research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of four di­meth­­oxy­benzaldehyde isomers

CROSSMARK_Color_square_no_text.svg

aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
*Correspondence e-mail: p.tinnemans@science.ru.nl

Edited by P. Bombicz, Hungarian Academy of Sciences, Hungary (Received 5 June 2018; accepted 3 December 2018; online 1 January 2019)

The crystal structures of four di­meth­oxy­benzaldehyde (C9H10O3) isomers, namely the 2,3-, 2,4-, 2,5- and 3,5- isomers, are reported and compared to the previously reported crystal structures of 3,4-di­meth­oxy­benzaldehyde and 2,6-di­meth­oxy­benzaldehyde. All di­meth­oxy­benzaldehyde mol­ecules in the crystal structures are nearly planar. The largest deviation (1.2 Å) from the aromatic plane is found for one of the meth­oxy groups of 2,3-di­meth­oxy­benzaldehyde. Upon rapid cooling of 3,4-di­meth­oxy­benzaldehyde and 3,5-di­meth­oxy­benzaldehyde, a metastable polymorph is formed. The crystal studied for the 3,5- isomer was refined as a two-component twin.

1. Chemical context

Di­meth­oxy­benzaldehydes (DMBz) are often used as starting materials in condensation reactions forming Schiff base compounds. Schiff base compounds are versatile ligands in numerous metal–organic complexes that are used as a catalyst. Examples include C—O coupling reactions (Maity et al., 2015[Maity, T., Saha, D., Bhunia, S., Brandão, P., Das, S. & Koner, S. (2015). RSC Adv. 5, 82179-82191.]), the Suzuiki–Miyaura reaction (Das & Linert, 2016[Das, P. & Linert, W. (2016). Coord. Chem. Rev. 311, 1-23.]), nitro­aldol reactions (Handa et al., 2008[Handa, S., Nagawa, K., Sohtome, Y., Matsunaga, S. & Shibasaki, M. (2008). Angew. Chem. 120, 3274-3277.]) and a wide variety of other reactions (Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252(12-14), 1420-1450.]).

[Scheme 1]

Whereas the crystal structures of nearly 100 DMBz derivatives have been published, not all of the crystal structures of the DMBz starting compounds are known. Only the crystal structures of 3,4-DMBz (de Ronde et al., 2016[Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.]) and 2,6-DMBz (Lemercier et al., 2014[Lemercier, J.-N., Gandour, R. D. & Fronczek, F. R. (2014). private communication (refcode CCDC 989140). CSD, Cambridge, England. https://doi:10.5517/cc1268r9.]) have been reported. In this work, we report the structures of the four other di­meth­oxy­benzaldehyde isomers, namely 2,3-DMBz (Fig. 1[link]), 2,4-DMBz (Fig. 2[link]), 2,5-DMBz (Fig. 3[link]) and 3,5-DMBz (Fig. 4[link]).

[Figure 1]
Figure 1
The mol­ecular structure of 2,3-DMBz, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 2,4-DMBz, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of 2,5-DMBz, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of 3,5-DMBz, showing displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

All four reported isomers crystallize in the monoclinic space group P21/c, which is also the case for the previously reported 2,6-DMBz (Lemercier et al., 2014[Lemercier, J.-N., Gandour, R. D. & Fronczek, F. R. (2014). private communication (refcode CCDC 989140). CSD, Cambridge, England. https://doi:10.5517/cc1268r9.]). On the other hand, 3,4-DMBz was reported to crystallize in space group Pna21 (de Ronde et al., 2016[Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.]). 3,5-DMBz has two mol­ecules in the asymmetric unit, while the other crystal structures have one mol­ecule in the asymmetric unit. The DMBz mol­ecules in the crystal structures are almost planar (Table 1[link]). The biggest deviation is found in the 2,3-DMBz in which one of the meth­oxy groups deviates by 1.2 Å from the aromatic plane.

Table 1
Deviation from the aromatic plane (in Å)

  2,3-DMBz 2,4-DMBz 2,5-DMBz 2,6-DMBz (CSD refcode: LIZLAJ) 3,4-DMBz (CSD refcode: IQUGUY) 3,5-DMBz (mol­ecule 1) 3,5-DMBz (mol­ecule 2)
Aldehyde C 0.020 0.060 0.004 0.027 0.020 0.027 0.022
Aldehyde O 0.104 0.089 0.113 0.015 0.095 0.019 0.047
Meth­oxy 1 O 0.048 0.013 0.033 0.011 0.002 0.009 0.015
Meth­oxy 1 C 1.200 0.122 0.099 0.017 0.001 0.087 0.258
Meth­oxy 2 O 0.035 0.019 0.025 0.024 0.033 0.013 0.019
Meth­oxy 2 C 0.013 0.074 0.109 0.040 0.337 0.020 0.109
Meth­oxy 1 and 2 are defined in the same order as the atomic labels, as shown in Fig. 4[link].

3. Supra­molecular features

In the crystal structure of 2,3-DMBz, one of the meth­oxy groups lies in the plane of the aromatic ring (see Fig. 5[link]). The second meth­oxy group points towards the aldehyde group of a neighboring 2,3-DMBz mol­ecule. In the crystal structure of 2,4-DMBz, shown in Fig. 6[link], ππ stacking inter­actions between the aromatic rings are present along the b-axis direction [centroid–centroid separation = 3.9638 (2) Å]. Similarly, in the crystal structure of 2,5-DMBz, aromatic ππ stacking inter­actions are present along the a-axis direction [centroid–centroid separation = 3.8780 (3) Å], as shown in Fig. 7[link]. The crystal structures of 2,6-DMBz (Lemercier et al., 2014[Lemercier, J.-N., Gandour, R. D. & Fronczek, F. R. (2014). private communication (refcode CCDC 989140). CSD, Cambridge, England. https://doi:10.5517/cc1268r9.]), 3,4-DMBz (de Ronde et al., 2016[Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.]) and 3,5-DMBz do not exhibit aromatic ππ stacking inter­actions. As mentioned above, only 3,5-DMBz has two mol­ecules in the asymmetric unit, whereas the other crystal structures have one mol­ecule in the asymmetric unit.

[Figure 5]
Figure 5
Crystal structure of 2,3-DMBz showing the orientation of the meth­oxy groups. One of the meth­oxy groups lies in the plane of the aromatic ring. The second meth­oxy group points towards the aldehyde group of a neighbouring 2,3-DMBz mol­ecule.
[Figure 6]
Figure 6
A view along the b axis of the crystal structure of 2,4-DMBz, in which ππ stacking inter­actions between the aromatic rings are present.
[Figure 7]
Figure 7
A view along the a axis of the crystal structure of 2,5-DMBz, in which ππ stacking inter­actions between the aromatic rings are present.

4. Polymorphism

Polymorph screening using differential scanning calorimetry did not reveal any phase transitions for any DMBz between 133 K and the melting point of the compound (Table 2[link]). On the other hand, a metastable polymorphic form was discovered after rapidly cooling from the melt for both 3,4-DMBz for which the crystal structure was reported previously (de Ronde et al. 2016[Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.]) and 3,5-DMBz. In the course of hours, these polymorphic forms transformed into the stable forms. Powder X-ray diffraction measurements confirmed the existence of these metastable forms (3,4-DMBz: Figs. 8[link], 3[link], 5[link]-DMBz: Fig. 9[link]).

Table 2
Melting point (in K) of DMBz as determined using the onset temperature of differential scanning calorimetry

  2,3-DMBz 2,4-DMBz 2,5-DMBz 2,6-DMBz 3,4-DMBz 3,5-DMBz
Polymorph I (stable form) 322 341 321 368 317 319
Polymorph II         * 310
* Melting point could not be determined using differential scanning calorimetry.
[Figure 8]
Figure 8
Powder X-ray diffraction measurements of form I (black) and II (blue) of 3,4-DMBz. The powder pattern (red) was calculated from the crystal structure by de Ronde et al. (2016[Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.]).
[Figure 9]
Figure 9
Powder X-ray diffraction measurements of form I (black) and II (blue) of 3,5-DMBz. The powder pattern (red) was calculated from the crystal structure.

5. Database survey

A search in the Cambridge Structural Database (Version 5.39, update February 2018, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for di­meth­oxy­benzaldehydes derivatives yielded the crystal structure of 93 compounds, which can be subdivided into fourteen 2,3-DMBz derivatives (including two solvates), fifteen 2,4-DMBz deriv­atives (including four solvates), ten 2,5-DMBz derivatives (including two solvates), nine 2,6-DMBz derivatives (including one solvate), forty two 3,4-DMBz derivatives (including nine solvates) and three 3,5-DMBz derivatives.

6. Synthesis and crystallization

6.1. 2,3-di­meth­oxy­benzaldehyde

30 mg of 2,3-di­meth­oxy­benzaldehyde (97%, Fluoro­chem) was dissolved in 4 mL of isopropyl ether. Slow evaporation of a 1:1 mixture of this solution and heptane yielded colorless block-shaped crystals suitable for single crystal X-ray diffraction.

6.2. 2,4-di­meth­oxy­benzaldehyde

25 mg of 2,4-di­meth­oxy­benzaldeyhyde (98%, Aldrich) was dissolved in a 1:1 ratio of hepta­ne/acetone (1.5 mL). Slow evaporation yielded colorless block-shaped crystals suitable for single crystal X-ray diffraction.

6.3. 2,5-di­meth­oxy­benzaldehyde

1 g of 2,5-di­meth­oxy­benzaldeyhyde (97%, Acros Organics) was dissolved in a mixture of heptane (1 mL) and acetone (1 mL). Slow evaporation yielded colorless needles suitable for single crystal X-ray diffraction.

6.4. 3,5-di­meth­oxy­benzaldehyde

It was noted that 3,5-di­meth­oxy­benzaldehyde (98%, Aldrich) oils out from solution, therefore the same method was used as had previously been employed for 3,4-di­meth­oxy­benzaldehyde (de Ronde et al., 2016[Ronde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.]). In short, a few crystals of the commercial powder were added to a saturated solution in water. Subsequently, the temperature was cycled between 298 and 303 K. This resulted in the growth of single crystals suitable for single-crystal X-ray diffraction in several weeks.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geom­etrically and refined as riding with C—H = 0.95–0.96 and Uiso(H) = 1.2–1.5Ueq(C). The crystal of 3,5-DMBz studied was refined as a two-component twin.

Table 3
Experimental details

  2,3DMBz 2,4DMBz 2,5DMBz 3,5DMBz
Crystal data
Chemical formula C9H10O3 C9H10O3 C9H10O3 C9H10O3
Mr 166.17 166.17 166.17 166.17
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 150 150 150 150
a, b, c (Å) 7.6152 (3), 15.5513 (6), 7.5891 (3) 15.1575 (8), 3.9638 (2), 14.6181 (8) 3.8780 (3), 11.5513 (7), 17.8153 (12) 11.7602 (5), 13.8957 (6), 11.4352 (5)
β (°) 115.8831 (18) 113.8388 (19) 91.808 (2) 118.642 (2)
V3) 808.59 (6) 803.35 (7) 797.66 (10) 1640.03 (13)
Z 4 4 4 8
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.10 0.10 0.10
Crystal size (mm) 0.49 × 0.45 × 0.16 0.50 × 0.43 × 0.40 0.74 × 0.38 × 0.13 0.50 × 0.43 × 0.40
 
Data collection
Diffractometer Bruker D8 Quest APEX3 Bruker D8 Quest APEX3 Bruker D8 Quest APEX3 Bruker D8 Quest APEX3
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.672, 0.747 0.685, 0.746 0.705, 0.747 0.703, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 17821, 4126, 3160 15236, 2461, 2171 30235, 3873, 3276 53075, 7976, 6730
Rint 0.032 0.020 0.024 0.030
(sin θ/λ)max−1) 0.849 0.714 0.834 0.836
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.130, 1.02 0.039, 0.117, 1.03 0.039, 0.124, 1.02 0.042, 0.126, 1.05
No. of reflections 4126 2461 3873 7976
No. of parameters 111 111 111 222
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.60, −0.24 0.40, −0.24 0.54, −0.22 0.48, −0.26
Computer programs: APEX3 and SAINT (Bruker, 2012[Bruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), PEAKREF (Schreurs, 2013[Schreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ShelXLe (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2012); cell refinement: PEAKREF (Schreurs, 2013); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2014/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009), ShelXLe (Hübschle et al., 2011).

2,3-Dimethoxybenzaldehyde (23DMBz) top
Crystal data top
C9H10O3Dx = 1.365 Mg m3
Mr = 166.17Melting point: 322 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.6152 (3) ÅCell parameters from 6893 reflections
b = 15.5513 (6) Åθ = 2.6–36.9°
c = 7.5891 (3) ŵ = 0.10 mm1
β = 115.8831 (18)°T = 150 K
V = 808.59 (6) Å3Block, colourless
Z = 40.49 × 0.45 × 0.16 mm
F(000) = 352
Data collection top
Bruker D8 Quest APEX3
diffractometer
4126 independent reflections
Radiation source: sealed tube3160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.4 pixels mm-1θmax = 37.1°, θmin = 2.6°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2626
Tmin = 0.672, Tmax = 0.747l = 1212
17821 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0743P)2 + 0.0948P]
where P = (Fo2 + 2Fc2)/3
4126 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O010.84423 (8)0.67610 (3)0.72112 (7)0.01819 (11)
O020.93597 (9)0.50880 (4)0.76827 (8)0.02194 (12)
O030.42554 (9)0.77393 (5)0.22027 (10)0.03084 (15)
C040.60779 (10)0.65162 (5)0.38944 (10)0.01633 (12)
C050.79724 (10)0.53265 (4)0.58899 (9)0.01586 (12)
C060.50903 (11)0.59449 (5)0.23432 (10)0.02083 (14)
H060.4109670.6151750.1136750.025*
C070.75191 (9)0.62098 (4)0.56613 (9)0.01466 (12)
C080.55760 (11)0.74397 (5)0.36618 (11)0.02121 (14)
H080.6320720.7818990.4702790.025*
C090.69865 (11)0.47667 (5)0.43414 (11)0.01968 (13)
H090.7290270.4170670.4483650.024*
C100.55498 (11)0.50806 (5)0.25774 (11)0.02239 (15)
H100.4879930.4694730.1524980.027*
C111.04331 (11)0.69266 (5)0.75867 (12)0.02355 (15)
H11A1.1135340.6380430.7780820.035*
H11B1.1061090.7280920.8766790.035*
H11C1.0459460.7231440.6468200.035*
C120.98881 (13)0.41998 (5)0.79585 (12)0.02495 (16)
H12A0.8727380.3851470.7695170.037*
H12B1.0860920.4105930.9311610.037*
H12C1.0438510.4032530.7058080.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O010.0179 (2)0.0172 (2)0.0179 (2)0.00017 (17)0.00634 (17)0.00429 (17)
O020.0282 (3)0.0151 (2)0.0174 (2)0.00471 (19)0.0052 (2)0.00247 (17)
O030.0228 (3)0.0306 (3)0.0343 (3)0.0108 (2)0.0081 (2)0.0124 (3)
C040.0142 (3)0.0176 (3)0.0168 (3)0.0012 (2)0.0064 (2)0.0019 (2)
C050.0180 (3)0.0140 (3)0.0157 (2)0.0007 (2)0.0075 (2)0.0007 (2)
C060.0171 (3)0.0265 (4)0.0164 (3)0.0016 (2)0.0049 (2)0.0001 (2)
C070.0147 (3)0.0138 (3)0.0153 (2)0.0003 (2)0.0064 (2)0.00084 (19)
C080.0185 (3)0.0207 (3)0.0250 (3)0.0049 (2)0.0100 (3)0.0050 (3)
C090.0240 (3)0.0156 (3)0.0207 (3)0.0029 (2)0.0110 (3)0.0034 (2)
C100.0229 (3)0.0240 (3)0.0189 (3)0.0061 (3)0.0078 (3)0.0057 (2)
C110.0193 (3)0.0225 (3)0.0254 (3)0.0045 (3)0.0067 (3)0.0055 (3)
C120.0324 (4)0.0170 (3)0.0272 (3)0.0085 (3)0.0147 (3)0.0064 (3)
Geometric parameters (Å, º) top
O01—C071.3750 (8)C06—H060.9500
O01—C111.4383 (10)C08—H080.9500
O02—C051.3601 (8)C09—C101.3960 (11)
O02—C121.4284 (9)C09—H090.9500
O03—C081.2175 (9)C10—H100.9500
C04—C071.3945 (9)C11—H11A0.9800
C04—C061.4029 (10)C11—H11B0.9800
C04—C081.4767 (10)C11—H11C0.9800
C05—C091.3901 (10)C12—H12A0.9800
C05—C071.4085 (9)C12—H12B0.9800
C06—C101.3807 (12)C12—H12C0.9800
C07—O01—C11112.47 (6)C05—C09—H09120.0
C05—O02—C12117.16 (6)C10—C09—H09120.0
C07—C04—C06119.94 (7)C06—C10—C09120.82 (7)
C07—C04—C08120.08 (6)C06—C10—H10119.6
C06—C04—C08119.98 (6)C09—C10—H10119.6
O02—C05—C09124.88 (6)O01—C11—H11A109.5
O02—C05—C07115.51 (6)O01—C11—H11B109.5
C09—C05—C07119.59 (6)H11A—C11—H11B109.5
C10—C06—C04119.71 (7)O01—C11—H11C109.5
C10—C06—H06120.1H11A—C11—H11C109.5
C04—C06—H06120.1H11B—C11—H11C109.5
O01—C07—C04120.23 (6)O02—C12—H12A109.5
O01—C07—C05119.76 (6)O02—C12—H12B109.5
C04—C07—C05119.96 (6)H12A—C12—H12B109.5
O03—C08—C04123.28 (8)O02—C12—H12C109.5
O03—C08—H08118.4H12A—C12—H12C109.5
C04—C08—H08118.4H12B—C12—H12C109.5
C05—C09—C10119.98 (7)
C12—O02—C05—C092.55 (11)O02—C05—C07—O011.05 (9)
C12—O02—C05—C07178.75 (6)C09—C05—C07—O01177.73 (6)
C07—C04—C06—C100.13 (11)O02—C05—C07—C04178.28 (6)
C08—C04—C06—C10179.23 (7)C09—C05—C07—C040.51 (10)
C11—O01—C07—C04108.70 (7)C07—C04—C08—O03175.45 (7)
C11—O01—C07—C0574.09 (8)C06—C04—C08—O033.90 (11)
C06—C04—C07—O01177.61 (6)O02—C05—C09—C10178.31 (7)
C08—C04—C07—O011.75 (10)C07—C05—C09—C100.34 (11)
C06—C04—C07—C050.40 (10)C04—C06—C10—C090.03 (11)
C08—C04—C07—C05178.96 (6)C05—C09—C10—C060.08 (11)
2,4-Dimethoxybenzaldehyde (24DMBz) top
Crystal data top
C9H10O3Dx = 1.374 Mg m3
Mr = 166.17Melting point: 341 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.1575 (8) ÅCell parameters from 9286 reflections
b = 3.9638 (2) Åθ = 2.8–30.5°
c = 14.6181 (8) ŵ = 0.10 mm1
β = 113.8388 (19)°T = 150 K
V = 803.35 (7) Å3Block, colourless
Z = 40.50 × 0.43 × 0.40 mm
F(000) = 352
Data collection top
Bruker D8 Quest APEX3
diffractometer
2461 independent reflections
Radiation source: sealed tube2171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.4 pixels mm-1θmax = 30.5°, θmin = 2.8°
φ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 55
Tmin = 0.685, Tmax = 0.746l = 2019
15236 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.196P]
where P = (Fo2 + 2Fc2)/3
2461 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O010.08102 (5)0.65429 (18)0.10801 (5)0.02325 (16)
O020.39771 (5)0.76391 (19)0.37610 (5)0.02571 (17)
O030.31680 (6)0.2357 (2)0.56154 (5)0.0358 (2)
C040.30419 (6)0.6579 (2)0.33618 (6)0.01822 (17)
C050.27290 (6)0.4771 (2)0.40045 (6)0.01952 (18)
C060.14709 (6)0.6063 (2)0.20292 (6)0.01766 (17)
C070.24207 (6)0.7210 (2)0.23720 (6)0.01809 (17)
H070.2639570.8397540.1938810.022*
C080.11380 (6)0.4292 (2)0.26563 (6)0.01980 (18)
H080.0487850.3543540.2415360.024*
C090.17672 (6)0.3653 (2)0.36266 (6)0.02020 (18)
H090.1546430.2426050.4051670.024*
C100.11345 (7)0.8119 (2)0.03878 (7)0.02355 (19)
H10A0.1333391.0442630.0601540.035*
H10B0.0608480.8135200.0280470.035*
H10C0.1683000.6857280.0369390.035*
C110.33908 (7)0.3954 (3)0.50273 (7)0.0272 (2)
H110.4038210.4717870.5249410.033*
C120.43374 (7)0.9262 (3)0.31058 (8)0.0276 (2)
H12A0.4255110.7761250.2544320.041*
H12B0.5023610.9776110.3473630.041*
H12C0.3979961.1359950.2851130.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O010.0204 (3)0.0285 (3)0.0187 (3)0.0020 (2)0.0057 (2)0.0016 (2)
O020.0180 (3)0.0327 (4)0.0249 (3)0.0049 (3)0.0071 (2)0.0042 (3)
O030.0340 (4)0.0489 (5)0.0239 (3)0.0020 (3)0.0111 (3)0.0108 (3)
C040.0169 (3)0.0182 (4)0.0204 (4)0.0001 (3)0.0084 (3)0.0010 (3)
C050.0211 (4)0.0201 (4)0.0186 (4)0.0008 (3)0.0093 (3)0.0001 (3)
C060.0189 (4)0.0163 (3)0.0181 (3)0.0013 (3)0.0077 (3)0.0022 (3)
C070.0194 (4)0.0176 (3)0.0194 (4)0.0003 (3)0.0100 (3)0.0001 (3)
C080.0191 (4)0.0194 (4)0.0229 (4)0.0016 (3)0.0106 (3)0.0018 (3)
C090.0229 (4)0.0198 (4)0.0218 (4)0.0003 (3)0.0131 (3)0.0000 (3)
C100.0269 (4)0.0249 (4)0.0188 (4)0.0002 (3)0.0092 (3)0.0011 (3)
C110.0251 (4)0.0335 (5)0.0215 (4)0.0011 (4)0.0078 (3)0.0034 (3)
C120.0215 (4)0.0296 (5)0.0337 (5)0.0017 (3)0.0134 (4)0.0068 (4)
Geometric parameters (Å, º) top
O01—C061.3567 (10)C07—H070.9500
O01—C101.4347 (11)C08—C091.3756 (12)
O02—C041.3629 (10)C08—H080.9500
O02—C121.4326 (11)C09—H090.9500
O03—C111.2201 (12)C10—H10A0.9800
C04—C071.3934 (11)C10—H10B0.9800
C04—C051.4077 (11)C10—H10C0.9800
C05—C091.4057 (12)C11—H110.9500
C05—C111.4608 (12)C12—H12A0.9800
C06—C071.3954 (11)C12—H12B0.9800
C06—C081.4007 (11)C12—H12C0.9800
C06—O01—C10117.43 (7)C08—C09—H09119.2
C04—O02—C12117.63 (7)C05—C09—H09119.2
O02—C04—C07122.59 (7)O01—C10—H10A109.5
O02—C04—C05116.35 (7)O01—C10—H10B109.5
C07—C04—C05121.05 (7)H10A—C10—H10B109.5
C09—C05—C04118.29 (7)O01—C10—H10C109.5
C09—C05—C11120.43 (8)H10A—C10—H10C109.5
C04—C05—C11121.24 (8)H10B—C10—H10C109.5
O01—C06—C07123.34 (8)O03—C11—C05124.40 (9)
O01—C06—C08115.29 (7)O03—C11—H11117.8
C07—C06—C08121.37 (8)C05—C11—H11117.8
C04—C07—C06118.72 (8)O02—C12—H12A109.5
C04—C07—H07120.6O02—C12—H12B109.5
C06—C07—H07120.6H12A—C12—H12B109.5
C09—C08—C06118.95 (8)O02—C12—H12C109.5
C09—C08—H08120.5H12A—C12—H12C109.5
C06—C08—H08120.5H12B—C12—H12C109.5
C08—C09—C05121.60 (8)
C12—O02—C04—C074.23 (12)O01—C06—C07—C04179.94 (7)
C12—O02—C04—C05175.40 (8)C08—C06—C07—C040.36 (12)
O02—C04—C05—C09179.48 (8)O01—C06—C08—C09179.01 (7)
C07—C04—C05—C090.88 (13)C07—C06—C08—C090.60 (12)
O02—C04—C05—C112.82 (13)C06—C08—C09—C050.83 (13)
C07—C04—C05—C11176.82 (8)C04—C05—C09—C080.11 (13)
C10—O01—C06—C074.17 (12)C11—C05—C09—C08177.83 (8)
C10—O01—C06—C08175.43 (7)C09—C05—C11—O031.27 (16)
O02—C04—C07—C06179.28 (8)C04—C05—C11—O03178.93 (10)
C05—C04—C07—C061.10 (12)
2,5-Dimethoxybenzaldehyde (25DMBz) top
Crystal data top
C9H10O3Dx = 1.384 Mg m3
Mr = 166.17Melting point: 321 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.8780 (3) ÅCell parameters from 9955 reflections
b = 11.5513 (7) Åθ = 2.3–36.2°
c = 17.8153 (12) ŵ = 0.10 mm1
β = 91.808 (2)°T = 150 K
V = 797.66 (10) Å3Needle, colourless
Z = 40.74 × 0.38 × 0.13 mm
F(000) = 352
Data collection top
Bruker D8 Quest APEX3
diffractometer
3873 independent reflections
Radiation source: sealed tube3276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.4 pixels mm-1θmax = 36.4°, θmin = 2.1°
φ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1419
Tmin = 0.705, Tmax = 0.747l = 2929
30235 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0691P)2 + 0.1755P]
where P = (Fo2 + 2Fc2)/3
3873 reflections(Δ/σ)max = 0.001
111 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O010.70027 (15)0.37815 (5)0.56706 (3)0.02308 (11)
O020.32551 (16)0.55079 (5)0.84287 (3)0.02348 (12)
O030.81653 (19)0.71583 (5)0.60790 (3)0.02970 (14)
C040.64196 (16)0.53211 (5)0.65291 (3)0.01623 (11)
C050.54777 (16)0.57451 (5)0.72267 (3)0.01719 (11)
H050.5806160.6541180.7342170.021*
C060.44894 (18)0.34122 (6)0.68849 (4)0.01849 (12)
H060.4132470.2617040.6770560.022*
C070.40630 (16)0.50128 (5)0.77542 (3)0.01656 (11)
C080.35490 (17)0.38467 (6)0.75789 (4)0.01814 (12)
H080.2551500.3345760.7935010.022*
C090.59531 (16)0.41403 (5)0.63571 (3)0.01655 (11)
C100.79366 (19)0.61160 (6)0.59830 (4)0.02189 (13)
H100.8780850.5799330.5532200.026*
C110.6662 (2)0.25766 (6)0.55053 (4)0.02393 (14)
H11A0.7873490.2124400.5897210.036*
H11B0.7665170.2413370.5018410.036*
H11C0.4213620.2364930.5486650.036*
C120.1987 (2)0.47519 (7)0.89872 (4)0.02583 (15)
H12A0.0201110.4410900.8807890.039*
H12B0.1619010.5189450.9449110.039*
H12C0.3671460.4134660.9089340.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O010.0330 (3)0.0181 (2)0.0185 (2)0.00401 (19)0.00611 (18)0.00154 (16)
O020.0348 (3)0.0174 (2)0.0187 (2)0.00073 (19)0.00818 (19)0.00082 (16)
O030.0450 (3)0.0186 (2)0.0256 (3)0.0097 (2)0.0032 (2)0.00350 (18)
C040.0178 (2)0.0145 (2)0.0164 (2)0.00141 (18)0.00017 (18)0.00262 (18)
C050.0197 (2)0.0141 (2)0.0178 (2)0.00057 (19)0.00054 (19)0.00188 (18)
C060.0222 (3)0.0146 (2)0.0186 (2)0.00275 (19)0.0011 (2)0.00149 (18)
C070.0179 (2)0.0156 (2)0.0163 (2)0.00086 (19)0.00157 (18)0.00161 (18)
C080.0205 (3)0.0158 (2)0.0183 (2)0.00184 (19)0.00202 (19)0.00261 (18)
C090.0182 (2)0.0155 (2)0.0160 (2)0.00112 (19)0.00031 (18)0.00083 (18)
C100.0277 (3)0.0191 (3)0.0189 (3)0.0051 (2)0.0018 (2)0.0032 (2)
C110.0306 (3)0.0194 (3)0.0219 (3)0.0011 (2)0.0020 (2)0.0034 (2)
C120.0322 (4)0.0232 (3)0.0227 (3)0.0033 (3)0.0109 (3)0.0042 (2)
Geometric parameters (Å, º) top
O01—C091.3655 (8)C06—C091.3954 (9)
O01—C111.4280 (9)C06—H060.9500
O02—C071.3757 (8)C07—C081.3957 (9)
O02—C121.4232 (9)C08—H080.9500
O03—C101.2189 (9)C10—H100.9500
C04—C051.3952 (9)C11—H11A0.9800
C04—C091.4083 (9)C11—H11B0.9800
C04—C101.4738 (9)C11—H11C0.9800
C05—C071.3901 (9)C12—H12A0.9800
C05—H050.9500C12—H12B0.9800
C06—C081.3936 (9)C12—H12C0.9800
C09—O01—C11116.90 (5)O01—C09—C04116.67 (5)
C07—O02—C12116.67 (6)C06—C09—C04119.30 (6)
C05—C04—C09119.89 (6)O03—C10—C04123.47 (7)
C05—C04—C10119.37 (6)O03—C10—H10118.3
C09—C04—C10120.73 (6)C04—C10—H10118.3
C07—C05—C04120.57 (6)O01—C11—H11A109.5
C07—C05—H05119.7O01—C11—H11B109.5
C04—C05—H05119.7H11A—C11—H11B109.5
C08—C06—C09120.27 (6)O01—C11—H11C109.5
C08—C06—H06119.9H11A—C11—H11C109.5
C09—C06—H06119.9H11B—C11—H11C109.5
O02—C07—C05116.31 (6)O02—C12—H12A109.5
O02—C07—C08124.18 (6)O02—C12—H12B109.5
C05—C07—C08119.51 (6)H12A—C12—H12B109.5
C06—C08—C07120.44 (6)O02—C12—H12C109.5
C06—C08—H08119.8H12A—C12—H12C109.5
C07—C08—H08119.8H12B—C12—H12C109.5
O01—C09—C06124.03 (6)
C09—C04—C05—C070.32 (9)C11—O01—C09—C04177.58 (6)
C10—C04—C05—C07179.56 (6)C08—C06—C09—O01178.78 (6)
C12—O02—C07—C05176.57 (6)C08—C06—C09—C040.97 (10)
C12—O02—C07—C083.41 (10)C05—C04—C09—O01178.60 (6)
C04—C05—C07—O02179.25 (6)C10—C04—C09—O010.63 (9)
C04—C05—C07—C080.72 (10)C05—C04—C09—C061.16 (9)
C09—C06—C08—C070.07 (10)C10—C04—C09—C06179.60 (6)
O02—C07—C08—C06179.05 (6)C05—C04—C10—O036.37 (11)
C05—C07—C08—C060.92 (10)C09—C04—C10—O03174.39 (7)
C11—O01—C09—C062.17 (10)
3,5-Dimethoxybenzaldehyde (35DMBz) top
Crystal data top
C9H10O3Dx = 1.346 Mg m3
Mr = 166.17Melting point: 319 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7602 (5) ÅCell parameters from 9794 reflections
b = 13.8957 (6) Åθ = 2.5–36.4°
c = 11.4352 (5) ŵ = 0.10 mm1
β = 118.642 (2)°T = 150 K
V = 1640.03 (13) Å3Block, colourless
Z = 80.50 × 0.43 × 0.40 mm
F(000) = 704
Data collection top
Bruker D8 Quest APEX3
diffractometer
7976 independent reflections
Radiation source: sealed tube6730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.4 pixels mm-1θmax = 36.5°, θmin = 2.5°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2322
Tmin = 0.703, Tmax = 0.747l = 1919
53075 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.3147P]
where P = (Fo2 + 2Fc2)/3
7976 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O010.10858 (7)0.50152 (5)0.16802 (7)0.02241 (12)
O020.14028 (7)0.31769 (5)0.35652 (7)0.02335 (13)
O030.07159 (7)0.74381 (5)0.32465 (7)0.02290 (13)
O040.38859 (7)0.67098 (5)0.07120 (6)0.02131 (12)
O050.56249 (7)0.91448 (4)0.40230 (6)0.02143 (12)
O060.64980 (9)0.48884 (5)0.50429 (8)0.03135 (16)
C070.01767 (7)0.62606 (5)0.24757 (8)0.01641 (12)
H070.0552720.6761400.2208620.020*
C080.11303 (7)0.57541 (5)0.34891 (7)0.01585 (12)
H080.1637970.5903890.3907520.019*
C090.03688 (7)0.53026 (6)0.22608 (8)0.01607 (12)
C100.46028 (7)0.69980 (6)0.20008 (8)0.01623 (12)
C110.09212 (7)0.47970 (5)0.32589 (7)0.01525 (12)
C120.05762 (7)0.64810 (5)0.30898 (8)0.01594 (12)
C130.60966 (8)0.74637 (6)0.47010 (8)0.01768 (13)
H130.6599660.7618900.5618680.021*
C140.01837 (8)0.45589 (6)0.26492 (8)0.01680 (12)
H140.0056160.3905050.2498280.020*
C150.55203 (7)0.81845 (5)0.37503 (7)0.01604 (12)
C160.47689 (7)0.79570 (6)0.23988 (7)0.01637 (12)
H160.4375350.8453820.1758130.020*
C170.65223 (10)0.57391 (7)0.52876 (9)0.02399 (16)
H170.6961510.5928820.6196850.029*
C180.51868 (8)0.62611 (6)0.29356 (8)0.01800 (13)
H180.5085520.5607270.2660970.022*
C190.59175 (8)0.65038 (6)0.42732 (8)0.01768 (13)
C200.14979 (8)0.40334 (6)0.37109 (8)0.01879 (13)
H200.1975770.4226630.4145340.023*
C210.14813 (10)0.76918 (6)0.38642 (10)0.02406 (16)
H21A0.2358850.7433910.3337530.036*
H21B0.1521960.8394100.3913060.036*
H21C0.1087750.7421270.4765440.036*
C220.30925 (9)0.74150 (7)0.02458 (8)0.02306 (15)
H22A0.2518640.7716070.0047830.035*
H22B0.2570530.7103780.1110970.035*
H22C0.3645240.7907730.0329720.035*
C230.64453 (9)0.94220 (6)0.53742 (8)0.02092 (14)
H23A0.6114740.9145270.5940920.031*
H23B0.6458391.0125310.5443930.031*
H23C0.7325860.9185920.5665490.031*
C240.17317 (10)0.57404 (7)0.13303 (11)0.02795 (19)
H24A0.1087500.6161720.0646240.042*
H24B0.2260380.5435020.0983400.042*
H24C0.2289880.6121580.2121250.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O010.0291 (3)0.0174 (3)0.0313 (3)0.0012 (2)0.0229 (3)0.0018 (2)
O020.0322 (3)0.0155 (3)0.0262 (3)0.0037 (2)0.0170 (3)0.0008 (2)
O030.0310 (3)0.0124 (2)0.0347 (3)0.0003 (2)0.0233 (3)0.0003 (2)
O040.0257 (3)0.0174 (3)0.0159 (2)0.0009 (2)0.0060 (2)0.00314 (19)
O050.0276 (3)0.0133 (2)0.0164 (2)0.0012 (2)0.0050 (2)0.00162 (18)
O060.0421 (4)0.0170 (3)0.0329 (4)0.0070 (3)0.0164 (3)0.0048 (3)
C070.0178 (3)0.0140 (3)0.0191 (3)0.0010 (2)0.0103 (2)0.0003 (2)
C080.0182 (3)0.0144 (3)0.0166 (3)0.0007 (2)0.0097 (2)0.0002 (2)
C090.0173 (3)0.0151 (3)0.0179 (3)0.0006 (2)0.0101 (2)0.0004 (2)
C100.0170 (3)0.0156 (3)0.0160 (3)0.0003 (2)0.0078 (2)0.0015 (2)
C110.0176 (3)0.0138 (3)0.0148 (3)0.0011 (2)0.0081 (2)0.0007 (2)
C120.0181 (3)0.0128 (3)0.0179 (3)0.0005 (2)0.0094 (2)0.0001 (2)
C130.0202 (3)0.0162 (3)0.0158 (3)0.0023 (2)0.0079 (2)0.0009 (2)
C140.0201 (3)0.0138 (3)0.0185 (3)0.0007 (2)0.0109 (2)0.0001 (2)
C150.0174 (3)0.0137 (3)0.0163 (3)0.0012 (2)0.0075 (2)0.0006 (2)
C160.0180 (3)0.0144 (3)0.0154 (3)0.0011 (2)0.0070 (2)0.0005 (2)
C170.0305 (4)0.0185 (3)0.0221 (3)0.0059 (3)0.0119 (3)0.0045 (3)
C180.0210 (3)0.0144 (3)0.0193 (3)0.0011 (2)0.0102 (3)0.0002 (2)
C190.0206 (3)0.0148 (3)0.0183 (3)0.0027 (2)0.0098 (3)0.0019 (2)
C200.0232 (3)0.0161 (3)0.0197 (3)0.0030 (2)0.0125 (3)0.0002 (2)
C210.0301 (4)0.0173 (3)0.0324 (4)0.0023 (3)0.0212 (4)0.0013 (3)
C220.0249 (4)0.0231 (4)0.0165 (3)0.0040 (3)0.0062 (3)0.0012 (3)
C230.0248 (3)0.0175 (3)0.0170 (3)0.0018 (3)0.0072 (3)0.0029 (2)
C240.0334 (4)0.0236 (4)0.0400 (5)0.0051 (3)0.0281 (4)0.0032 (4)
Geometric parameters (Å, º) top
O01—C091.3594 (10)C13—C191.4014 (11)
O01—C241.4297 (11)C13—H130.9500
O02—C201.2144 (10)C14—H140.9500
O03—C121.3624 (10)C15—C161.4000 (10)
O03—C211.4292 (11)C16—H160.9500
O04—C101.3609 (10)C17—C191.4797 (12)
O04—C221.4321 (11)C17—H170.9500
O05—C151.3623 (9)C18—C191.3898 (11)
O05—C231.4275 (10)C18—H180.9500
O06—C171.2120 (12)C20—H200.9500
C07—C091.3918 (11)C21—H21A0.9800
C07—C121.4025 (11)C21—H21B0.9800
C07—H070.9500C21—H21C0.9800
C08—C121.3923 (11)C22—H22A0.9800
C08—C111.4003 (11)C22—H22B0.9800
C08—H080.9500C22—H22C0.9800
C09—C141.4014 (11)C23—H23A0.9800
C10—C161.3914 (11)C23—H23B0.9800
C10—C181.3996 (11)C23—H23C0.9800
C11—C141.3884 (11)C24—H24A0.9800
C11—C201.4795 (11)C24—H24B0.9800
C13—C151.3922 (11)C24—H24C0.9800
C09—O01—C24117.83 (7)O06—C17—H17117.6
C12—O03—C21116.74 (7)C19—C17—H17117.6
C10—O04—C22117.72 (7)C19—C18—C10118.77 (7)
C15—O05—C23116.88 (6)C19—C18—H18120.6
C09—C07—C12119.48 (7)C10—C18—H18120.6
C09—C07—H07120.3C18—C19—C13121.69 (7)
C12—C07—H07120.3C18—C19—C17119.99 (7)
C12—C08—C11118.39 (7)C13—C19—C17118.32 (7)
C12—C08—H08120.8O02—C20—C11124.56 (8)
C11—C08—H08120.8O02—C20—H20117.7
O01—C09—C07123.95 (7)C11—C20—H20117.7
O01—C09—C14115.37 (7)O03—C21—H21A109.5
C07—C09—C14120.68 (7)O03—C21—H21B109.5
O04—C10—C16123.58 (7)H21A—C21—H21B109.5
O04—C10—C18115.74 (7)O03—C21—H21C109.5
C16—C10—C18120.68 (7)H21A—C21—H21C109.5
C14—C11—C08121.94 (7)H21B—C21—H21C109.5
C14—C11—C20120.39 (7)O04—C22—H22A109.5
C08—C11—C20117.66 (7)O04—C22—H22B109.5
O03—C12—C08124.06 (7)H22A—C22—H22B109.5
O03—C12—C07115.08 (7)O04—C22—H22C109.5
C08—C12—C07120.86 (7)H22A—C22—H22C109.5
C15—C13—C19118.47 (7)H22B—C22—H22C109.5
C15—C13—H13120.8O05—C23—H23A109.5
C19—C13—H13120.8O05—C23—H23B109.5
C11—C14—C09118.66 (7)H23A—C23—H23B109.5
C11—C14—H14120.7O05—C23—H23C109.5
C09—C14—H14120.7H23A—C23—H23C109.5
O05—C15—C13124.69 (7)H23B—C23—H23C109.5
O05—C15—C16114.44 (7)O01—C24—H24A109.5
C13—C15—C16120.86 (7)O01—C24—H24B109.5
C10—C16—C15119.52 (7)H24A—C24—H24B109.5
C10—C16—H16120.2O01—C24—H24C109.5
C15—C16—H16120.2H24A—C24—H24C109.5
O06—C17—C19124.76 (9)H24B—C24—H24C109.5
C24—O01—C09—C073.19 (13)C23—O05—C15—C133.63 (12)
C24—O01—C09—C14176.62 (8)C23—O05—C15—C16176.23 (7)
C12—C07—C09—O01179.69 (7)C19—C13—C15—O05179.27 (8)
C12—C07—C09—C140.11 (12)C19—C13—C15—C160.58 (12)
C22—O04—C10—C1610.72 (12)O04—C10—C16—C15179.72 (7)
C22—O04—C10—C18169.48 (8)C18—C10—C16—C150.50 (12)
C12—C08—C11—C140.02 (11)O05—C15—C16—C10179.48 (7)
C12—C08—C11—C20178.95 (7)C13—C15—C16—C100.38 (12)
C21—O03—C12—C080.13 (12)O04—C10—C18—C19179.06 (7)
C21—O03—C12—C07179.77 (8)C16—C10—C18—C191.13 (12)
C11—C08—C12—O03179.42 (7)C10—C18—C19—C130.93 (12)
C11—C08—C12—C070.20 (11)C10—C18—C19—C17178.64 (8)
C09—C07—C12—O03179.50 (7)C15—C13—C19—C180.09 (12)
C09—C07—C12—C080.15 (12)C15—C13—C19—C17179.49 (8)
C08—C11—C14—C090.28 (11)O06—C17—C19—C184.47 (15)
C20—C11—C14—C09178.66 (7)O06—C17—C19—C13175.94 (10)
O01—C09—C14—C11179.50 (7)C14—C11—C20—O021.69 (13)
C07—C09—C14—C110.32 (12)C08—C11—C20—O02179.33 (8)
Deviation from the aromatic plane (in Å) top
2,3-DMBz2,4-DMBz2,5-DMBz2,6-DMBz (CSD entry: LIZLAJ)3,4-DMBz (CSD entry: IQUGUY)3,5-DMBz (molecule 1)3,5-DMBz (molecule 2)
Aldehyde C0.0200.0600.0040.0270.0200.0270.022
Aldehyde O0.1040.0890.1130.0150.0950.0190.047
Methoxy 1 O0.0480.0130.0330.0110.0020.0090.015
Methoxy 1 C1.2000.1220.0990.0170.0010.0870.258
Methoxy 2 O0.0350.0190.0250.0240.0330.0130.019
Methoxy 2 C0.0130.0740.1090.0400.3370.0200.109
Methoxy 1 and 2 are defined in the same order as the atomic labels, as shown in Figure 4.
Melting point (in K) of DMBz as determined using the onset temperature of differential scanning calorimetry top
2,3-DMBz2,4-DMBz2,5-DMBz2,6-DMBz3,4-DMBz3,5-DMBz
Polymorph I (stable form)322341321368317319
Polymorph II*310
* Melting point could not be determined using differential scanning calorimetry.
top

References

First citationBruker (2012). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, P. & Linert, W. (2016). Coord. Chem. Rev. 311, 1–23.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252(12-14), 1420-1450.  CrossRef Google Scholar
First citationHanda, S., Nagawa, K., Sohtome, Y., Matsunaga, S. & Shibasaki, M. (2008). Angew. Chem. 120, 3274–3277.  CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLemercier, J.-N., Gandour, R. D. & Fronczek, F. R. (2014). private communication (refcode CCDC 989140). CSD, Cambridge, England. https://doi:10.5517/cc1268r9.  Google Scholar
First citationMaity, T., Saha, D., Bhunia, S., Brandão, P., Das, S. & Koner, S. (2015). RSC Adv. 5, 82179–82191.  CrossRef Google Scholar
First citationRonde, E. de, Brugman, S. J. T., Koning, N., Tinnemans, P. & Vlieg, E. (2016). IUCrData, 1, x161008.  Google Scholar
First citationSchreurs, A. M. M. (2013). PEAKREF. Utrecht University, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds