research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[(2E)-2-methyl-3-phenyl­prop-2-en-1-yl­­idene]-N-phenyl­hydrazinecarboxamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram 695 004, Kerala, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: msithambaresan@gmail.com

Edited by J. Jasinsk, Keene State College, USA (Received 3 December 2018; accepted 28 December 2018; online 8 January 2019)

The title compound, C17H17N3O, crystallizes with two independent mol­ecules in the asymmetric unit. The semicarbazone moieties of these independent mol­ecules (I and II) are essentially planar [maximum deviation of 0.042 (1) Å in mol­ecule I and 0.041 (1) Å in mol­ecule II], with the terminal phenyl rings twisted away from the mean plane of the semicarbazone moiety, making dihedral angles of 60.26 (8) and 28.76 (9)° in mol­ecule I and 31.07 (9) and 35.45 (8)° in mol­ecule II. The mol­ecules both exhibit an E configuration with respect to the C=C and azomethine C=N bonds. In the crystal, two classical N—H⋯O hydrogen-bonding inter­actions are present between the two mol­ecules, forming a centrosymmetric dimer, while a weak C—H⋯O non-classical hydrogen-bonding inter­action, with a donor–acceptor distance of 3.476 (2) Å, inter­connects two neighbouring centrosymmetric dimers to form a cage-like structure. These cage structures are inter­connected by weak C—H⋯π inter­actions with an H⋯π distance of 2.790 Å, forming supra­molecular chains along the c-axis direction.

1. Chemical context

Semicarbazones are oxygen and nitro­gen contributor ligands whose significance lies in their versatility of mol­ecular sequence, which allows diverse geometries to be obtained. Semicarbazones exhibit amido–iminol tautomerism in solution due to the inter­action of solvent mol­ecules, but generally exist in the amido form in the solid state. The FT–IR and NMR spectra of semicarbazones indicate the existence of a keto form in the solid state that can be confirmed by single crystal X-ray diffraction analysis (Kurup et al., 2011[Kurup, M. R. P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S. R. & Suresh, E. (2011). Polyhedron, 30, 70-78.]; Sreekanth et al., 2004[Sreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41-47.]). Biological properties linked to anti­microbial (Siji et al., 2010[Siji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta A, 76, 22-28.]) and anti­parasitic (Soares et al., 2011[Soares, R. O. A., Echevarria, A., Bellieny, M. S. S., Pinho, R. T., de Leo, R. M. M., Seguins, W. S., Machado, E. M., Canto-Cavalheiro, M. M. & Leon, L. L. (2011). Exp. Parasitol. 129, 381-387.]) effects make semicarbazones important ligands in coordination chemistry. Compared to Gentamycin, a commonly used anti­biotic, N4-phenyl­semicarbazone derivatives exhibit moderate anti­bacterial activity at higher concentrations and also show DNA cleavage properties (Layana et al., 2016[Layana, S. R., Siji, V. L., Sudarsanakumar, M. R., Suma, S., Kurup, M. R. P. & Sikha, T. S. (2016). J. Indian Chem. Soc. 93, 577-586.]). Semicarbazones can function as brilliant ligands in a variety of metal ions (Kala et al., 2007[Kala, U. L., Suma, S., Kurup, M. R. P., Krishnan, S. & John, R. P. (2007). Polyhedron, 26, 1427-1435.]) and co-ordinate to metal ions either in neutral (Siji et al., 2011[Siji, V. L., Sudarsanakumar, M. R., Suma, S., George, A. & Thomas, P. V. (2011). Indian J. Chem. Sect. A, 50, 793-797.]) or in anionic forms (Reena et al., 2008[Reena, T. A., Seena, E. B. & Kurup, M. R. P. (2008). Polyhedron, 27, 1825-1831.]). Structural studies of many semicarbazones and N4-phenyl­semi­carb­azones have been reported and some of them adopt an E configuration with respect to the azomethine double bond along with both inter- and intra­molecular hydrogen-bonding inter­actions (Reena et al., 2010[Reena, T. A. & Kurup, M. R. P. (2010). J. Chem. Crystallogr. 40, 927-932.]; Layana et al., 2014[Layana, S. R., Sithambaresan, M., Siji, V. L., Sudarsanakumar, M. R. & Suma, S. (2014). Acta Cryst. E70, o591.], 2018[Layana, S. R., Saritha, S. R., Anitha, L., Sithambaresan, M., Sudarsanakumar, M. R. & Suma, S. (2018). J. Mol. Struct. 1157, 579-586.]). Semicarbazones form complexes with a variety of structural features such as monomer, dimer and one-dimensional polymers (Kunnath et al., 2016[Kunnath, R. J., Sithambaresan, M., Aravindakshan, A. A., Natarajan, A. & Kurup, M. R. P. (2016). Polyhedron, 113, 73-80.]). α-Meth­yl-trans-cinnamaldehyde, a precursor for the synthesis of α-methyl-trans-cinnamaldehyde-N4-phenyl­semicarbazone, has significant anti­fungal activity and can self-couple and form complexes with some transition metals (Shreaz et al., 2011[Shreaz, S., Sheikh, R. A., Bhatia, R., Neelofar, K., Imran, S., Hashmi, A. A., Manzoor, N., Basir, S. F. & Khan, L. A. (2011). Biometals, 24, 923-933.]). The diverse structural features and substantial biological applications have prompted us to synthesize a new semicarbazone derived from α-methyl-trans-cinnamaldehyde and N4-phenyl­semicarbazide.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the triclinic space group P[\overline{1}] symmetry with two independent mol­ecules, I and II, in the asymmetric unit (Fig. 1[link]). The semicarbazone units in I and II are essentially planar, with maximum deviations from the least-squares plane of 0.042 (1) Å for N2 in mol­ecule I and 0.041 (1) Å for N4 in mol­ecule II. The terminal phenyl rings in both two mol­ecules are twisted away from the semicarbazone mean plane, making dihedral angles of 60.26 (8) and 28.76 (9)° in mol­ecule I and 31.07 (9) and 35.45 (8)° in mol­ecule II. Both mol­ecules exist in an E configuration with respect to the C=C and azomethine C=N bonds. The azomethine C=N and keto C=O bond lengths [1.273 (2) and 1.2269 (17) Å, respectively] in mol­ecule I are shorter than those for mol­ecule II [1.2766 (19) Å and 1.2302 (18) Å respectively]. In contrast, the C=N and C=O bond lengths bond lengths reported for the two independent mol­ecules of 2-benzoyl­pyridine semicarbazone are 1.294 (2) and 1.295 (2) Å and 1.2360 (19) and 1.2390 (19) Å respectively (de Lima et al., 2008[Lima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, o177.]).

[Figure 1]
Figure 1
ORTEP diagram showing the two mol­ecules in the asymmetric unit, with atom labels and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, two classical and one non-classical hydrogen-bonding inter­actions are observed. Mol­ecules I and II are linked into centrosymmetric dimers through N2—H2′⋯O2 and N5—H5′⋯O1 hydrogen bonds with DA distances of 2.808 (2) Å, and 2.8639 (19) Å, respectively (Fig. 2[link], Table 1[link]), while C13—H13⋯O2 inter­actions with a D⋯A distance of 3.476 (2) Å, inter­connect adjacent dimers, creating cage-like structures that are linked by weak C—H⋯π inter­actions into supra­molecular chains along the c-axis direction (Fig. 3[link]). No significant ππ inter­actions occur. The packing viewed along the b axis is shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5′⋯O1 0.88 (1) 1.99 (1) 2.8639 (19) 174 (2)
N2—H2′⋯O2 0.88 (1) 1.93 (1) 2.808 (2) 176 (2)
N3—H3′⋯N1 0.87 (1) 2.13 (2) 2.6146 (18) 115 (1)
N6—H6′⋯N4 0.87 (1) 2.17 (2) 2.6261 (19) 112 (2)
C13—H13⋯O2i 0.93 2.64 3.476 (2) 149
C32—H32⋯Cg1ii 0.93 2.79 3.518 (2) 136
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z+2.
[Figure 2]
Figure 2
N—H⋯O hydrogen bonds and weak C—H⋯O inter­molecular inter­actions (dashed lines) generating centrosymmetric dimers and a cage-like structure.
[Figure 3]
Figure 3
Weak C—H⋯π inter­molecular inter­actions (solid cones), linking the dimeric cage-like structures into a chain along the c axis.
[Figure 4]
Figure 4
The packing viewed along the b axis.

3.1. Database survey

The structure of the title compound has not previously been reported (CSD version 5.39, update of August 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). All geometric parameters in the title compound agree well with those reported in the literature with the C10—N1/C27—N4 [1.273 (2) and 1.2766 (19) Å], N1— N2/N4—N5 [1.3691 (17) and 1.3679 (18) Å] and C11—O1/C28—O2 [1.2269 (17) and 1.2302 (18) Å] bond distances being comparable to those in benzaldehyde-N4-phenyl­semi­carb­azone [1.273 (2), 1.369 (2) and 1.225 (2) Å; Layana et al., 2014[Layana, S. R., Sithambaresan, M., Siji, V. L., Sudarsanakumar, M. R. & Suma, S. (2014). Acta Cryst. E70, o591.]] and vanillin-N-phenyl­thio­semicarbazone [1.2726 (17), 1.3801 (15) and 1.2404 (15) Å; Layana et al., 2016[Layana, S. R., Siji, V. L., Sudarsanakumar, M. R., Suma, S., Kurup, M. R. P. & Sikha, T. S. (2016). J. Indian Chem. Soc. 93, 577-586.]]

4. Synthesis and crystallization

Hot ethano­lic solutions of N4-phenyl­semicarbazide (0.1512 g, 1 mmol) and α-methyl-trans-cinnamaldehyde (0.14 ml, 1 mmol) were mixed and refluxed for about 4 h. Colourless block-shaped crystals of the title compound (yield 83%) were separated by filtration, washed with ethanol and dried over P4O10 in vacuo. Single crystals (m.p. 463±2 K) were obtained by slow evaporation of a 1:1 mixture of ethyl acetate and ethanol.

Analysis calculated: C, 73.03; H, 6.09, N, 15.04%. Found: C, 72.66; H, 6.32; N, 15.29%. Spectrometric data. FT–IR νmax (KBr, cm−1): The spectrum of the title compound shows characteristic absorption bands of the main functional groups at IR (νmax, cm−1): 3379 (4NH), 3192 (2NH), 1685 (C=O) 3072, 2960 (C—H aromatic), 1591 (C=N), 1029 (N—N). FT–Raman (cm−1) 3055 (N—H), 1613 (C=O), 1577 (C=N), 1137 (N—N). 1H NMR (400 MHz) (DMSO-d6, ppm): δH 2.2 (s, 3H, meth­yl), 7–7.5 (m, 10H, Ar—H), 6.7 (s, 1H, methine), 7.7 (s, 1H, azomethine), 8.6 (s, 2H, amine), 10.6 (s, 1H, iminol H). 13C NMR (400 MHz) (DMSO-d6, ppm): δC 135.2 (C6), 129.12 (C1 and C5), 128.4 (C2 and C4), 119.6 ppm (C3), 152.9 (C7), 146.4 (C8), 138.9 (C9), 136.5 (C10), 12.9 (C17), 134.3 (C11), 128.5 ppm (C12 and C16), 127.4 ppm (C13 and C15) and 122.4 ppm (C14). UV–visible (200–1000, nm): 268 (ππ*), 342 (nπ*).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Reflections ([\overline{1}][\overline{1}]1) and (001) were omitted due to bad agreement. All hydrogen atoms bound to carbon atoms were positioned geometrically with C—H distances of 0.93–0.96 Å and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl). The NH hydrogen atoms were located in a difference-Fourier map and refined with N—H restrained to 0.88±0.01 Å.

Table 2
Experimental details

Crystal data
Chemical formula C17H17N3O
Mr 279.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 10.2140 (6), 10.5133 (8), 15.3297 (10)
α, β, γ (°) 106.652 (3), 99.111 (3), 97.416 (4)
V3) 1530.51 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.60 × 0.50 × 0.50
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.939, 0.948
No. of measured, independent and observed [I > 2σ(I)] reflections 12172, 7346, 4038
Rint 0.019
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.175, 0.95
No. of reflections 7346
No. of parameters 397
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.23
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXL2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

2-[(2E)-2-Methyl-3-phenylprop-2-en-1-ylidene]-N-phenylhydrazinecarboxamide top
Crystal data top
C17H17N3OZ = 4
Mr = 279.33F(000) = 592
Triclinic, P1Dx = 1.212 Mg m3
a = 10.2140 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5133 (8) ÅCell parameters from 3309 reflections
c = 15.3297 (10) Åθ = 2.6–27.7°
α = 106.652 (3)°µ = 0.08 mm1
β = 99.111 (3)°T = 296 K
γ = 97.416 (4)°Block, colorless
V = 1530.51 (18) Å30.60 × 0.50 × 0.50 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7346 independent reflections
Radiation source: fine-focus sealed tube4038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω and φ scanθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1312
Tmin = 0.939, Tmax = 0.948k = 1313
12172 measured reflectionsl = 2015
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.1017P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
7346 reflectionsΔρmax = 0.16 e Å3
397 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.88173 (19)0.1561 (2)0.82683 (13)0.0630 (5)
H10.88240.06370.84380.076*
C20.9866 (2)0.2034 (3)0.86846 (15)0.0723 (6)
H21.05760.14300.91250.087*
C30.9863 (2)0.3387 (3)0.84506 (16)0.0753 (6)
H31.05680.37060.87320.090*
C40.8822 (2)0.4271 (2)0.78030 (15)0.0734 (6)
H40.88180.51940.76470.088*
C50.7773 (2)0.3802 (2)0.73766 (13)0.0613 (5)
H50.70730.44150.69330.074*
C60.77527 (16)0.2438 (2)0.76005 (12)0.0497 (4)
C70.66419 (17)0.18955 (19)0.71894 (12)0.0502 (4)
H70.63040.12510.76040.060*
C80.60596 (15)0.22156 (18)0.62933 (11)0.0442 (4)
C90.64815 (19)0.3180 (2)0.55182 (13)0.0611 (5)
H9A0.73500.33600.57390.092*
H9B0.65340.27950.50250.092*
H9C0.58340.40080.52900.092*
C100.49813 (15)0.15284 (18)0.60452 (11)0.0448 (4)
H100.46370.09790.65120.054*
C110.29530 (15)0.10122 (17)0.41634 (11)0.0438 (4)
C120.32548 (15)0.18810 (17)0.25412 (11)0.0447 (4)
C130.42849 (18)0.2055 (2)0.20670 (13)0.0649 (6)
H130.51430.20490.23820.078*
C140.4051 (2)0.2239 (3)0.11315 (14)0.0850 (8)
H140.47540.23550.08150.102*
C150.2788 (2)0.2254 (3)0.06550 (14)0.0777 (7)
H150.26340.23730.00200.093*
C160.17664 (19)0.2093 (2)0.11236 (13)0.0640 (5)
H160.09070.21100.08040.077*
C170.19852 (16)0.1905 (2)0.20641 (12)0.0541 (5)
H170.12780.17940.23770.065*
C180.33204 (19)0.2586 (2)0.20723 (13)0.0665 (6)
H180.31670.17210.18010.080*
C190.4276 (2)0.3093 (3)0.15904 (15)0.0787 (7)
H190.47530.25730.09990.094*
C200.4518 (2)0.4367 (3)0.19863 (16)0.0793 (7)
H200.51710.47060.16700.095*
C210.3796 (2)0.5128 (3)0.28446 (17)0.0769 (6)
H210.39530.59930.31100.092*
C220.2836 (2)0.4633 (2)0.33250 (14)0.0643 (5)
H220.23470.51740.39080.077*
C230.25859 (16)0.3344 (2)0.29541 (12)0.0507 (4)
C240.15906 (16)0.27357 (19)0.34168 (12)0.0498 (4)
H240.12230.21010.30170.060*
C250.11244 (15)0.29476 (17)0.43239 (11)0.0431 (4)
C260.15538 (17)0.38927 (19)0.51113 (12)0.0516 (4)
H26A0.09760.47610.52970.077*
H26B0.14930.35430.56270.077*
H26C0.24690.39820.49160.077*
C270.01521 (15)0.21447 (17)0.45568 (11)0.0451 (4)
H270.01220.15370.40790.054*
C280.17376 (15)0.13993 (19)0.63940 (12)0.0474 (4)
C290.17182 (15)0.24127 (19)0.80442 (12)0.0482 (4)
C300.1829 (2)0.3675 (2)0.86669 (14)0.0740 (6)
H300.16830.43970.84520.089*
C310.2159 (2)0.3874 (3)0.96110 (15)0.0878 (7)
H310.22190.47291.00290.105*
C320.23933 (19)0.2836 (3)0.99329 (15)0.0733 (6)
H320.26160.29741.05690.088*
C330.2302 (2)0.1594 (3)0.93208 (15)0.0766 (7)
H330.24760.08820.95400.092*
C340.1954 (2)0.1371 (2)0.83737 (14)0.0675 (5)
H340.18800.05100.79610.081*
N10.44999 (12)0.16681 (14)0.51975 (9)0.0447 (3)
N20.34882 (14)0.09748 (16)0.50394 (10)0.0485 (4)
N30.35427 (14)0.17255 (17)0.34979 (10)0.0536 (4)
N40.03382 (12)0.22481 (14)0.53988 (9)0.0455 (3)
N50.12237 (14)0.14139 (16)0.55249 (10)0.0516 (4)
N60.13105 (14)0.22397 (17)0.70885 (10)0.0538 (4)
O10.20160 (11)0.04300 (13)0.40141 (8)0.0525 (3)
O20.25451 (13)0.06620 (15)0.65140 (8)0.0648 (4)
H3'0.4260 (12)0.1964 (17)0.3742 (11)0.049 (5)*
H5'0.1507 (17)0.0898 (17)0.5059 (9)0.060 (6)*
H6'0.080 (2)0.276 (2)0.6905 (15)0.087 (7)*
H2'0.3176 (16)0.0501 (17)0.5509 (9)0.055 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0670 (11)0.0636 (14)0.0591 (11)0.0160 (10)0.0032 (9)0.0238 (10)
C20.0595 (11)0.0850 (18)0.0701 (13)0.0139 (11)0.0047 (10)0.0299 (13)
C30.0660 (12)0.0986 (19)0.0719 (14)0.0403 (12)0.0071 (11)0.0358 (14)
C40.0886 (14)0.0696 (15)0.0705 (14)0.0405 (12)0.0118 (12)0.0262 (12)
C50.0664 (11)0.0615 (14)0.0568 (11)0.0221 (9)0.0036 (9)0.0204 (10)
C60.0519 (9)0.0611 (12)0.0446 (10)0.0185 (8)0.0118 (8)0.0253 (9)
C70.0561 (10)0.0558 (12)0.0463 (10)0.0227 (8)0.0123 (8)0.0209 (9)
C80.0415 (8)0.0493 (10)0.0467 (10)0.0124 (7)0.0108 (7)0.0198 (8)
C90.0615 (11)0.0734 (14)0.0521 (11)0.0290 (10)0.0109 (8)0.0186 (10)
C100.0455 (8)0.0494 (11)0.0446 (9)0.0136 (7)0.0116 (7)0.0192 (8)
C110.0416 (8)0.0477 (10)0.0457 (9)0.0108 (7)0.0081 (7)0.0197 (8)
C120.0453 (9)0.0457 (10)0.0419 (9)0.0117 (7)0.0044 (7)0.0128 (8)
C130.0478 (10)0.0906 (16)0.0518 (11)0.0219 (10)0.0054 (8)0.0141 (11)
C140.0620 (12)0.138 (2)0.0514 (12)0.0239 (13)0.0164 (10)0.0196 (14)
C150.0725 (13)0.113 (2)0.0420 (11)0.0223 (12)0.0025 (10)0.0188 (12)
C160.0545 (10)0.0749 (15)0.0532 (11)0.0158 (9)0.0066 (9)0.0134 (10)
C170.0432 (9)0.0663 (13)0.0519 (11)0.0134 (8)0.0044 (8)0.0185 (9)
C180.0621 (11)0.0881 (17)0.0470 (11)0.0220 (10)0.0057 (9)0.0169 (11)
C190.0634 (12)0.120 (2)0.0508 (12)0.0199 (13)0.0005 (9)0.0295 (13)
C200.0599 (12)0.116 (2)0.0783 (16)0.0254 (13)0.0060 (11)0.0555 (16)
C210.0739 (13)0.0754 (16)0.0897 (16)0.0222 (11)0.0032 (12)0.0422 (14)
C220.0677 (12)0.0597 (14)0.0642 (12)0.0129 (9)0.0033 (9)0.0257 (11)
C230.0463 (9)0.0648 (13)0.0449 (10)0.0096 (8)0.0081 (7)0.0240 (9)
C240.0504 (9)0.0522 (11)0.0458 (10)0.0135 (8)0.0078 (7)0.0133 (8)
C250.0403 (8)0.0432 (10)0.0439 (9)0.0064 (7)0.0046 (7)0.0137 (8)
C260.0530 (9)0.0535 (12)0.0508 (10)0.0179 (8)0.0109 (8)0.0163 (9)
C270.0445 (8)0.0455 (10)0.0431 (9)0.0114 (7)0.0069 (7)0.0103 (8)
C280.0397 (8)0.0527 (11)0.0461 (10)0.0114 (7)0.0022 (7)0.0120 (8)
C290.0404 (8)0.0587 (12)0.0454 (9)0.0135 (7)0.0081 (7)0.0147 (9)
C300.0992 (15)0.0679 (15)0.0585 (13)0.0323 (12)0.0211 (11)0.0154 (11)
C310.1139 (19)0.0819 (18)0.0553 (14)0.0197 (14)0.0196 (13)0.0005 (13)
C320.0642 (12)0.104 (2)0.0472 (12)0.0100 (12)0.0097 (9)0.0199 (13)
C330.0860 (15)0.0902 (19)0.0625 (14)0.0214 (13)0.0101 (11)0.0380 (14)
C340.0845 (13)0.0593 (14)0.0558 (12)0.0146 (10)0.0066 (10)0.0174 (10)
N10.0417 (7)0.0494 (9)0.0485 (8)0.0147 (6)0.0088 (6)0.0214 (7)
N20.0490 (8)0.0593 (10)0.0444 (8)0.0231 (7)0.0120 (6)0.0207 (7)
N30.0499 (8)0.0735 (11)0.0438 (8)0.0295 (7)0.0071 (6)0.0216 (8)
N40.0417 (7)0.0472 (9)0.0465 (8)0.0127 (6)0.0045 (6)0.0136 (7)
N50.0512 (8)0.0588 (10)0.0441 (9)0.0247 (7)0.0042 (7)0.0119 (8)
N60.0547 (8)0.0642 (11)0.0449 (8)0.0263 (7)0.0072 (7)0.0159 (8)
O10.0492 (6)0.0641 (9)0.0501 (7)0.0244 (6)0.0089 (5)0.0218 (6)
O20.0679 (8)0.0774 (10)0.0485 (7)0.0406 (7)0.0013 (6)0.0124 (7)
Geometric parameters (Å, º) top
C1—C21.381 (2)C19—C201.375 (3)
C1—C61.389 (3)C19—H190.9300
C1—H10.9300C20—C211.361 (3)
C2—C31.362 (3)C20—H200.9300
C2—H20.9300C21—C221.378 (2)
C3—C41.364 (3)C21—H210.9300
C3—H30.9300C22—C231.386 (3)
C4—C51.385 (2)C22—H220.9300
C4—H40.9300C23—C241.464 (2)
C5—C61.379 (3)C24—C251.340 (2)
C5—H50.9300C24—H240.9300
C6—C71.469 (2)C25—C271.450 (2)
C7—C81.334 (2)C25—C261.493 (2)
C7—H70.9300C26—H26A0.9600
C8—C101.453 (2)C26—H26B0.9600
C8—C91.487 (2)C26—H26C0.9600
C9—H9A0.9600C27—N41.2766 (19)
C9—H9B0.9600C27—H270.9300
C9—H9C0.9600C28—O21.2302 (18)
C10—N11.273 (2)C28—N61.346 (2)
C10—H100.9300C28—N51.358 (2)
C11—O11.2269 (17)C29—C341.363 (3)
C11—N21.355 (2)C29—C301.373 (3)
C11—N31.356 (2)C29—N61.410 (2)
C12—C131.373 (2)C30—C311.380 (3)
C12—C171.378 (2)C30—H300.9300
C12—N31.406 (2)C31—C321.354 (3)
C13—C141.368 (3)C31—H310.9300
C13—H130.9300C32—C331.353 (3)
C14—C151.374 (3)C32—H320.9300
C14—H140.9300C33—C341.382 (3)
C15—C161.359 (3)C33—H330.9300
C15—H150.9300C34—H340.9300
C16—C171.375 (3)N1—N21.3691 (17)
C16—H160.9300N2—H2'0.881 (9)
C17—H170.9300N3—H3'0.868 (9)
C18—C191.383 (3)N4—N51.3679 (18)
C18—C231.390 (3)N5—H5'0.879 (9)
C18—H180.9300N6—H6'0.872 (9)
C2—C1—C6121.3 (2)C21—C20—H20120.2
C2—C1—H1119.4C19—C20—H20120.2
C6—C1—H1119.4C20—C21—C22120.8 (2)
C3—C2—C1120.0 (2)C20—C21—H21119.6
C3—C2—H2120.0C22—C21—H21119.6
C1—C2—H2120.0C21—C22—C23121.1 (2)
C2—C3—C4119.84 (18)C21—C22—H22119.5
C2—C3—H3120.1C23—C22—H22119.5
C4—C3—H3120.1C22—C23—C18117.31 (16)
C3—C4—C5120.4 (2)C22—C23—C24124.73 (16)
C3—C4—H4119.8C18—C23—C24117.95 (18)
C5—C4—H4119.8C25—C24—C23130.34 (16)
C6—C5—C4120.90 (19)C25—C24—H24114.8
C6—C5—H5119.6C23—C24—H24114.8
C4—C5—H5119.6C24—C25—C27116.69 (15)
C5—C6—C1117.52 (16)C24—C25—C26125.97 (15)
C5—C6—C7122.88 (17)C27—C25—C26117.30 (14)
C1—C6—C7119.57 (17)C25—C26—H26A109.5
C8—C7—C6127.81 (16)C25—C26—H26B109.5
C8—C7—H7116.1H26A—C26—H26B109.5
C6—C7—H7116.1C25—C26—H26C109.5
C7—C8—C10118.17 (15)H26A—C26—H26C109.5
C7—C8—C9124.61 (15)H26B—C26—H26C109.5
C10—C8—C9117.15 (14)N4—C27—C25121.85 (15)
C8—C9—H9A109.5N4—C27—H27119.1
C8—C9—H9B109.5C25—C27—H27119.1
H9A—C9—H9B109.5O2—C28—N6123.87 (15)
C8—C9—H9C109.5O2—C28—N5120.66 (16)
H9A—C9—H9C109.5N6—C28—N5115.48 (14)
H9B—C9—H9C109.5C34—C29—C30118.95 (17)
N1—C10—C8120.96 (15)C34—C29—N6122.71 (17)
N1—C10—H10119.5C30—C29—N6118.29 (17)
C8—C10—H10119.5C29—C30—C31120.2 (2)
O1—C11—N2120.94 (15)C29—C30—H30119.9
O1—C11—N3124.61 (14)C31—C30—H30119.9
N2—C11—N3114.45 (13)C32—C31—C30120.5 (2)
C13—C12—C17119.33 (16)C32—C31—H31119.8
C13—C12—N3117.83 (13)C30—C31—H31119.8
C17—C12—N3122.81 (15)C33—C32—C31119.5 (2)
C14—C13—C12120.14 (16)C33—C32—H32120.3
C14—C13—H13119.9C31—C32—H32120.3
C12—C13—H13119.9C32—C33—C34120.8 (2)
C13—C14—C15120.64 (19)C32—C33—H33119.6
C13—C14—H14119.7C34—C33—H33119.6
C15—C14—H14119.7C29—C34—C33120.1 (2)
C16—C15—C14119.16 (18)C29—C34—H34120.0
C16—C15—H15120.4C33—C34—H34120.0
C14—C15—H15120.4C10—N1—N2116.30 (14)
C15—C16—C17120.91 (16)C11—N2—N1120.63 (14)
C15—C16—H16119.5C11—N2—H2'119.3 (11)
C17—C16—H16119.5N1—N2—H2'120.1 (11)
C16—C17—C12119.81 (17)C11—N3—C12127.30 (13)
C16—C17—H17120.1C11—N3—H3'111.3 (11)
C12—C17—H17120.1C12—N3—H3'120.4 (11)
C19—C18—C23121.3 (2)C27—N4—N5116.14 (14)
C19—C18—H18119.4C28—N5—N4120.26 (15)
C23—C18—H18119.4C28—N5—H5'117.5 (12)
C20—C19—C18119.9 (2)N4—N5—H5'122.2 (12)
C20—C19—H19120.0C28—N6—C29125.66 (14)
C18—C19—H19120.0C28—N6—H6'113.7 (15)
C21—C20—C19119.53 (19)C29—N6—H6'120.3 (15)
C6—C1—C2—C30.8 (3)C22—C23—C24—C2529.1 (3)
C1—C2—C3—C40.1 (3)C18—C23—C24—C25152.1 (2)
C2—C3—C4—C50.5 (4)C23—C24—C25—C27178.40 (17)
C3—C4—C5—C60.4 (3)C23—C24—C25—C260.9 (3)
C4—C5—C6—C10.2 (3)C24—C25—C27—N4178.73 (16)
C4—C5—C6—C7177.99 (19)C26—C25—C27—N41.0 (2)
C2—C1—C6—C50.8 (3)C34—C29—C30—C310.8 (3)
C2—C1—C6—C7178.68 (18)N6—C29—C30—C31176.69 (19)
C5—C6—C7—C847.8 (3)C29—C30—C31—C320.9 (4)
C1—C6—C7—C8134.4 (2)C30—C31—C32—C330.1 (4)
C6—C7—C8—C10179.13 (17)C31—C32—C33—C341.0 (3)
C6—C7—C8—C92.4 (3)C30—C29—C34—C330.2 (3)
C7—C8—C10—N1171.39 (16)N6—C29—C34—C33177.57 (17)
C9—C8—C10—N15.6 (3)C32—C33—C34—C291.1 (3)
C17—C12—C13—C140.6 (3)C8—C10—N1—N2179.88 (14)
N3—C12—C13—C14178.7 (2)O1—C11—N2—N1177.56 (15)
C12—C13—C14—C150.1 (4)N3—C11—N2—N12.8 (2)
C13—C14—C15—C160.4 (4)C10—N1—N2—C11177.09 (15)
C14—C15—C16—C170.6 (4)O1—C11—N3—C123.3 (3)
C15—C16—C17—C120.1 (3)N2—C11—N3—C12176.34 (17)
C13—C12—C17—C160.4 (3)C13—C12—N3—C11149.8 (2)
N3—C12—C17—C16178.43 (18)C17—C12—N3—C1132.2 (3)
C23—C18—C19—C200.4 (3)C25—C27—N4—N5178.64 (15)
C18—C19—C20—C211.2 (4)O2—C28—N5—N4179.26 (16)
C19—C20—C21—C220.7 (4)N6—C28—N5—N40.2 (2)
C20—C21—C22—C230.7 (3)C27—N4—N5—C28176.31 (16)
C21—C22—C23—C181.4 (3)O2—C28—N6—C290.5 (3)
C21—C22—C23—C24179.73 (19)N5—C28—N6—C29179.02 (16)
C19—C18—C23—C220.9 (3)C34—C29—N6—C2837.1 (3)
C19—C18—C23—C24179.82 (19)C30—C29—N6—C28145.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N5—H5···O10.88 (1)1.99 (1)2.8639 (19)174 (2)
N2—H2···O20.88 (1)1.93 (1)2.808 (2)176 (2)
N3—H3···N10.87 (1)2.13 (2)2.6146 (18)115 (1)
N6—H6···N40.87 (1)2.17 (2)2.6261 (19)112 (2)
C13—H13···O2i0.932.643.476 (2)149
C32—H32···Cg1ii0.932.793.518 (2)136
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.
 

Acknowledgements

The authors are thankful to the SAIF, STIC, Cochin University of Science and Technology, Kochi, Kerala, India for providing the instrumental facilities for single-crystal X-ray diffraction, elemental analysis, FT–IR, NMR and UV–Vis spectroscopic studies and to the SAIF IIT Madras, Chennai, India for the FT–Raman spectroscopic data. They are grateful to Dr. M. R. Prathapachandra Kurup, Department of Applied Chemistry, Cochin University of Science & Technology, Kochi-22, India, for the use of the DIAMOND software.

Funding information

Funding for this research was provided by: University of Kerala, Thiruvananthapuram, India.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKala, U. L., Suma, S., Kurup, M. R. P., Krishnan, S. & John, R. P. (2007). Polyhedron, 26, 1427–1435.  CrossRef CAS Google Scholar
First citationKunnath, R. J., Sithambaresan, M., Aravindakshan, A. A., Natarajan, A. & Kurup, M. R. P. (2016). Polyhedron, 113, 73–80.  CrossRef CAS Google Scholar
First citationKurup, M. R. P., Varghese, B., Sithambaresan, M., Krishnan, S., Sheeja, S. R. & Suresh, E. (2011). Polyhedron, 30, 70–78.  Web of Science CrossRef CAS Google Scholar
First citationLayana, S. R., Saritha, S. R., Anitha, L., Sithambaresan, M., Sudarsanakumar, M. R. & Suma, S. (2018). J. Mol. Struct. 1157, 579–586.  CrossRef CAS Google Scholar
First citationLayana, S. R., Siji, V. L., Sudarsanakumar, M. R., Suma, S., Kurup, M. R. P. & Sikha, T. S. (2016). J. Indian Chem. Soc. 93, 577–586.  CAS Google Scholar
First citationLayana, S. R., Sithambaresan, M., Siji, V. L., Sudarsanakumar, M. R. & Suma, S. (2014). Acta Cryst. E70, o591.  CrossRef IUCr Journals Google Scholar
First citationLima, D. F. de, Pérez-Rebolledo, A., Ellena, J. & Beraldo, H. (2008). Acta Cryst. E64, o177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationReena, T. A. & Kurup, M. R. P. (2010). J. Chem. Crystallogr. 40, 927–932.  Web of Science CrossRef CAS Google Scholar
First citationReena, T. A., Seena, E. B. & Kurup, M. R. P. (2008). Polyhedron, 27, 1825–1831.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShreaz, S., Sheikh, R. A., Bhatia, R., Neelofar, K., Imran, S., Hashmi, A. A., Manzoor, N., Basir, S. F. & Khan, L. A. (2011). Biometals, 24, 923–933.  CrossRef CAS Google Scholar
First citationSiji, V. L., Kumar, M. R. S., Suma, S. & Kurup, M. R. P. (2010). Spectrochim. Acta A, 76, 22–28.  CrossRef CAS Google Scholar
First citationSiji, V. L., Sudarsanakumar, M. R., Suma, S., George, A. & Thomas, P. V. (2011). Indian J. Chem. Sect. A, 50, 793–797.  Google Scholar
First citationSoares, R. O. A., Echevarria, A., Bellieny, M. S. S., Pinho, R. T., de Leo, R. M. M., Seguins, W. S., Machado, E. M., Canto-Cavalheiro, M. M. & Leon, L. L. (2011). Exp. Parasitol. 129, 381–387.  CrossRef CAS Google Scholar
First citationSreekanth, A., Kala, U. L., Nayar, C. R. & Kurup, M. R. P. (2004). Polyhedron, 23, 41–47.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds