research communications
κ3N,N′,O}bis(nitrato-κO)copper(II) from synchrotron data
of {2-methyl-2-[(pyridin-2-ylmethyl)amino]propan-1-ol-aDaegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 10 Exco-ro, Buk-gu, Daegu 41515, Republic of Korea, bBeamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-Gu Pohang, Gyeongbuk 37673, Republic of Korea, cDepartment of Electronic Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea, and dSEGI RETECH, 1-67 Ogyegongdan-gil, Yeongcheon, Gyeongbuk, 38882, Republic of Korea
*Correspondence e-mail: dmoon@postech.ac.kr
The title compound, [Cu(NO3)2(C10H16N2O)], has been synthesized and characterized by synchrotron single-crystal diffraction at 100 K. The CuII ion has a distorted square-pyramidal coordination geometry with two N and one O atoms of the C10H16N2O ligand and one nitrate anion in the equatorial plane and another nitrate anion at the axial position. The equatorial Cu—N and Cu—O bond lengths are in the range 1.9608 (14)–2.0861 (15) Å, which are shorter than the axial Cu—Onitrate bond length [2.1259 (16) Å]. In the crystal, molecules are linked via intermolecular N—H⋯O and O—H⋯O hydrogen bonds, forming a sheet structure parallel to the bc plane. The sheets are further linked through a face-to-face π–π interaction [centroid–centroid distance = 3.994 (1) Å]. Weak intermolecular C—H⋯O interactions are also observed in the sheet and between adjacent sheets.
Keywords: crystal structure; π–π interaction; hydrogen bond; synchrotron data.
CCDC reference: 1887447
1. Chemical context
Transition-metal complexes containing amine or its derivative ligands have attracted considerable attention owing to their diverse coordination geometries and their various applications in catalysis (Ahn et al., 2017), as magnetic materials (Liu, Zhou et al., 2017) and fluorescent substances (Chia & Tay, 2014) as well as sensing materials (Liu, Wang et al., 2017). In addition, polyamine ligands containing hydroxyl groups can easily form multinuclear complexes (such as dinuclear or trinuclear) with various transition-metal ions and hydrogen-bonded supramolecular compounds due to the deprotonation of hydroxyl groups by the transition-metal ions and anions (Shin et al., 2014). For example, N-(2-pyridylmethyl)iminodiethanol and N-(2-pyridylmethyl)iminodiisopropanol ligands containing amine, pyridine and hydroxyl groups have been used to form trinuclear metal complexes with cobalt and nickel ions, respectively, and these complexes have shown significant olefin epoxidations and magnetic interactions (Shin, Jeong et al., 2016). The nitrate anion is a good candidate for the construction of multinuclear complexes or supramolecular compounds by bridging metal ions or hydrogen bonding adjacent molecules (El-Khatib et al., 2018). Here, we report the preparation and of a copper(II) complex, [Cu(C10H16N2O)(NO3)2], formed with a functional tridentate ligand, 2-methyl-2-[(2-pyridinylmethyl)amino]-1-propanol, and nitrate anions.
2. Structural commentary
A view of the molecular structure of the title compound is shown in Fig. 1. The central CuII ion is coordinated by two nitrogen and one oxygen atoms from the C10H16N2O ligand and by two oxygen atoms from nitrate anions, and adopts a distorted square-pyramidal geometry. The equatorial plane consists of the two nitrogen atoms (N1 and N2) and the oxygen atom (O1) of the hydroxyl group in the C10H16N2O ligand and one oxygen atom (O5) of the nitrate anion. The coordination geometry is completed by an oxygen atom (O2) from the other nitrate anion in the axial position. The equatorial bond lengths, Cu—N and Cu—O, are in the range 1.9608 (14) to 2.0861 (15) Å. The axial bond length, Cu—Onitrate, is 2.1259 (16) Å. The average length of the Cu—N and Cu—O bonds between the CuII ion and the C10H16N2O ligand is 2.0081 (8) Å, which is shorter than the average bond length in the reported [Cu(C10H16N2O)Cl2] complex possessing the same ligand and metal (Shin, Lee et al., 2016). The axial bond length is also shorter than that in [Cu(C10H16N2O)Cl2], which can be attributed to the size effect of the coordinated anions. The nitrate anions are coordinated in a cis position to each other and the axial bond is longer than the equatorial bond. The bite angles N1—Cu1—N2 and N2—Cu1—O1 in the five-membered chelate rings are 84.53 (7) and 82.92 (7)°, respectively.
3. Supramolecular features
In the crystal, two nitrate anions form intermolecular hydrogen bonds (O1—H1O1⋯O3i, N2—H2⋯O7ii and C8—H8AB⋯O5iv; symmetry codes as in Table 1) with adjacent C10H16N2O ligands, generating an undulating sheet structure parallel to the bc plane (Fig. 2). Another C—H⋯O hydrogen bond (C4—H4⋯O2iii; Table 1) links the sheets into a three-dimensional structure (Fig. 3). Moreover, the sheets are linked by a π–π interaction between pyridine rings; the distance between the centroids of the pyridine rings is 3.994 (1) Å and the dihedral angle is 19.317 (1)°.
4. Database survey
A search of the Cambridge Structural Database (Version 5.39, update of August 2018; Groom et al., 2016) shows only one mononuclear copper(II) complex with the same C10H16N2O ligand, for which the synthesis and have been reported (Shin, Lee et al., 2016). A similar copper(II) complex with poly(2,6-dimethyl-1,4-phenylene ether) ligands involving secondary amine, pyridine and hydroxyl groups has been prepared to study its catalytic activities (Guieu et al., 2004).
5. Synthesis and crystallization
The C10H16N2O ligand was prepared according to a slight modification of the previous reported method (Shin, Lee et al., 2016). To a methanol solution (10 mL) of Cu(NO3)2·3H2O (200 mg, 0.823 mmol) was added dropwise a methanol solution (10 mL) of C10H16N2O (149 mg, 0.823 mmol); the colour became dark blue, and the solution was stirred for 30 min at room temperature. Blue crystals of the title compound were obtained by diffusion of diethyl ether into the dark-blue solution for several days, and collected by filtration and washed with diethyl ether and dried in air (yield: 189 mg, 62%). FT–IR(ATR, cm−1): 3215, 3168, 3071, 2967, 1607, 1506, 1384, 1278, 1065, 1020.
6. Refinement
Crystal data, data collection and structure . C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.5 or 1.2Ueq(C). The positions of the O- and N-bound H atoms were assigned based on a difference-Fourier map, and were refined with distance restraints of O—H = 0.84 (1) Å and N—H = 1.00 (1) Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). One reflection with a poor agreement between the measured and calculated intensities was omitted from the final cycles.
details are summarized in Table 2Supporting information
CCDC reference: 1887447
https://doi.org/10.1107/S2056989018018352/is5504sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989018018352/is5504Isup3.hkl
Data collection: PAL BL2D-SMDC (Shin, Eom et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(NO3)2(C10H16N2O)] | Dx = 1.706 Mg m−3 |
Mr = 367.81 | Synchrotron radiation, λ = 0.630 Å |
Orthorhombic, Pna21 | Cell parameters from 29915 reflections |
a = 14.990 (3) Å | θ = 0.4–33.6° |
b = 12.520 (3) Å | µ = 1.13 mm−1 |
c = 7.6290 (15) Å | T = 100 K |
V = 1431.8 (5) Å3 | Block, blue |
Z = 4 | 0.11 × 0.10 × 0.08 mm |
F(000) = 756 |
ADSC Q210 CCD area detector diffractometer | 4234 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.032 |
ω scan | θmax = 27.0°, θmin = 1.9° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) | h = −21→21 |
Tmin = 0.912, Tmax = 1.000 | k = −18→18 |
13671 measured reflections | l = −10→10 |
4431 independent reflections |
Refinement on F2 | H atoms treated by a mixture of independent and constrained refinement |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0434P)2 + 0.0982P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.025 | (Δ/σ)max = 0.002 |
wR(F2) = 0.066 | Δρmax = 0.40 e Å−3 |
S = 1.08 | Δρmin = −0.68 e Å−3 |
4431 reflections | Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
208 parameters | Extinction coefficient: 0.026 (3) |
3 restraints | Absolute structure: Flack x determined using 1883 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: mixed | Absolute structure parameter: 0.037 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.70732 (2) | 0.68798 (2) | 0.59459 (4) | 0.01603 (8) | |
O1 | 0.76542 (12) | 0.78901 (12) | 0.77964 (19) | 0.0201 (3) | |
H1O1 | 0.773 (2) | 0.766 (3) | 0.881 (2) | 0.030* | |
O2 | 0.79419 (10) | 0.74637 (16) | 0.3963 (2) | 0.0245 (3) | |
O3 | 0.81254 (12) | 0.75969 (13) | 0.1158 (2) | 0.0264 (3) | |
O4 | 0.68899 (14) | 0.69393 (15) | 0.2203 (3) | 0.0301 (4) | |
O5 | 0.79776 (9) | 0.57547 (12) | 0.6143 (3) | 0.0201 (3) | |
O6 | 0.75455 (11) | 0.55182 (13) | 0.8859 (2) | 0.0256 (3) | |
O7 | 0.85090 (12) | 0.44393 (14) | 0.7666 (2) | 0.0291 (3) | |
N1 | 0.60049 (10) | 0.59461 (12) | 0.5810 (3) | 0.0173 (3) | |
N2 | 0.61927 (12) | 0.80764 (12) | 0.5732 (3) | 0.0188 (3) | |
H2 | 0.638 (2) | 0.856 (2) | 0.479 (3) | 0.023* | |
N3 | 0.76463 (13) | 0.73260 (14) | 0.2413 (2) | 0.0193 (3) | |
N4 | 0.80075 (11) | 0.52272 (14) | 0.7611 (3) | 0.0181 (3) | |
C1 | 0.59808 (12) | 0.48835 (14) | 0.6052 (3) | 0.0202 (3) | |
H1 | 0.652533 | 0.451412 | 0.624769 | 0.024* | |
C2 | 0.51962 (13) | 0.43077 (14) | 0.6027 (4) | 0.0236 (3) | |
H2A | 0.520110 | 0.355445 | 0.617692 | 0.028* | |
C3 | 0.43973 (14) | 0.48534 (17) | 0.5779 (3) | 0.0267 (4) | |
H3 | 0.384490 | 0.448145 | 0.578571 | 0.032* | |
C4 | 0.44214 (14) | 0.59522 (18) | 0.5522 (3) | 0.0251 (4) | |
H4 | 0.388472 | 0.634150 | 0.534687 | 0.030* | |
C5 | 0.52366 (14) | 0.64731 (16) | 0.5523 (2) | 0.0196 (4) | |
C6 | 0.53236 (15) | 0.76513 (16) | 0.5116 (3) | 0.0223 (4) | |
H6A | 0.527092 | 0.776224 | 0.383523 | 0.027* | |
H6AB | 0.483274 | 0.804667 | 0.569281 | 0.027* | |
C7 | 0.61826 (15) | 0.87026 (16) | 0.7416 (3) | 0.0213 (4) | |
C8 | 0.71738 (16) | 0.88814 (17) | 0.7830 (3) | 0.0241 (4) | |
H8A | 0.743334 | 0.937761 | 0.695808 | 0.029* | |
H8AB | 0.723273 | 0.921226 | 0.900327 | 0.029* | |
C9 | 0.57393 (18) | 0.97932 (19) | 0.7166 (3) | 0.0307 (5) | |
H9A | 0.603838 | 1.017915 | 0.621562 | 0.046* | |
H9AB | 0.578676 | 1.020589 | 0.825375 | 0.046* | |
H9AC | 0.510874 | 0.969297 | 0.686921 | 0.046* | |
C10 | 0.57262 (18) | 0.80604 (18) | 0.8857 (3) | 0.0278 (5) | |
H10A | 0.511114 | 0.790176 | 0.850852 | 0.042* | |
H10B | 0.572316 | 0.847605 | 0.994588 | 0.042* | |
H10C | 0.605093 | 0.739069 | 0.904426 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01865 (12) | 0.01345 (11) | 0.01599 (12) | −0.00077 (6) | −0.00037 (10) | 0.00057 (10) |
O1 | 0.0285 (8) | 0.0172 (6) | 0.0146 (6) | −0.0006 (6) | −0.0019 (6) | −0.0012 (5) |
O2 | 0.0284 (8) | 0.0316 (8) | 0.0136 (7) | −0.0090 (6) | −0.0019 (5) | 0.0027 (6) |
O3 | 0.0362 (8) | 0.0279 (7) | 0.0152 (7) | −0.0099 (6) | 0.0022 (7) | 0.0028 (6) |
O4 | 0.0301 (9) | 0.0375 (10) | 0.0226 (8) | −0.0144 (7) | −0.0013 (7) | −0.0045 (6) |
O5 | 0.0222 (6) | 0.0196 (6) | 0.0184 (8) | 0.0025 (4) | 0.0013 (6) | 0.0035 (6) |
O6 | 0.0281 (8) | 0.0301 (7) | 0.0185 (7) | 0.0043 (6) | 0.0045 (6) | 0.0005 (6) |
O7 | 0.0355 (9) | 0.0255 (7) | 0.0263 (7) | 0.0120 (6) | 0.0004 (7) | 0.0058 (6) |
N1 | 0.0183 (6) | 0.0162 (6) | 0.0174 (7) | −0.0012 (5) | −0.0016 (7) | −0.0004 (7) |
N2 | 0.0242 (7) | 0.0156 (6) | 0.0167 (9) | 0.0008 (5) | 0.0001 (7) | 0.0010 (6) |
N3 | 0.0264 (8) | 0.0160 (7) | 0.0154 (7) | −0.0037 (6) | −0.0004 (7) | 0.0005 (5) |
N4 | 0.0187 (7) | 0.0186 (8) | 0.0171 (7) | −0.0013 (5) | −0.0021 (6) | 0.0006 (6) |
C1 | 0.0208 (7) | 0.0161 (7) | 0.0238 (8) | −0.0016 (5) | −0.0048 (9) | 0.0012 (8) |
C2 | 0.0247 (8) | 0.0204 (7) | 0.0256 (8) | −0.0056 (6) | −0.0042 (10) | 0.0022 (9) |
C3 | 0.0217 (8) | 0.0299 (9) | 0.0284 (11) | −0.0072 (7) | −0.0047 (9) | 0.0051 (9) |
C4 | 0.0176 (8) | 0.0298 (9) | 0.0279 (11) | 0.0003 (7) | −0.0041 (7) | 0.0049 (7) |
C5 | 0.0207 (9) | 0.0202 (8) | 0.0179 (8) | 0.0011 (6) | −0.0026 (6) | 0.0028 (6) |
C6 | 0.0247 (10) | 0.0205 (9) | 0.0217 (9) | 0.0023 (7) | −0.0043 (7) | 0.0040 (7) |
C7 | 0.0296 (10) | 0.0179 (8) | 0.0165 (8) | 0.0038 (7) | 0.0034 (8) | −0.0002 (6) |
C8 | 0.0334 (11) | 0.0174 (9) | 0.0215 (10) | 0.0000 (7) | −0.0005 (8) | −0.0042 (7) |
C9 | 0.0414 (13) | 0.0215 (9) | 0.0292 (10) | 0.0091 (9) | 0.0044 (10) | −0.0016 (8) |
C10 | 0.0348 (12) | 0.0297 (11) | 0.0188 (9) | 0.0028 (8) | 0.0057 (9) | 0.0029 (7) |
Cu1—O5 | 1.9608 (14) | C2—C3 | 1.392 (3) |
Cu1—N1 | 1.9854 (16) | C2—H2A | 0.9500 |
Cu1—N2 | 2.0033 (17) | C3—C4 | 1.390 (3) |
Cu1—O1 | 2.0861 (15) | C3—H3 | 0.9500 |
Cu1—O2 | 2.1259 (16) | C4—C5 | 1.385 (3) |
O1—C8 | 1.435 (3) | C4—H4 | 0.9500 |
O1—H1O1 | 0.834 (13) | C5—C6 | 1.513 (3) |
O2—N3 | 1.274 (2) | C6—H6A | 0.9900 |
O3—N3 | 1.244 (2) | C6—H6AB | 0.9900 |
O4—N3 | 1.243 (3) | C7—C10 | 1.524 (3) |
O5—N4 | 1.301 (3) | C7—C9 | 1.531 (3) |
O6—N4 | 1.232 (2) | C7—C8 | 1.535 (3) |
O7—N4 | 1.241 (2) | C8—H8A | 0.9900 |
N1—C1 | 1.344 (2) | C8—H8AB | 0.9900 |
N1—C5 | 1.345 (2) | C9—H9A | 0.9800 |
N2—C6 | 1.484 (3) | C9—H9AB | 0.9800 |
N2—C7 | 1.505 (3) | C9—H9AC | 0.9800 |
N2—H2 | 0.977 (13) | C10—H10A | 0.9800 |
C1—C2 | 1.380 (2) | C10—H10B | 0.9800 |
C1—H1 | 0.9500 | C10—H10C | 0.9800 |
O5—Cu1—N1 | 97.97 (6) | C2—C3—H3 | 120.6 |
O5—Cu1—N2 | 177.48 (6) | C5—C4—C3 | 119.3 (2) |
N1—Cu1—N2 | 84.53 (7) | C5—C4—H4 | 120.4 |
O5—Cu1—O1 | 95.45 (7) | C3—C4—H4 | 120.4 |
N1—Cu1—O1 | 136.81 (7) | N1—C5—C4 | 121.63 (18) |
N2—Cu1—O1 | 82.92 (7) | N1—C5—C6 | 115.97 (17) |
O5—Cu1—O2 | 83.01 (7) | C4—C5—C6 | 122.34 (18) |
N1—Cu1—O2 | 131.25 (7) | N2—C6—C5 | 111.13 (16) |
N2—Cu1—O2 | 95.08 (8) | N2—C6—H6A | 109.4 |
O1—Cu1—O2 | 91.00 (6) | C5—C6—H6A | 109.4 |
C8—O1—Cu1 | 109.09 (13) | N2—C6—H6AB | 109.4 |
C8—O1—H1O1 | 111 (3) | C5—C6—H6AB | 109.4 |
Cu1—O1—H1O1 | 118 (3) | H6A—C6—H6AB | 108.0 |
N3—O2—Cu1 | 113.62 (12) | N2—C7—C10 | 110.21 (17) |
N4—O5—Cu1 | 117.05 (13) | N2—C7—C9 | 111.27 (18) |
C1—N1—C5 | 119.01 (16) | C10—C7—C9 | 111.44 (19) |
C1—N1—Cu1 | 126.70 (13) | N2—C7—C8 | 104.00 (16) |
C5—N1—Cu1 | 114.22 (13) | C10—C7—C8 | 111.27 (19) |
C6—N2—C7 | 116.65 (17) | C9—C7—C8 | 108.41 (19) |
C6—N2—Cu1 | 109.64 (12) | O1—C8—C7 | 110.84 (17) |
C7—N2—Cu1 | 109.06 (13) | O1—C8—H8A | 109.5 |
C6—N2—H2 | 103.6 (18) | C7—C8—H8A | 109.5 |
C7—N2—H2 | 108.1 (19) | O1—C8—H8AB | 109.5 |
Cu1—N2—H2 | 109.5 (18) | C7—C8—H8AB | 109.5 |
O4—N3—O3 | 122.21 (18) | H8A—C8—H8AB | 108.1 |
O4—N3—O2 | 119.33 (18) | C7—C9—H9A | 109.5 |
O3—N3—O2 | 118.45 (17) | C7—C9—H9AB | 109.5 |
O6—N4—O7 | 123.36 (19) | H9A—C9—H9AB | 109.5 |
O6—N4—O5 | 119.70 (17) | C7—C9—H9AC | 109.5 |
O7—N4—O5 | 116.95 (18) | H9A—C9—H9AC | 109.5 |
N1—C1—C2 | 122.58 (17) | H9AB—C9—H9AC | 109.5 |
N1—C1—H1 | 118.7 | C7—C10—H10A | 109.5 |
C2—C1—H1 | 118.7 | C7—C10—H10B | 109.5 |
C1—C2—C3 | 118.62 (17) | H10A—C10—H10B | 109.5 |
C1—C2—H2A | 120.7 | C7—C10—H10C | 109.5 |
C3—C2—H2A | 120.7 | H10A—C10—H10C | 109.5 |
C4—C3—C2 | 118.86 (18) | H10B—C10—H10C | 109.5 |
C4—C3—H3 | 120.6 | ||
Cu1—O2—N3—O4 | 4.0 (3) | C7—N2—C6—C5 | −101.79 (19) |
Cu1—O2—N3—O3 | −176.76 (14) | Cu1—N2—C6—C5 | 22.8 (2) |
Cu1—O5—N4—O6 | −7.5 (2) | N1—C5—C6—N2 | −20.6 (2) |
Cu1—O5—N4—O7 | 172.10 (14) | C4—C5—C6—N2 | 162.32 (19) |
C5—N1—C1—C2 | −0.4 (4) | C6—N2—C7—C10 | 52.6 (2) |
Cu1—N1—C1—C2 | 176.29 (18) | Cu1—N2—C7—C10 | −72.26 (19) |
N1—C1—C2—C3 | −1.4 (4) | C6—N2—C7—C9 | −71.6 (2) |
C1—C2—C3—C4 | 1.6 (4) | Cu1—N2—C7—C9 | 163.60 (15) |
C2—C3—C4—C5 | −0.1 (4) | C6—N2—C7—C8 | 171.93 (16) |
C1—N1—C5—C4 | 1.9 (3) | Cu1—N2—C7—C8 | 47.09 (17) |
Cu1—N1—C5—C4 | −175.13 (15) | Cu1—O1—C8—C7 | 32.1 (2) |
C1—N1—C5—C6 | −175.2 (2) | N2—C7—C8—O1 | −52.1 (2) |
Cu1—N1—C5—C6 | 7.7 (2) | C10—C7—C8—O1 | 66.5 (2) |
C3—C4—C5—N1 | −1.7 (3) | C9—C7—C8—O1 | −170.60 (18) |
C3—C4—C5—C6 | 175.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O3i | 0.83 (1) | 1.89 (2) | 2.685 (2) | 159 (4) |
N2—H2···O7ii | 0.98 (1) | 1.97 (2) | 2.930 (3) | 167 (3) |
C4—H4···O2iii | 0.95 | 2.31 | 3.204 (3) | 156 |
C8—H8AB···O5iv | 0.99 | 2.55 | 3.455 (3) | 152 |
Symmetry codes: (i) x, y, z+1; (ii) −x+3/2, y+1/2, z−1/2; (iii) x−1/2, −y+3/2, z; (iv) −x+3/2, y+1/2, z+1/2. |
Funding information
This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1C1B2003111). The X-ray crystallography BL2D-SMC beamline and the FT–IR experiment 12D-IRS beamline at the PLS-II were supported in part by MSICT and POSTECH.
References
Ahn, S. H., Chun, M. K., Kim, E., Jeong, H. H., Nayab, S. & Lee, H. (2017). Polyhedron, 127, 51–58. CrossRef CAS Google Scholar
Chia, Y. Y. & Tay, M. G. (2014). Dalton Trans. 43, 13159–13168. CrossRef CAS Google Scholar
El-Khatib, F., Cahier, B., López-Jordà, M., Guillot, R., Rivière, E., Hafez, H., Saad, Z., Guihéry, N. & Mallah, T. (2018). Eur. J. Inorg. Chem. pp. 469–476. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guieu, S. J. A., Lanfredi, A. M. M., Massera, C., Pachon, L. D., Gamez, P. & Reedijk, J. (2004). Catal. Today, 96, 259–264. CrossRef CAS Google Scholar
Liu, X., Zhou, J., Bao, X., Yan, Z., Peng, G., Rouzières, M., Mathonière, C., Liu, J.-L. & Clérac, R. (2017). Inorg. Chem. 56, 12148–12157. CrossRef CAS Google Scholar
Liu, X.-J., Wang, X., Xu, J.-L., Tian, D., Chen, R. Y., Xu, J. & Bu, X. H. (2017). Dalton Trans. 46, 4893–4897. CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999–4008. Web of Science CrossRef CAS PubMed Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Jeong, A. R., Lee, S. Y., Kim, C., Hayami, S. & Min, K. S. (2016). Dalton Trans. 45, 14089–14100. CrossRef CAS Google Scholar
Shin, J. W., Lee, D. W., Kim, D.-W. & Moon, D. (2016). Acta Cryst. E72, 1400–1403. CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.