to the N—H⋯O hydrogen bonds (Table 1[link]).

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound mapped over dnorm, di and de.
[Figure 5]
Figure 5
Hirshfeld surface mapped over dnorm to visualize the inter­molecular inter­actions in the title compound.

Fig. 6[link] shows the two-dimensional fingerprint of the sum of the contacts contributing to the Hirshfeld surface represented in normal mode. The second plot shown in Fig. 7[link] represents the O⋯H/H⋯O contacts (40.9%) between the oxygen atoms inside the surface and the hydrogen atoms outside the surface. de + di ∼2.0 Å and has two symmetrical points at the top, bottom left and right, which is characteristic of an N—H⋯O hydrogen bond.

[Figure 6]
Figure 6
The overall fingerprint plot for the title compound.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots with a dnorm view of the H⋯H (43.1%), O⋯H/H⋯O (40.9%), C⋯H/H⋯C (8.8%) and C⋯C (5.5%) contacts in the title compound.

The H⋯H plot shown in Fig. 7[link] shows the two-dimensional fingerprint of the (di, de) points associated with hydrogen atoms. It is characterized by an end point that points to the origin and corresponds to di = de = 1.08 Å, which indicates the presence of the H⋯H contacts in this study (43.1%). The C⋯H/H⋯C plot in Fig. 7[link] shows the contact between the carbon atoms inside the surface and the hydrogen atoms outside the surface of Hirshfeld and vice versa. There are two symmetrical wings on the left and right sides (8.8%). Furthermore, there are C⋯C (5.5%), N⋯H/H⋯N (1.4%), O⋯C/C⋯O (0.1%) and S⋯H/H⋯S (0.1%) contacts in the title structure.

A view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.095 to 0.123 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is shown in Fig. 8[link] where the N—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the atoms related with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

[Figure 8]
Figure 8
A view of the three-dimensional Hirshfeld surface plotted over electrostatic potential energy.

6. Synthesis and crystallization

The title compound was synthesized according to the method of Bauer & Suresh (1963[Bauer, L. & Suresh, K. S. (1963). J. Org. Chem. 28, 1604-1608.]). Single crystals (m.p. 414–415 K) were obtained from an ethanol solution (yield 93%)

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The NH H atom was located in a difference-Fourier maps and freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C16H20N2O6S2
Mr 400.46
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 16.3393 (18), 13.4977 (19), 9.7461 (11)
β (°) 113.442 (8)
V3) 1972.0 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.56 × 0.36 × 0.13
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.873, 0.973
No. of measured, independent and observed [I > 2σ(I)] reflections 6561, 1938, 1070
Rint 0.086
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.116, 0.90
No. of reflections 1938
No. of parameters 123
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.25
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

N,N'-[Ethane-1,2-diylbis(oxy)]bis(4-methylbenzenesulfonamide) top
Crystal data top
C16H20N2O6S2F(000) = 840
Mr = 400.46Dx = 1.349 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.3393 (18) ÅCell parameters from 6407 reflections
b = 13.4977 (19) Åθ = 2.0–27.2°
c = 9.7461 (11) ŵ = 0.30 mm1
β = 113.442 (8)°T = 296 K
V = 1972.0 (4) Å3Prism, colorless
Z = 40.56 × 0.36 × 0.13 mm
Data collection top
Stoe IPDS 2
diffractometer
1938 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus1070 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.086
rotation method scansθmax = 26.0°, θmin = 2.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 2020
Tmin = 0.873, Tmax = 0.973k = 1616
6561 measured reflectionsl = 129
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0562P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
1938 reflectionsΔρmax = 0.14 e Å3
123 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19812 (4)0.13241 (6)0.11223 (9)0.0759 (3)
O10.04273 (10)0.15963 (13)0.0863 (2)0.0722 (5)
C10.00029 (17)0.0748 (2)0.1731 (3)0.0698 (7)
H1A0.0607700.0717650.1811990.084*
H1B0.0306880.0156430.1210230.084*
O30.28617 (11)0.15543 (15)0.1220 (3)0.0907 (7)
O20.17825 (13)0.03371 (14)0.1379 (3)0.0928 (7)
N10.13462 (14)0.1594 (2)0.0629 (3)0.0751 (7)
C20.16891 (16)0.2121 (2)0.2267 (3)0.0705 (8)
C50.1182 (2)0.3366 (3)0.4043 (4)0.0929 (10)
C70.1370 (2)0.1733 (3)0.3271 (4)0.1030 (11)
H70.1319470.1051330.3352640.124*
C40.1518 (2)0.3736 (3)0.3067 (4)0.1041 (11)
H40.1575730.4417480.2999780.125*
C60.1129 (3)0.2367 (4)0.4145 (5)0.1153 (13)
H60.0923280.2104220.4830590.138*
C30.1774 (2)0.3119 (3)0.2180 (4)0.0954 (10)
H30.2003350.3384280.1526270.115*
C80.0890 (3)0.4066 (4)0.4973 (5)0.1375 (16)
H8A0.0830160.3706390.5778130.206*
H8B0.0326070.4355970.4357120.206*
H8C0.1326920.4579420.5373500.206*
H10.146 (2)0.217 (2)0.080 (4)0.089 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0600 (4)0.0881 (5)0.0859 (6)0.0056 (4)0.0356 (4)0.0138 (4)
O10.0565 (9)0.0901 (13)0.0773 (13)0.0033 (9)0.0344 (9)0.0099 (10)
C10.0658 (14)0.0790 (17)0.0728 (19)0.0063 (14)0.0365 (15)0.0007 (16)
O30.0572 (11)0.1173 (16)0.1016 (17)0.0056 (10)0.0358 (11)0.0226 (13)
O20.0875 (13)0.0809 (13)0.1204 (19)0.0012 (10)0.0523 (13)0.0201 (13)
N10.0571 (13)0.0913 (19)0.0849 (19)0.0072 (12)0.0367 (12)0.0028 (15)
C20.0576 (14)0.084 (2)0.0694 (19)0.0124 (13)0.0251 (13)0.0098 (15)
C50.0732 (19)0.131 (3)0.065 (2)0.008 (2)0.0175 (16)0.010 (2)
C70.122 (3)0.108 (2)0.100 (3)0.038 (2)0.066 (2)0.000 (2)
C40.124 (3)0.089 (2)0.100 (3)0.008 (2)0.044 (2)0.000 (2)
C60.127 (3)0.148 (4)0.097 (3)0.040 (3)0.071 (3)0.014 (3)
C30.107 (2)0.094 (2)0.101 (3)0.0100 (18)0.059 (2)0.011 (2)
C80.123 (3)0.192 (4)0.093 (3)0.006 (3)0.038 (2)0.044 (3)
Geometric parameters (Å, º) top
S1—O21.4168 (19)C5—C61.357 (5)
S1—O31.4376 (17)C5—C41.368 (5)
S1—N11.647 (3)C5—C81.512 (5)
S1—C21.747 (3)C7—C61.371 (5)
O1—N11.426 (2)C7—H70.9300
O1—C11.429 (3)C4—C31.379 (5)
C1—C1i1.494 (5)C4—H40.9300
C1—H1A0.9700C6—H60.9300
C1—H1B0.9700C3—H30.9300
N1—H10.83 (3)C8—H8A0.9600
C2—C31.361 (4)C8—H8B0.9600
C2—C71.381 (4)C8—H8C0.9600
O2—S1—O3119.02 (12)C6—C5—C8122.2 (4)
O2—S1—N1107.29 (15)C4—C5—C8120.0 (4)
O3—S1—N1102.83 (12)C6—C7—C2119.1 (3)
O2—S1—C2109.02 (13)C6—C7—H7120.5
O3—S1—C2110.20 (13)C2—C7—H7120.5
N1—S1—C2107.80 (13)C5—C4—C3121.4 (3)
N1—O1—C1108.99 (19)C5—C4—H4119.3
O1—C1—C1i113.68 (15)C3—C4—H4119.3
O1—C1—H1A108.8C5—C6—C7122.2 (3)
C1i—C1—H1A108.8C5—C6—H6118.9
O1—C1—H1B108.8C7—C6—H6118.9
C1i—C1—H1B108.8C2—C3—C4119.7 (3)
H1A—C1—H1B107.7C2—C3—H3120.2
O1—N1—S1110.82 (17)C4—C3—H3120.2
O1—N1—H1106 (2)C5—C8—H8A109.5
S1—N1—H1108 (2)C5—C8—H8B109.5
C3—C2—C7119.7 (3)H8A—C8—H8B109.5
C3—C2—S1120.6 (2)C5—C8—H8C109.5
C7—C2—S1119.7 (3)H8A—C8—H8C109.5
C6—C5—C4117.9 (3)H8B—C8—H8C109.5
N1—O1—C1—C1i63.7 (3)C3—C2—C7—C61.2 (5)
C1—O1—N1—S1108.3 (2)S1—C2—C7—C6178.9 (3)
O2—S1—N1—O165.1 (2)C6—C5—C4—C31.8 (6)
O3—S1—N1—O1168.64 (18)C8—C5—C4—C3178.7 (3)
C2—S1—N1—O152.2 (2)C4—C5—C6—C72.4 (6)
O2—S1—C2—C3176.8 (3)C8—C5—C6—C7178.1 (3)
O3—S1—C2—C350.9 (3)C2—C7—C6—C50.9 (6)
N1—S1—C2—C360.6 (3)C7—C2—C3—C41.7 (5)
O2—S1—C2—C73.3 (3)S1—C2—C3—C4178.4 (3)
O3—S1—C2—C7129.0 (2)C5—C4—C3—C20.2 (6)
N1—S1—C2—C7119.5 (3)
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3ii0.83 (3)2.17 (3)2.974 (3)162 (3)
C1—H1A···O2iii0.972.563.401 (4)146
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAlyar, S., Özbek, N., Kuzukıran, K. & Karacan, N. (2011). Med. Chem. Res. 20, 175–183.  CrossRef Google Scholar
First citationBauer, L. & Suresh, K. S. (1963). J. Org. Chem. 28, 1604–1608.  CrossRef Google Scholar
First citationBerkessel, A., Roland, K., Schröder, M., Neudörfl, J. M. & Lex, J. (2006). J. Org. Chem. 71, 9312–9318.  CrossRef Google Scholar
First citationBerkessel, A., Schröder, M., Sklorz, C. A., Tabanella, S., Vogl, N., Lex, J. & Neudörfl, J. M. (2004). J. Org. Chem. 69, 3050–3056.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., Elsayed, M. S. A. & Ghorab, W. M. (2018). Bioorg. Chem. 80, 276–287.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMahmood, A., Akram, T. & de Lima, E. B. (2016). J. Mol. Struct. 1108, 496–507.  CrossRef Google Scholar
First citationNi, R., Mitsuda, N., Kashiwagi, T., Igawa, K. & Tomooka, K. (2015). Angew. Chem. Int. Ed. 54, 1190–1194.  CrossRef Google Scholar
First citationRong, G., Keese, R. & Stoeckli-Evans, H. (1998). Eur. J. Inorg. Chem. pp, 1967–1973.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSureshkumar, D., Koutha, S. M. & Chandrasekaran, S. (2005). J. Am. Chem. Soc. 127, 12760–12761.  CrossRef Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia, Perth.  Google Scholar
First citationWardell, S. M. S. V., Rangel e Silva, M. V. D., Prado, P. F., Low, J. N. & Glidewell, C. (2004). Acta Cryst. C60, o325–o327.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds