research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {2-methyl-2-[(pyridin-2-yl­meth­yl)amino]­propan-1-ol-κ3N,N′,O}bis­­(nitrato-κO)copper(II) from synchrotron data

CROSSMARK_Color_square_no_text.svg

aDaegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 10 Exco-ro, Buk-gu, Daegu 41515, Republic of Korea, bBeamline Department, Pohang Accelerator Laboratory, 80 Jigokro-127-beongil, Nam-Gu Pohang, Gyeongbuk 37673, Republic of Korea, cDepartment of Electronic Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea, and dSEGI RETECH, 1-67 Ogyegongdan-gil, Yeongcheon, Gyeongbuk, 38882, Republic of Korea
*Correspondence e-mail: dmoon@postech.ac.kr

Edited by H. Ishida, Okayama University, Japan (Received 16 November 2018; accepted 27 December 2018; online 4 January 2019)

The title compound, [Cu(NO3)2(C10H16N2O)], has been synthesized and characterized by synchrotron single-crystal diffraction at 100 K. The CuII ion has a distorted square-pyramidal coordination geometry with two N and one O atoms of the C10H16N2O ligand and one nitrate anion in the equatorial plane and another nitrate anion at the axial position. The equatorial Cu—N and Cu—O bond lengths are in the range 1.9608 (14)–2.0861 (15) Å, which are shorter than the axial Cu—Onitrate bond length [2.1259 (16) Å]. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming a sheet structure parallel to the bc plane. The sheets are further linked through a face-to-face ππ inter­action [centroid–centroid distance = 3.994 (1) Å]. Weak inter­molecular C—H⋯O inter­actions are also observed in the sheet and between adjacent sheets.

1. Chemical context

Transition-metal complexes containing amine or its derivative ligands have attracted considerable attention owing to their diverse coordination geometries and their various applications in catalysis (Ahn et al., 2017[Ahn, S. H., Chun, M. K., Kim, E., Jeong, H. H., Nayab, S. & Lee, H. (2017). Polyhedron, 127, 51-58.]), as magnetic mat­erials (Liu, Zhou et al., 2017[Liu, X., Zhou, J., Bao, X., Yan, Z., Peng, G., Rouzières, M., Mathonière, C., Liu, J.-L. & Clérac, R. (2017). Inorg. Chem. 56, 12148-12157.]) and fluorescent substances (Chia & Tay, 2014[Chia, Y. Y. & Tay, M. G. (2014). Dalton Trans. 43, 13159-13168.]) as well as sensing materials (Liu, Wang et al., 2017[Liu, X.-J., Wang, X., Xu, J.-L., Tian, D., Chen, R. Y., Xu, J. & Bu, X. H. (2017). Dalton Trans. 46, 4893-4897.]). In addition, polyamine ligands containing hydroxyl groups can easily form multinuclear complexes (such as dinuclear or trinuclear) with various transition-metal ions and hydrogen-bonded supra­molecular compounds due to the deprotonation of hydroxyl groups by the transition-metal ions and anions (Shin et al., 2014[Shin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999-4008.]). For example, N-(2-pyridyl­meth­yl)iminodi­ethanol and N-(2-pyridyl­meth­yl)imino­diiso­propanol ligands containing amine, pyridine and hydroxyl groups have been used to form trinuclear metal complexes with cobalt and nickel ions, respectively, and these complexes have shown significant olefin epoxidations and magnetic inter­actions (Shin, Jeong et al., 2016[Shin, J. W., Jeong, A. R., Lee, S. Y., Kim, C., Hayami, S. & Min, K. S. (2016). Dalton Trans. 45, 14089-14100.]). The nitrate anion is a good candidate for the construction of multinuclear complexes or supra­molecular compounds by bridging metal ions or hydrogen bonding adjacent mol­ecules (El-Khatib et al., 2018[El-Khatib, F., Cahier, B., López-Jordà, M., Guillot, R., Rivière, E., Hafez, H., Saad, Z., Guihéry, N. & Mallah, T. (2018). Eur. J. Inorg. Chem. pp. 469-476.]). Here, we report the preparation and crystal structure of a copper(II) complex, [Cu(C10H16N2O)(NO3)2], formed with a functional tridentate ligand, 2-methyl-2-[(2-pyridinylmeth­yl)amino]-1-propanol, and nitrate anions.

[Scheme 1]

2. Structural commentary

A view of the mol­ecular structure of the title compound is shown in Fig. 1[link]. The central CuII ion is coordinated by two nitro­gen and one oxygen atoms from the C10H16N2O ligand and by two oxygen atoms from nitrate anions, and adopts a distorted square-pyramidal geometry. The equatorial plane consists of the two nitro­gen atoms (N1 and N2) and the oxygen atom (O1) of the hydroxyl group in the C10H16N2O ligand and one oxygen atom (O5) of the nitrate anion. The coordination geometry is completed by an oxygen atom (O2) from the other nitrate anion in the axial position. The equatorial bond lengths, Cu—N and Cu—O, are in the range 1.9608 (14) to 2.0861 (15) Å. The axial bond length, Cu—Onitrate, is 2.1259 (16) Å. The average length of the Cu—N and Cu—O bonds between the CuII ion and the C10H16N2O ligand is 2.0081 (8) Å, which is shorter than the average bond length in the reported [Cu(C10H16N2O)Cl2] complex possessing the same ligand and metal (Shin, Lee et al., 2016[Shin, J. W., Lee, D. W., Kim, D.-W. & Moon, D. (2016). Acta Cryst. E72, 1400-1403.]). The axial bond length is also shorter than that in [Cu(C10H16N2O)Cl2], which can be attributed to the size effect of the coordinated anions. The nitrate anions are coordinated in a cis position to each other and the axial bond is longer than the equatorial bond. The bite angles N1—Cu1—N2 and N2—Cu1—O1 in the five-membered chelate rings are 84.53 (7) and 82.92 (7)°, respect­ively.

[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability.

3. Supra­molecular features

In the crystal, two nitrate anions form inter­molecular hydrogen bonds (O1—H1O1⋯O3i, N2—H2⋯O7ii and C8—H8AB⋯O5iv; symmetry codes as in Table 1[link]) with adjacent C10H16N2O ligands, generating an undulating sheet structure parallel to the bc plane (Fig. 2[link]). Another C—H⋯O hydrogen bond (C4—H4⋯O2iii; Table 1[link]) links the sheets into a three-dimensional structure (Fig. 3[link]). Moreover, the sheets are linked by a ππ inter­action between pyridine rings; the distance between the centroids of the pyridine rings is 3.994 (1) Å and the dihedral angle is 19.317 (1)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3i 0.83 (1) 1.89 (2) 2.685 (2) 159 (4)
N2—H2⋯O7ii 0.98 (1) 1.97 (2) 2.930 (3) 167 (3)
C4—H4⋯O2iii 0.95 2.31 3.204 (3) 156
C8—H8AB⋯O5iv 0.99 2.55 3.455 (3) 152
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A packing diagram of the title compound viewed along the a axis, showing the N—H⋯O (purple dashed lines) and O—H⋯O (dark green dashed lines) hydrogen bonds.
[Figure 3]
Figure 3
A packing diagram of the title compound viewed along the b axis, showing the N—H⋯O (purple dashed lines), O—H⋯O (dark green dashed lines) and C—H⋯O (orange dashed lines) hydrogen bonds as well as ππ inter­actions (violet dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows only one mononuclear copper(II) complex with the same C10H16N2O ligand, for which the synthesis and crystal structure have been reported (Shin, Lee et al., 2016[Shin, J. W., Lee, D. W., Kim, D.-W. & Moon, D. (2016). Acta Cryst. E72, 1400-1403.]). A similar copper(II) complex with poly(2,6-dimethyl-1,4-phenyl­ene ether) ligands involving secondary amine, pyridine and hydroxyl groups has been prepared to study its catalytic activities (Guieu et al., 2004[Guieu, S. J. A., Lanfredi, A. M. M., Massera, C., Pachon, L. D., Gamez, P. & Reedijk, J. (2004). Catal. Today, 96, 259-264.]).

5. Synthesis and crystallization

The C10H16N2O ligand was prepared according to a slight modification of the previous reported method (Shin, Lee et al., 2016[Shin, J. W., Lee, D. W., Kim, D.-W. & Moon, D. (2016). Acta Cryst. E72, 1400-1403.]). To a methanol solution (10 mL) of Cu(NO3)2·3H2O (200 mg, 0.823 mmol) was added dropwise a methanol solution (10 mL) of C10H16N2O (149 mg, 0.823 mmol); the colour became dark blue, and the solution was stirred for 30 min at room temperature. Blue crystals of the title compound were obtained by diffusion of diethyl ether into the dark-blue solution for several days, and collected by filtration and washed with diethyl ether and dried in air (yield: 189 mg, 62%). FT–IR(ATR, cm−1): 3215, 3168, 3071, 2967, 1607, 1506, 1384, 1278, 1065, 1020.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.5 or 1.2Ueq(C). The positions of the O- and N-bound H atoms were assigned based on a difference-Fourier map, and were refined with distance restraints of O—H = 0.84 (1) Å and N—H = 1.00 (1) Å, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). One reflection with a poor agreement between the measured and calculated intensities was omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula [Cu(NO3)2(C10H16N2O)]
Mr 367.81
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 100
a, b, c (Å) 14.990 (3), 12.520 (3), 7.6290 (15)
V3) 1431.8 (5)
Z 4
Radiation type Synchrotron, λ = 0.630 Å
μ (mm−1) 1.13
Crystal size (mm) 0.11 × 0.10 × 0.08
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.])
Tmin, Tmax 0.912, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 13671, 4431, 4234
Rint 0.032
(sin θ/λ)max−1) 0.720
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.08
No. of reflections 4431
No. of parameters 208
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.68
Absolute structure Flack x determined using 1883 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.037 (5)
Computer programs: PAL BL2D-SMDC (Shin, Eom et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press, New York.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin, Eom et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

{2-Methyl-2-[(pyridin-2-ylmethyl)amino]propan-1-ol-κ3N,N',O}bis(nitrato-κO)copper(II) top
Crystal data top
[Cu(NO3)2(C10H16N2O)]Dx = 1.706 Mg m3
Mr = 367.81Synchrotron radiation, λ = 0.630 Å
Orthorhombic, Pna21Cell parameters from 29915 reflections
a = 14.990 (3) Åθ = 0.4–33.6°
b = 12.520 (3) ŵ = 1.13 mm1
c = 7.6290 (15) ÅT = 100 K
V = 1431.8 (5) Å3Block, blue
Z = 40.11 × 0.10 × 0.08 mm
F(000) = 756
Data collection top
ADSC Q210 CCD area detector
diffractometer
4234 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.032
ω scanθmax = 27.0°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 2121
Tmin = 0.912, Tmax = 1.000k = 1818
13671 measured reflectionsl = 1010
4431 independent reflections
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0434P)2 + 0.0982P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.002
wR(F2) = 0.066Δρmax = 0.40 e Å3
S = 1.08Δρmin = 0.68 e Å3
4431 reflectionsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
208 parametersExtinction coefficient: 0.026 (3)
3 restraintsAbsolute structure: Flack x determined using 1883 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: mixedAbsolute structure parameter: 0.037 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.70732 (2)0.68798 (2)0.59459 (4)0.01603 (8)
O10.76542 (12)0.78901 (12)0.77964 (19)0.0201 (3)
H1O10.773 (2)0.766 (3)0.881 (2)0.030*
O20.79419 (10)0.74637 (16)0.3963 (2)0.0245 (3)
O30.81254 (12)0.75969 (13)0.1158 (2)0.0264 (3)
O40.68899 (14)0.69393 (15)0.2203 (3)0.0301 (4)
O50.79776 (9)0.57547 (12)0.6143 (3)0.0201 (3)
O60.75455 (11)0.55182 (13)0.8859 (2)0.0256 (3)
O70.85090 (12)0.44393 (14)0.7666 (2)0.0291 (3)
N10.60049 (10)0.59461 (12)0.5810 (3)0.0173 (3)
N20.61927 (12)0.80764 (12)0.5732 (3)0.0188 (3)
H20.638 (2)0.856 (2)0.479 (3)0.023*
N30.76463 (13)0.73260 (14)0.2413 (2)0.0193 (3)
N40.80075 (11)0.52272 (14)0.7611 (3)0.0181 (3)
C10.59808 (12)0.48835 (14)0.6052 (3)0.0202 (3)
H10.6525330.4514120.6247690.024*
C20.51962 (13)0.43077 (14)0.6027 (4)0.0236 (3)
H2A0.5201100.3554450.6176920.028*
C30.43973 (14)0.48534 (17)0.5779 (3)0.0267 (4)
H30.3844900.4481450.5785710.032*
C40.44214 (14)0.59522 (18)0.5522 (3)0.0251 (4)
H40.3884720.6341500.5346870.030*
C50.52366 (14)0.64731 (16)0.5523 (2)0.0196 (4)
C60.53236 (15)0.76513 (16)0.5116 (3)0.0223 (4)
H6A0.5270920.7762240.3835230.027*
H6AB0.4832740.8046670.5692810.027*
C70.61826 (15)0.87026 (16)0.7416 (3)0.0213 (4)
C80.71738 (16)0.88814 (17)0.7830 (3)0.0241 (4)
H8A0.7433340.9377610.6958080.029*
H8AB0.7232730.9212260.9003270.029*
C90.57393 (18)0.97932 (19)0.7166 (3)0.0307 (5)
H9A0.6038381.0179150.6215620.046*
H9AB0.5786761.0205890.8253750.046*
H9AC0.5108740.9692970.6869210.046*
C100.57262 (18)0.80604 (18)0.8857 (3)0.0278 (5)
H10A0.5111140.7901760.8508520.042*
H10B0.5723160.8476050.9945880.042*
H10C0.6050930.7390690.9044260.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01865 (12)0.01345 (11)0.01599 (12)0.00077 (6)0.00037 (10)0.00057 (10)
O10.0285 (8)0.0172 (6)0.0146 (6)0.0006 (6)0.0019 (6)0.0012 (5)
O20.0284 (8)0.0316 (8)0.0136 (7)0.0090 (6)0.0019 (5)0.0027 (6)
O30.0362 (8)0.0279 (7)0.0152 (7)0.0099 (6)0.0022 (7)0.0028 (6)
O40.0301 (9)0.0375 (10)0.0226 (8)0.0144 (7)0.0013 (7)0.0045 (6)
O50.0222 (6)0.0196 (6)0.0184 (8)0.0025 (4)0.0013 (6)0.0035 (6)
O60.0281 (8)0.0301 (7)0.0185 (7)0.0043 (6)0.0045 (6)0.0005 (6)
O70.0355 (9)0.0255 (7)0.0263 (7)0.0120 (6)0.0004 (7)0.0058 (6)
N10.0183 (6)0.0162 (6)0.0174 (7)0.0012 (5)0.0016 (7)0.0004 (7)
N20.0242 (7)0.0156 (6)0.0167 (9)0.0008 (5)0.0001 (7)0.0010 (6)
N30.0264 (8)0.0160 (7)0.0154 (7)0.0037 (6)0.0004 (7)0.0005 (5)
N40.0187 (7)0.0186 (8)0.0171 (7)0.0013 (5)0.0021 (6)0.0006 (6)
C10.0208 (7)0.0161 (7)0.0238 (8)0.0016 (5)0.0048 (9)0.0012 (8)
C20.0247 (8)0.0204 (7)0.0256 (8)0.0056 (6)0.0042 (10)0.0022 (9)
C30.0217 (8)0.0299 (9)0.0284 (11)0.0072 (7)0.0047 (9)0.0051 (9)
C40.0176 (8)0.0298 (9)0.0279 (11)0.0003 (7)0.0041 (7)0.0049 (7)
C50.0207 (9)0.0202 (8)0.0179 (8)0.0011 (6)0.0026 (6)0.0028 (6)
C60.0247 (10)0.0205 (9)0.0217 (9)0.0023 (7)0.0043 (7)0.0040 (7)
C70.0296 (10)0.0179 (8)0.0165 (8)0.0038 (7)0.0034 (8)0.0002 (6)
C80.0334 (11)0.0174 (9)0.0215 (10)0.0000 (7)0.0005 (8)0.0042 (7)
C90.0414 (13)0.0215 (9)0.0292 (10)0.0091 (9)0.0044 (10)0.0016 (8)
C100.0348 (12)0.0297 (11)0.0188 (9)0.0028 (8)0.0057 (9)0.0029 (7)
Geometric parameters (Å, º) top
Cu1—O51.9608 (14)C2—C31.392 (3)
Cu1—N11.9854 (16)C2—H2A0.9500
Cu1—N22.0033 (17)C3—C41.390 (3)
Cu1—O12.0861 (15)C3—H30.9500
Cu1—O22.1259 (16)C4—C51.385 (3)
O1—C81.435 (3)C4—H40.9500
O1—H1O10.834 (13)C5—C61.513 (3)
O2—N31.274 (2)C6—H6A0.9900
O3—N31.244 (2)C6—H6AB0.9900
O4—N31.243 (3)C7—C101.524 (3)
O5—N41.301 (3)C7—C91.531 (3)
O6—N41.232 (2)C7—C81.535 (3)
O7—N41.241 (2)C8—H8A0.9900
N1—C11.344 (2)C8—H8AB0.9900
N1—C51.345 (2)C9—H9A0.9800
N2—C61.484 (3)C9—H9AB0.9800
N2—C71.505 (3)C9—H9AC0.9800
N2—H20.977 (13)C10—H10A0.9800
C1—C21.380 (2)C10—H10B0.9800
C1—H10.9500C10—H10C0.9800
O5—Cu1—N197.97 (6)C2—C3—H3120.6
O5—Cu1—N2177.48 (6)C5—C4—C3119.3 (2)
N1—Cu1—N284.53 (7)C5—C4—H4120.4
O5—Cu1—O195.45 (7)C3—C4—H4120.4
N1—Cu1—O1136.81 (7)N1—C5—C4121.63 (18)
N2—Cu1—O182.92 (7)N1—C5—C6115.97 (17)
O5—Cu1—O283.01 (7)C4—C5—C6122.34 (18)
N1—Cu1—O2131.25 (7)N2—C6—C5111.13 (16)
N2—Cu1—O295.08 (8)N2—C6—H6A109.4
O1—Cu1—O291.00 (6)C5—C6—H6A109.4
C8—O1—Cu1109.09 (13)N2—C6—H6AB109.4
C8—O1—H1O1111 (3)C5—C6—H6AB109.4
Cu1—O1—H1O1118 (3)H6A—C6—H6AB108.0
N3—O2—Cu1113.62 (12)N2—C7—C10110.21 (17)
N4—O5—Cu1117.05 (13)N2—C7—C9111.27 (18)
C1—N1—C5119.01 (16)C10—C7—C9111.44 (19)
C1—N1—Cu1126.70 (13)N2—C7—C8104.00 (16)
C5—N1—Cu1114.22 (13)C10—C7—C8111.27 (19)
C6—N2—C7116.65 (17)C9—C7—C8108.41 (19)
C6—N2—Cu1109.64 (12)O1—C8—C7110.84 (17)
C7—N2—Cu1109.06 (13)O1—C8—H8A109.5
C6—N2—H2103.6 (18)C7—C8—H8A109.5
C7—N2—H2108.1 (19)O1—C8—H8AB109.5
Cu1—N2—H2109.5 (18)C7—C8—H8AB109.5
O4—N3—O3122.21 (18)H8A—C8—H8AB108.1
O4—N3—O2119.33 (18)C7—C9—H9A109.5
O3—N3—O2118.45 (17)C7—C9—H9AB109.5
O6—N4—O7123.36 (19)H9A—C9—H9AB109.5
O6—N4—O5119.70 (17)C7—C9—H9AC109.5
O7—N4—O5116.95 (18)H9A—C9—H9AC109.5
N1—C1—C2122.58 (17)H9AB—C9—H9AC109.5
N1—C1—H1118.7C7—C10—H10A109.5
C2—C1—H1118.7C7—C10—H10B109.5
C1—C2—C3118.62 (17)H10A—C10—H10B109.5
C1—C2—H2A120.7C7—C10—H10C109.5
C3—C2—H2A120.7H10A—C10—H10C109.5
C4—C3—C2118.86 (18)H10B—C10—H10C109.5
C4—C3—H3120.6
Cu1—O2—N3—O44.0 (3)C7—N2—C6—C5101.79 (19)
Cu1—O2—N3—O3176.76 (14)Cu1—N2—C6—C522.8 (2)
Cu1—O5—N4—O67.5 (2)N1—C5—C6—N220.6 (2)
Cu1—O5—N4—O7172.10 (14)C4—C5—C6—N2162.32 (19)
C5—N1—C1—C20.4 (4)C6—N2—C7—C1052.6 (2)
Cu1—N1—C1—C2176.29 (18)Cu1—N2—C7—C1072.26 (19)
N1—C1—C2—C31.4 (4)C6—N2—C7—C971.6 (2)
C1—C2—C3—C41.6 (4)Cu1—N2—C7—C9163.60 (15)
C2—C3—C4—C50.1 (4)C6—N2—C7—C8171.93 (16)
C1—N1—C5—C41.9 (3)Cu1—N2—C7—C847.09 (17)
Cu1—N1—C5—C4175.13 (15)Cu1—O1—C8—C732.1 (2)
C1—N1—C5—C6175.2 (2)N2—C7—C8—O152.1 (2)
Cu1—N1—C5—C67.7 (2)C10—C7—C8—O166.5 (2)
C3—C4—C5—N11.7 (3)C9—C7—C8—O1170.60 (18)
C3—C4—C5—C6175.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O3i0.83 (1)1.89 (2)2.685 (2)159 (4)
N2—H2···O7ii0.98 (1)1.97 (2)2.930 (3)167 (3)
C4—H4···O2iii0.952.313.204 (3)156
C8—H8AB···O5iv0.992.553.455 (3)152
Symmetry codes: (i) x, y, z+1; (ii) x+3/2, y+1/2, z1/2; (iii) x1/2, y+3/2, z; (iv) x+3/2, y+1/2, z+1/2.
 

Funding information

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2017R1C1B2003111). The X-ray crystallography BL2D-SMC beamline and the FT–IR experiment 12D-IRS beamline at the PLS-II were supported in part by MSICT and POSTECH.

References

First citationAhn, S. H., Chun, M. K., Kim, E., Jeong, H. H., Nayab, S. & Lee, H. (2017). Polyhedron, 127, 51–58.  CrossRef CAS Google Scholar
First citationChia, Y. Y. & Tay, M. G. (2014). Dalton Trans. 43, 13159–13168.  CrossRef CAS Google Scholar
First citationEl-Khatib, F., Cahier, B., López-Jordà, M., Guillot, R., Rivière, E., Hafez, H., Saad, Z., Guihéry, N. & Mallah, T. (2018). Eur. J. Inorg. Chem. pp. 469–476.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuieu, S. J. A., Lanfredi, A. M. M., Massera, C., Pachon, L. D., Gamez, P. & Reedijk, J. (2004). Catal. Today, 96, 259–264.  CrossRef CAS Google Scholar
First citationLiu, X., Zhou, J., Bao, X., Yan, Z., Peng, G., Rouzières, M., Mathonière, C., Liu, J.-L. & Clérac, R. (2017). Inorg. Chem. 56, 12148–12157.  CrossRef CAS Google Scholar
First citationLiu, X.-J., Wang, X., Xu, J.-L., Tian, D., Chen, R. Y., Xu, J. & Bu, X. H. (2017). Dalton Trans. 46, 4893–4897.  CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press, New York.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Bae, J. M., Kim, C. & Min, K. S. (2014). Dalton Trans. 43, 3999–4008.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Jeong, A. R., Lee, S. Y., Kim, C., Hayami, S. & Min, K. S. (2016). Dalton Trans. 45, 14089–14100.  CrossRef CAS Google Scholar
First citationShin, J. W., Lee, D. W., Kim, D.-W. & Moon, D. (2016). Acta Cryst. E72, 1400–1403.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds