research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of poly[[di-μ3-glycine-lithium] perchlorate]

CROSSMARK_Color_square_no_text.svg

aCrystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR College (Autonomous), Tiruchirappalli 620 023, India, bBiomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India, and cDepartment of Bio-Medical Engineering, Aarupadai Veedu Institute of Technology, Vinayaga Missions Research Foundation, Paiyanoor, Chennai 603 104, India
*Correspondence e-mail: thamu@scbt.sastra.edu

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 19 November 2018; accepted 20 December 2018; online 4 January 2019)

In the title salt, {[Li(C2H5NO2)2]ClO4}n, the Li+ cation is coordinated by four carboxyl­ate oxygen atoms of the glycine mol­ecules with a distorted tetra­hedral geometry. The glycine exists in a zwitterionic form with protonated amino and deprotonated carboxyl­ate groups. In the crystalline state, the title salt is primarily stabilized by inter­molecular N—H⋯O and Cα—H⋯O inter­actions which inter­connect various units. Hirshfeld surface analysis indicates that the inter­molecular H⋯O/O⋯H inter­actions are the most important contributors to the crystal packing.

1. Chemical context

As part of an ongoing effort aimed at the elucidation of the crystal and mol­ecular structures of several metal complexes/co-crystals originating from simple amino acids (Balakrishnan et al., 2013a[Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2013a). Acta Cryst. E69, o57.],b[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013b). Acta Cryst. E69, m60-m61.]; Revathi et al., 2015[Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875-878.]; Sathiskumar et al., 2015a[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta A Mol. Biomol. Spectrosc. 138, 187-194.],b[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217-219.]), we report herein the crystal structure of (I)[link], a bis(glycinium)lithium perchlorate salt complex and discuss the hydrogen-bonding inter­actions it forms. The crystal packing and important molecular geometries of (I) are compared with a closely related structure bis(glycine)lithium nitrate salt complex (Baran et al., 2009[Baran, J., Drozd, M., Ratajczak, H. & Pierraszko, A. (2009). J. Mol. Struct. 927, 42-49.]).

[Scheme 1]

2. Structural commentary

An ORTEP view of the title salt is shown in Fig. 1[link]. The asymmetric unit contains two glycinium units, one Li cation and a perchlorate anion. Both glycine mol­ecules exhibit a zwitterionic structure, as evident from the bond lengths involving the carboxyl­ate atoms (Table 1[link]) and the protonation of the N atoms of the glycine mol­ecules. In (I)[link], the torsion angle N1A—C2A—C1A—O1A in the one of the glycinium is −0.18 (19)°, while the corresponding angle is 20.75 (18)° in the other glycinium. The superposition of these two glycine mol­ecules involving non-hydrogen atoms reveals high degree of similarity with an r.m.s.d. value of 0.13 Å, the maximum deviation (0.19 Å) being observed at the Cα (C2A and C2B) atom.

Table 1
Selected geometric parameters (Å, °)

O1A—Li1i 1.991 (3) O2A—Li1 2.015 (3)
O2A—Li1ii 1.966 (3) O1B—Li1 1.906 (3)
       
O1B—Li1—O1Aiii 108.95 (12) O1B—Li1—O2A 102.15 (11)
O2Aiv—Li1—O1Aiii 102.03 (11) O2Aiv—Li1—O2A 109.18 (12)
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Part of the crystal structure of (I)[link] showing the atomic labelling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) x, y − 1, z; (b) x, y + 1, z; (c) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (d) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]].

In the crystal, the Li cation is coordinated by four carboxyl­ate oxygen atoms of the glycine mol­ecules. One oxygen atom from each glycine mol­ecule is incorporated in the Li coordination sphere with Li—O distances ranging from 1.906 (3) to 2.015 (3) Å. The geometry around the Li cation is distorted tetra­hedral, as discernible from the angles around the Li cation (Table 1[link]). The lithium coordination is extended as a layer that runs parallel to the b axis. The distance between two adjacent Li ions is 3.270 (13) Å.

In a closely related structure of the complex bis­(glycine) lithium nitrate (Baran et al., 2009[Baran, J., Drozd, M., Ratajczak, H. & Pierraszko, A. (2009). J. Mol. Struct. 927, 42-49.]), the Li cation is surrounded by four carboxyl­ate oxygen atoms in a distorted tetra­hedral geometry as in (I)[link]. The distance between two adjacent Li ions is 5.034 Å.

3. Supra­molecular features

As shown in Table 2[link], the title salt is stabilized by a network of inter­molecular N—H⋯O, N—H⋯Cl and Cα—H⋯O inter­actions. Overall, the crystal structure of the title salt can be described as alternate layers of perchlorate anions and Li-glycine cations (Fig. 2[link]); these layers extend along the c-axis direction. In the crystalline state, each of the zwitterionic glycine mol­ecule is arranged in a different way. The first glycine, mol­ecule A (shown in grey), forms double arrays that run parallel to the b- and c-axis directions. In the array parallel to the b axis, the mol­ecules are oriented in opposite directions, as shown in Fig. 3[link]. The first glycine mol­ecule also forms arrays running parallel to the b axis. The second glycine mol­ecules (shown in orange) and the perchlorate anions are sandwiched between adjacent arrays formed by the first glycinium mol­ecules (Fig. 3[link]). Similar packing features are observed for bis­(glycine)lithium nitrate (Baran et al., 2009[Baran, J., Drozd, M., Ratajczak, H. & Pierraszko, A. (2009). J. Mol. Struct. 927, 42-49.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H11⋯Cl1v 0.88 (3) 2.97 (3) 3.7635 (17) 151 (2)
N1A—H11⋯O4v 0.88 (3) 2.16 (3) 3.037 (2) 178 (2)
N1A—H12⋯O5vi 0.90 (3) 2.23 (3) 2.965 (2) 139 (2)
N1A—H12⋯O6vii 0.90 (3) 2.51 (3) 3.125 (2) 126 (2)
N1A—H13⋯O4 0.85 (3) 2.29 (3) 3.091 (2) 156 (2)
N1B—H14⋯O2Bi 0.90 (2) 2.00 (2) 2.8653 (19) 160.5 (18)
N1B—H15⋯O1Aviii 0.89 (2) 2.05 (2) 2.9308 (16) 169.8 (19)
N1B—H16⋯O1Bix 0.93 (2) 2.35 (3) 2.9249 (17) 119 (2)
N1B—H16⋯O2Bx 0.93 (2) 2.28 (2) 3.119 (2) 150 (2)
C2A—H21⋯O1B 0.97 2.63 3.3747 (18) 134
C2A—H22⋯O5v 0.97 2.44 3.185 (2) 133
C2B—H23⋯O2Axi 0.97 2.60 3.4867 (18) 152
C2B—H24⋯O4iii 0.97 2.55 3.360 (2) 141
Symmetry codes: (i) x, y-1, z; (iii) x, y+1, z; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (viii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) -x+1, -y+1, -z+1; (x) -x+1, -y+2, -z+1; (xi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal structure of (I)[link], comprising alternate layers of Li–glycinium units and perchlorate anions, viewed down the b axis. Hydrogen bonds are indicated by dashed lines.
[Figure 3]
Figure 3
Second glycinium mol­ecules (orange) and perchlorate anions are sandwiched between arrays of the first glycinium mol­ecules (grey).

Furthermore, a careful examination of the crystal structure reveals that the first glycinium mol­ecule does not self-assemble in the solid state. It inter­acts with the perchlorate anion through inter­molecular N—H⋯O and N—H⋯Cl inter­actions and with the second glycinium via inter­molecular Cα—H⋯O inter­actions. In contrast, the second glycinium mol­ecule is able to self-associate in the crystal through N—H⋯O inter­actions (involving H14⋯O2B and H16⋯O2B). The former linear hydrogen bond links the glycinium mol­ecules in a head-to-tail fashion in which amino acids are self-associated via their amino and carboxyl­ate groups. This is one of the characteristic features observed in many amino acids and amino acid complexes (Sharma et al., 2006[Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148-o152.]; Selvaraj et al., 2007[Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459-468.]; Balakrishnan et al., 2013a[Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2013a). Acta Cryst. E69, o57.],b[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013b). Acta Cryst. E69, m60-m61.]; Revathi et al., 2015[Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875-878.]). Moreover, this head-to-tail chain sequence extends along the b-axis direction and adjacent chains are oriented in an anti-parallel fashion. Centrosymmetrically related dimers [R22(10) motif] of the second glycinium mol­ecules are generated through H16⋯O2B inter­actions. Together, the H14⋯O2B and H16⋯O2B inter­actions lead to alternating R22(10) and R42(8) motifs (Fig. 4[link]).

[Figure 4]
Figure 4
Anti-parallel glycinium arrays showing the formation of alternate R22(10) and R42(8) motifs.

The protonated amino group of the first glycinium (mol A) is involved in five hydrogen-bonding (N—H⋯O and N—H⋯Cl) inter­actions (see Table 2[link]). One of the bifurcated hydrogen-bonding inter­actions is formed between H12 and atoms O5 and O6 of the perchlorate anions. This inter­actions generate an R24(8) loop motif in which two glycinium and two perchlorate ions are involved [Fig. 5[link](a)]. Inter­molecular N1A—H13⋯O4 and C2A—H21⋯O3 inter­actions connect the glycinium mol­ecules and perchlorate anions into a loop with adjacent loops being inter­connected by C2A—H22⋯O5 inter­actions [Fig. 5[link](b)]. As mentioned earlier, the second glycinium inter­acts with carboxyl­ate groups through its protonated amino group (N1B) (Fig. 4[link]). It also inter­acts with the perchlorate anion through C2B—H24⋯O4 inter­action.

[Figure 5]
Figure 5
(a) The glycinium mol­ecules and perchlorate anions form a closed R24(8) loop through inter­molecular N—H⋯O hydrogen bonds. (b) The glycinium mol­ecules and perchlorate anions are inter­connected by N—H⋯O and Cα—H⋯O inter­actions, forming a ring motif, with adjacent rings connected by Cα—H⋯O inter­actions.

4. Hirshfeld surface analysis and 2D fingerprint plots

The Hirshfeld surface (HS) analysis was carried out in order to understand the nature of the inter­molecular inter­actions present in the crystal structure. The shorter and longer contacts are indicated as red and blue spots on the HS and contacts with distances equal to the sum of the van der Waals radii are represented as white. The Hirshfeld surfaces for the cation (consisting of two glycinium mol­ecules and a lithium ion) and anion of the title salt complex were generated and analysed separately using the program CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.]). The HS of the cation mapped over the normalized distance, dnorm, and the 2D fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) are illustrated in Fig. 6[link]. In the cation, inter­molecular O⋯H/H⋯O inter­actions are predominant making a 66.9% contribution to the total HS. In the two-dimensional fingerprint plots, these contacts are depicted as a pair of sharp spikes with de + di ∼1.9 Å. There is a remarkable difference observed in the relative contribution of the H⋯O (donor region where de > di) and O⋯H (acceptor region where de < di) contacts. The former contact contributes 47.3%, while the contribution of the latter reciprocal contact is 19.6%. Similarly, the relative contribution of the Li⋯O/O⋯Li contacts is calculated to be 12.7% and these contacts appear as sharp spikes at a distance of around 1.9 Å. The proportions of Li⋯O and O⋯Li contacts are comparable (5.9 and 6.8%, respectively). The H⋯H contacts contribute 11.3% to the total HS of the cation part. The H⋯Li/Li⋯H (2.5%), O⋯C/C⋯O (2.4%) and O⋯O (2.0%) contacts play a minor role in the stabilization of the crystal structure.

[Figure 6]
Figure 6
(a) Hirshfeld surface of the bis­(glycinium)lithium unit and (b) two-dimensional fingerprint plots for the inter­molecular O⋯H/H⋯O and Li⋯O/O⋯Li contacts.

In the perchlorate anion, the relative contributions of the O⋯H/H⋯O and O⋯O contacts are 81.4 and 18.2%, respectively (Fig. 7[link]). The O⋯H/H⋯O contacts visible on the HS are due to the N—H⋯O and C—H⋯O hydrogen bonds. The O⋯O contacts are also visible on the HS and this contact of around 2.8 Å has the shortest distances of de and di of around 1.4 Å (Fig. 8[link]). This O⋯O short contact [2.879 (2) Å] links the anionic mol­ecules into a chain running parallel to the b-axis direction.

[Figure 7]
Figure 7
(a) Hirshfeld surface of the perchlorate unit and (b) two-dimensional fingerprint plots for the inter­molecular O⋯H/H⋯O and O⋯O contacts.
[Figure 8]
Figure 8
An inter­molecular O⋯O contact inter­connects adjacent percholorate anions.

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.39, last update August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the keywords `lithium (name)' and `amino-acids, peptides and complexes (class)' yielded 50 hits of which 18 are glycine amino acids. In most of the complexes, carboxyl­ate oxygen atoms are involved in the Li coordination as described in the following examples. In the catena-[μ3-glycinato-O,O′)-(nitrato-O)lithium] complex, one of oxygen atoms of the nitro group is involved in the Li coordination along with the glycine carboxyl­ate O atoms (ALUNEA, Baran et al., 2003[Baran, J., Drozd, M., Pietraszko, A., Trzebiatowska, M. & Ratajczak, H. (2003). Pol. J. Chem. 77, 1561-1577.]). In three complexes (HEFWUK, Müller et al., 1994[Müller, G., Maier, G.-M. & Lutz, M. (1994). Inorg. Chim. Acta, 218, 121-131.]; NEPWUC, Balakrishnan et al., 2013b[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013b). Acta Cryst. E69, m60-m61.]; UCIYOV, Fleck et al., 2006[Fleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122-m125.]), the water O atom and three glycine carboxyl­ate O atoms partici­pate in the Li coordination. In the catena-[[μ4-glycyl-N,O,O,O′]lithium] complex (HEFXAR, Müller et al., 1994[Müller, G., Maier, G.-M. & Lutz, M. (1994). Inorg. Chim. Acta, 218, 121-131.]), the deprotonated amino group N atom is involved in the Li coordination sphere and in cyclo­[tris­(glycyl-prolyl-O)]isothio­cyanato­lithium trihydrate (YUWXUJ, Thomas et al., 1994[Thomas, L. M., Ramasubbu, N. & Bhandary, K. K. (1994). Biopolymers, 34, 1007-1013.]), the N atom of the iso­thio­cynate, which acts as a fourth ligand, participates in the Li coordination sphere.

A detailed survey was also been conducted in the protein data bank (www.rcsb.org) to understand the Li+ coordination with protein mol­ecules. The keyword `lithium' was used in the search, which resulted in 74 hits (up to 3.0 Å resolution). There are 30 structures found with better than 1.5 Å resolution and these structures were examined further. In this dataset, we found that Li is three- to six-coordinate with a water mol­ecule belonging to the Li complex cation. Moreover, the residues aspartate and glutamate are included in the Li coordination in several structures.

6. Synthesis and crystallization

The title salt was synthesized by dissolving AR-grade glycine and lithium perchlorate in a 2:1 stoichiometric ratio in double distilled water and stirred continuously for 2 h. Slow evaporation of this aqueous solution at room temperature yielded transparent colourless single crystals of the title salt.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of N-bound H atoms were located from a difference-Fourier map and refined freely along with their isotropic displacement parameters. The remaining H atoms were placed in calculated positions (C—H = 0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). Reflections 1 0 0 and 0 0 2 were obscured by the beam stop and were omitted during final refinement cycle.

Table 3
Experimental details

Crystal data
Chemical formula [Li(C2H5NO2)2]ClO4
Mr 256.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 12.7792 (14), 5.2144 (4), 15.6368 (18)
β (°) 111.808 (4)
V3) 967.40 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.35 × 0.30 × 0.30
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.865, 0.883
No. of measured, independent and observed [I > 2σ(I)] reflections 7318, 2304, 2047
Rint 0.023
(sin θ/λ)max−1) 0.662
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.092, 1.07
No. of reflections 2304
No. of parameters 170
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.42
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[di-µ3-glycine-lithium] perchlorate] top
Crystal data top
[Li(C2H5NO2)2]ClO4F(000) = 528
Mr = 256.53Dx = 1.761 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.7792 (14) ÅCell parameters from 4824 reflections
b = 5.2144 (4) Åθ = 5.4–56.2°
c = 15.6368 (18) ŵ = 0.43 mm1
β = 111.808 (4)°T = 296 K
V = 967.40 (17) Å3Block, colourless
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2047 reflections with I > 2σ(I)
ω and φ scanRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.1°, θmin = 3.4°
Tmin = 0.865, Tmax = 0.883h = 1616
7318 measured reflectionsk = 64
2304 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.4555P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.52 e Å3
2304 reflectionsΔρmin = 0.42 e Å3
170 parametersExtinction correction: SHELXL2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.051 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.32780 (8)0.05574 (18)0.19473 (6)0.0197 (2)
O2A0.41860 (8)0.43353 (19)0.22629 (7)0.0215 (2)
O1B0.41750 (10)0.7653 (2)0.38667 (7)0.0268 (3)
O2B0.37499 (12)1.1669 (2)0.41178 (8)0.0356 (3)
N1A0.13201 (12)0.2513 (3)0.19284 (12)0.0312 (3)
H110.068 (2)0.335 (5)0.1779 (16)0.049 (6)*
H120.128 (2)0.138 (6)0.1487 (19)0.062 (7)*
H130.135 (2)0.163 (5)0.2393 (19)0.056 (7)*
N1B0.38884 (12)0.5778 (3)0.53719 (9)0.0255 (3)
H140.3687 (17)0.465 (4)0.4903 (16)0.037 (5)*
H150.3625 (17)0.529 (4)0.5801 (15)0.037 (5)*
H160.466 (2)0.599 (5)0.5661 (16)0.051 (7)*
C1A0.33341 (11)0.2912 (3)0.21201 (8)0.0157 (3)
C1B0.38168 (11)0.9307 (3)0.42732 (9)0.0198 (3)
C2A0.22888 (11)0.4280 (3)0.21347 (10)0.0224 (3)
H210.24550.50390.27370.027*
H220.20900.56530.16840.027*
C2B0.34142 (13)0.8330 (3)0.50229 (10)0.0229 (3)
H230.36360.95420.55300.027*
H240.25980.82250.47750.027*
Li10.4371 (2)0.7982 (5)0.27213 (16)0.0196 (5)
Cl10.07919 (3)0.27547 (7)0.41247 (3)0.02800 (14)
O30.09668 (13)0.4960 (3)0.36429 (11)0.0504 (4)
O40.08777 (12)0.0478 (2)0.36201 (10)0.0453 (4)
O50.03202 (11)0.2865 (3)0.41610 (11)0.0483 (4)
O60.16270 (12)0.2672 (3)0.50378 (9)0.0506 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0213 (5)0.0155 (5)0.0206 (5)0.0022 (4)0.0060 (4)0.0015 (4)
O2A0.0183 (5)0.0196 (5)0.0296 (5)0.0016 (4)0.0123 (4)0.0026 (4)
O1B0.0422 (7)0.0217 (5)0.0228 (5)0.0042 (4)0.0192 (5)0.0016 (4)
O2B0.0639 (8)0.0171 (5)0.0338 (6)0.0026 (5)0.0275 (6)0.0039 (4)
N1A0.0194 (6)0.0278 (7)0.0493 (9)0.0026 (5)0.0160 (6)0.0073 (7)
N1B0.0357 (7)0.0230 (7)0.0248 (6)0.0074 (5)0.0192 (6)0.0075 (5)
C1A0.0161 (6)0.0176 (6)0.0129 (5)0.0019 (5)0.0050 (4)0.0005 (4)
C1B0.0256 (7)0.0175 (7)0.0167 (6)0.0007 (5)0.0081 (5)0.0006 (5)
C2A0.0169 (6)0.0182 (7)0.0324 (7)0.0002 (5)0.0096 (5)0.0038 (5)
C2B0.0312 (7)0.0180 (7)0.0246 (7)0.0043 (5)0.0163 (6)0.0029 (5)
Li10.0217 (11)0.0180 (11)0.0206 (10)0.0008 (9)0.0096 (9)0.0017 (9)
Cl10.0232 (2)0.0203 (2)0.0330 (2)0.00037 (12)0.00177 (15)0.00111 (13)
O30.0580 (9)0.0278 (7)0.0699 (10)0.0008 (6)0.0290 (8)0.0097 (6)
O40.0509 (8)0.0263 (7)0.0500 (8)0.0016 (5)0.0085 (6)0.0107 (6)
O50.0259 (7)0.0473 (8)0.0679 (10)0.0025 (5)0.0131 (6)0.0002 (7)
O60.0341 (7)0.0704 (11)0.0346 (7)0.0116 (6)0.0019 (6)0.0082 (6)
Geometric parameters (Å, º) top
O1A—C1A1.2535 (16)N1B—H160.93 (2)
O1A—Li1i1.991 (3)C1A—C2A1.5219 (18)
O2A—C1A1.2670 (16)C1B—C2B1.5318 (19)
O2A—Li1ii1.966 (3)C2A—H210.9700
O2A—Li12.015 (3)C2A—H220.9700
O1B—C1B1.2543 (17)C2B—H230.9700
O1B—Li11.906 (3)C2B—H240.9700
O2B—C1B1.2525 (18)Li1—O2Aiii1.966 (3)
N1A—C2A1.4793 (19)Li1—O1Aiv1.991 (3)
N1A—H110.88 (3)Li1—Li1iii3.270 (3)
N1A—H120.90 (3)Li1—Li1ii3.270 (3)
N1A—H130.85 (3)Cl1—O61.4308 (13)
N1B—C2B1.4796 (19)Cl1—O31.4371 (14)
N1B—H140.90 (2)Cl1—O51.4443 (14)
N1B—H150.89 (2)Cl1—O41.4521 (13)
C1A—O1A—Li1i123.96 (11)H21—C2A—H22107.9
C1A—O2A—Li1ii122.18 (11)N1B—C2B—C1B111.92 (12)
C1A—O2A—Li1126.51 (11)N1B—C2B—H23109.2
Li1ii—O2A—Li1110.42 (9)C1B—C2B—H23109.2
C1B—O1B—Li1127.90 (12)N1B—C2B—H24109.2
C2A—N1A—H11111.7 (17)C1B—C2B—H24109.2
C2A—N1A—H12112.5 (17)H23—C2B—H24107.9
H11—N1A—H12110 (2)O1B—Li1—O2Aiii118.06 (13)
C2A—N1A—H13112.8 (17)O1B—Li1—O1Aiv108.95 (12)
H11—N1A—H13104 (2)O2Aiii—Li1—O1Aiv102.03 (11)
H12—N1A—H13106 (2)O1B—Li1—O2A102.15 (11)
C2B—N1B—H14109.4 (13)O2Aiii—Li1—O2A109.18 (12)
C2B—N1B—H15108.6 (13)O1Aiv—Li1—O2A117.22 (12)
H14—N1B—H15110.6 (19)O1B—Li1—Li1iii121.15 (12)
C2B—N1B—H16106.7 (16)O2Aiii—Li1—Li1iii35.28 (8)
H14—N1B—H16114 (2)O1Aiv—Li1—Li1iii67.82 (6)
H15—N1B—H16107.5 (19)O2A—Li1—Li1iii132.77 (14)
O1A—C1A—O2A126.04 (12)O1B—Li1—Li1ii111.95 (11)
O1A—C1A—C2A118.81 (12)O2Aiii—Li1—Li1ii75.88 (12)
O2A—C1A—C2A115.11 (12)O1Aiv—Li1—Li1ii134.29 (14)
O2B—C1B—O1B126.11 (13)O2A—Li1—Li1ii34.30 (3)
O2B—C1B—C2B117.23 (13)Li1iii—Li1—Li1ii105.77 (13)
O1B—C1B—C2B116.66 (12)O6—Cl1—O3110.10 (10)
N1A—C2A—C1A111.90 (12)O6—Cl1—O5110.00 (9)
N1A—C2A—H21109.2O3—Cl1—O5109.62 (9)
C1A—C2A—H21109.2O6—Cl1—O4109.79 (8)
N1A—C2A—H22109.2O3—Cl1—O4108.16 (9)
C1A—C2A—H22109.2O5—Cl1—O4109.15 (8)
Li1i—O1A—C1A—O2A53.01 (19)Li1—O1B—C1B—O2B17.0 (2)
Li1i—O1A—C1A—C2A129.18 (14)Li1—O1B—C1B—C2B162.37 (14)
Li1ii—O2A—C1A—O1A2.3 (2)O1A—C1A—C2A—N1A0.18 (19)
Li1—O2A—C1A—O1A170.40 (12)O2A—C1A—C2A—N1A177.86 (13)
Li1ii—O2A—C1A—C2A179.83 (12)O2B—C1B—C2B—N1B159.82 (14)
Li1—O2A—C1A—C2A11.73 (18)O1B—C1B—C2B—N1B20.75 (18)
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H11···Cl1v0.88 (3)2.97 (3)3.7635 (17)151 (2)
N1A—H11···O4v0.88 (3)2.16 (3)3.037 (2)178 (2)
N1A—H12···O5vi0.90 (3)2.23 (3)2.965 (2)139 (2)
N1A—H12···O6vii0.90 (3)2.51 (3)3.125 (2)126 (2)
N1A—H13···O40.85 (3)2.29 (3)3.091 (2)156 (2)
N1B—H14···O2Bi0.90 (2)2.00 (2)2.8653 (19)160.5 (18)
N1B—H15···O1Aviii0.89 (2)2.05 (2)2.9308 (16)169.8 (19)
N1B—H16···O1Bix0.93 (2)2.35 (3)2.9249 (17)119 (2)
N1B—H16···O2Bx0.93 (2)2.28 (2)3.119 (2)150 (2)
C2A—H21···O1B0.972.633.3747 (18)134
C2A—H22···O5v0.972.443.185 (2)133
C2B—H23···O2Axi0.972.603.4867 (18)152
C2B—H24···O4iv0.972.553.360 (2)141
Symmetry codes: (i) x, y1, z; (iv) x, y+1, z; (v) x, y+1/2, z+1/2; (vi) x, y1/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y+1, z+1; (x) x+1, y+2, z+1; (xi) x, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, email: balacrystalgrowth@gmail.com.

Funding information

TB and PR acknowledge the Tamil Nadu State Council for Science and Technology, Tamil Nadu, for providing funding under a Major Research Project Scheme (TNSCST/S&T project/PS/ RJ/2013–2014). ST is very grateful to the management of SASTRA Deemed University for infrastructure and financial support (Professor TRR grant).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013b). Acta Cryst. E69, m60–m61.  CrossRef IUCr Journals Google Scholar
First citationBalakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2013a). Acta Cryst. E69, o57.  CrossRef IUCr Journals Google Scholar
First citationBaran, J., Drozd, M., Pietraszko, A., Trzebiatowska, M. & Ratajczak, H. (2003). Pol. J. Chem. 77, 1561–1577.  CAS Google Scholar
First citationBaran, J., Drozd, M., Ratajczak, H. & Pierraszko, A. (2009). J. Mol. Struct. 927, 42–49.  CrossRef Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleck, M., Schwendtner, K. & Hensler, A. (2006). Acta Cryst. C62, m122–m125.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMüller, G., Maier, G.-M. & Lutz, M. (1994). Inorg. Chim. Acta, 218, 121–131.  CrossRef Web of Science Google Scholar
First citationRevathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875–878.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Spectrochim. Acta A Mol. Biomol. Spectrosc. 138, 187–194.  CrossRef CAS Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Acta Cryst. E71, 217–219.  CrossRef IUCr Journals Google Scholar
First citationSelvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, L. M., Ramasubbu, N. & Bhandary, K. K. (1994). Biopolymers, 34, 1007–1013.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds