research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(2-hy­dr­oxy-3-meth­­oxy­benz­yl)amino]­benzoic acid hemihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh UP 202 002, India, bDepartment of Chemistry, Langat Singh College, B. R. A. Bihar University, Muzaffarpur, Bihar 842 001, India, cDepartment of Chemistry, Indian Institute of Technology Kanpur 208016 UP, India, dOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and eNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str., 64, 01601 Kyiv, Ukraine
*Correspondence e-mail: faizichemiitg@gmail.com, tiskenderov@ukr.net

Edited by S. V. Lindeman, Marquette University, USA (Received 29 November 2018; accepted 29 December 2018; online 8 January 2019)

In the crystal of the title vanilline derivative, 2C15H15NO4·H2O, the secondary amine mol­ecule is accompanied by half equivalent of water. The mol­ecule is non-planar, with torsion angle Car­yl—CH2—NH—Car­yl of −83.9 (2)°. In the crystal, the system of O—H⋯O hydrogen bonds, including bridging water mol­ecules residing on crystallographic twofold axes, results in a two-dimensional layered structure. Within the layers, there are also weak N—H⋯π inter­actions involving the vanilline benzene ring.

1. Chemical context

The title compound is obtained by reduction of reported (Kamaal et al., 2018[Kamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M. & Iskenderov, T. (2018). Acta Cryst. E74, 1847-1850.]) (E)-4-(2-hy­droxy-3-meth­oxy­benzyl­idene­amino)benzoic acid with sodiumborohydride. The Schiff base is formed by condensation of 4-amino­benzoic acid with o-vanilline. Both p-amino­benzoic acid and o-vanilline have biological importance, for example as a bacterial cofactor involved in the synthesis of folic acid (Robinson, 1966[Robinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541-662. London: Pergamon.]). Another example is benzocaine, the ethyl ester of p-amino­benzoic acid, which is a local anaesthetic. The mechanism includes inhibiting voltage-dependent sodium channels on the nerve membrane, which results in stopping the signal propagation (Neumcke et al., 1981[Neumcke, B., Schwarz, W. & Stampfli, R. (1981). Pflugers Arch. 390, 230-236.]). The present work is also a part of an ongoing structural study of Schiff bases and secondary amines for their utilization in the synthesis of new organic compounds and application of excited-state proton transfer and fluorescent chemosensor (Faizi et al., 2016a[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366-1369.],b[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15-20.], 2018a[Faizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018a). J. Mol. Struct. 1156, 457-464.],b[Faizi, M. S. H., Dege, N. & Iskenderov, T. S. (2018b). Acta Cryst. E74, 410-413.]; Kumar et al., 2018[Kumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888-899.]; Mukherjee et al., 2018[Mukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787-3796.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The title compound has two substituted aromatic rings at either end of the –CH2-NH– linkage [Car­yl—CH2—NH—Car­yl torsion angle = −83.9 (2)°]. The water solvent stabilizes the crystal structure through hydrogen bonding. The secondary amine N atom has a practically planar trigonal configuration deviating by just 0.03 (1) Å from the mean plane of the adjacent atoms, and it is apparently conjugated with the adjacent benzene ring [the C—N bond length is 1.368 (2) Å]. For comparison, the reported C—N distance in crystal structure of the ethyl 4-[(E)-(4-hy­droxy-3-meth­oxy­benzyl­idene)amino]­benzoate Schiff base is 1.274 (2) Å (Ling et al., 2016[Ling, J., Kavuru, P., Wojtas, L. & Chadwick, K. (2016). Acta Cryst. E72, 951-954.]) and in the zwitterion it is 1.312 Å (Kamaal et al., 2018[Kamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M. & Iskenderov, T. (2018). Acta Cryst. E74, 1847-1850.]). The C6—O2 bond of the hydroxyl group [1.371 (2)Å] and those of the acid moiety [O3—C15 = 1.224 (2) and O4—C15 = 1.317 (2) Å] are in the expected ranges. The C5—O1 bond length to the meth­oxy group is 1.372 (2) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. The inter­molecular O—H⋯O hydrogen bond involving the water mol­ecule is shown as a dashed line (see Table 1[link] for details). Displacement ellipsoids are drawn at the 40% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are connected via O—H⋯O inter­actions forming layers in the ab plane (Table 1[link], Fig. 2[link]). While the N—H group is not involved in traditional hydrogen-bonding inter­actions, there are inter­molecular N—H⋯π inter­actions within the layers (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.82 (2) 2.06 (2) 2.8640 (19) 164 (3)
O2—H2A⋯O3ii 0.93 (3) 1.82 (3) 2.6844 (17) 154 (2)
O4—H4A⋯O5 0.94 (3) 1.81 (3) 2.6776 (15) 153 (3)
N1—H1⋯Cg1iii 0.96 (2) 2.40 (2) 3.3008 (18) 157 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) x, y-1, z.
[Figure 2]
Figure 2
A view of the crystal packing of the title compound.
[Figure 3]
Figure 3
A view along the c axis of the zigzag chain in the crystal of the title compound. The N—H⋯π inter­actions are shown as dashed lines (see Table 1[link] for details).

4. Database survey

A search through the Cambridge Structural Database (CSD, Version 5.39, update Aug 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave nine hits for the secondary amine. There are only two examples of similar compounds in the literature: ethyl 4-{[(2-hy­droxy­phen­yl)meth­yl]amino}­benzoate, (I)[link] (WEFQEG; Salman et al., 2017[Salman, M., Abu-Yamin, A. A., Sarairah, I., Ibrahim, A. & Aldamen, M. A. (2017). Z. Kristallogr. 232, 631-632.]), and ethyl 4-[(3,5-di-tert-butyl-2-hy­droxy­benz­yl)amino]benzoate, (II) (VABTAV;. Shakir et al., 2010[Shakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2916.]). Other related structures based on benzyl­idene-phenyl-amine are reported as n-propyl 4-[2-(4,6-di­meth­oxy­pyrimidin-2-yl­oxy)benzyl­amino]­benzoate, (III) (ILAGIL; Wu et al., 2003[Wu, J., Zhang, P.-Z., Lu, L., Yu, Q.-S., Hu, X.-R & Gu, J.-M. (2003). Chin. J. Struct. Chem. 22, 613-616.]), and [4-(2-hy­droxy­benzyl­amino)­benzoato-κO]tri­phenyl­tin(IV), (IV) (WENXAP; Jiang et al., 2006[Jiang, H., Ma, J.-F. & Zhang, W.-L. (2006). Acta Cryst. E62, m2745-m2746.]), There is also one very similar compound, viz. ethyl 4-[(2-hy­droxy­benz­yl)amino]­benzoate (Salman et al., 2017[Salman, M., Abu-Yamin, A. A., Sarairah, I., Ibrahim, A. & Aldamen, M. A. (2017). Z. Kristallogr. 232, 631-632.]), in which the 3-meth­oxy group in the title compound is replaced by a hydrogen atom and the carb­oxy­lic acid is replaced by an ester. The torsion angle Car­yl—CH2—NH—Car­yl in the title compound [−83.9 (2)°] compares well to those in I (73.68°), II (77.38°) and IV (−87.28°) despite the difference in substituent groups.

5. Synthesis and crystallization

To a hot stirred solution of 4-amino­benzoic acid (PABA) (1.00 g, 7.2 mmol) in methanol (15 ml) was added vanillin (1.11 g, 7.2 mmol). The resultant mixture was then heated under reflux. After an hour, precipitates were formed. The reaction mixture was heated for about a further 30 minutes for the completion of the reaction, which was monitored through TLC. The reaction mixture was cooled to room temperature, filtered and washed with hot methanol. It was then dried in a vacuum to give (E)-4-(2-hy­droxy-3-meth­oxy­benzyl­idene­amino)­benzoic acid (1) in 78% yield.

Compound (1) (1.00 g, 3.7 mmol) was dissolved in 25 mL of methanol and reduced by addition of excess sodium borohydride (0.28 g, 7.4 mmol). The solution was stirred until the yellow colour disappeared. Then the solution was diluted with 8–10 times the volume of water and the pH was adjusted to 6 by addition of 12% HCl. The white precipitate was collected and dried in air. Colourless single crystals of the title compound, suitable for X-ray analysis, were obtained by slow evaporation of a methanol solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N—H and O—H H atoms were located in difference-Fourier maps and freely refined, while the C-bound H atoms were included in calculated positions and treated as riding, with fixed C—H = 0.93 Å, and Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula 2C15H15NO4·H2O
Mr 564.57
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 24.742 (3), 5.5002 (6), 19.387 (2)
β (°) 98.292 (6)
V3) 2610.8 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.45 × 0.34 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 16146, 2570, 2138
Rint 0.065
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.05
No. of reflections 2570
No. of parameters 203
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-[(2-Hydroxy-3-methoxybenzyl)amino]benzoic acid hemihydrate top
Crystal data top
2C15H15NO4·H2OF(000) = 1192
Mr = 564.57Dx = 1.436 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.742 (3) ÅCell parameters from 6409 reflections
b = 5.5002 (6) Åθ = 2.5–28.2°
c = 19.387 (2) ŵ = 0.11 mm1
β = 98.292 (6)°T = 296 K
V = 2610.8 (5) Å3Prism, colorless
Z = 40.45 × 0.34 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2138 reflections with I > 2σ(I)
φ and ω scansRint = 0.065
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 2.9°
h = 3030
16146 measured reflectionsk = 66
2570 independent reflectionsl = 2323
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0366P)2 + 3.8398P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2570 reflectionsΔρmax = 0.26 e Å3
203 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.95635 (5)0.7070 (2)0.67260 (6)0.0206 (3)
O50.5000000.7903 (3)0.7500000.0222 (4)
O10.97314 (5)1.0831 (2)0.59182 (6)0.0238 (3)
O30.56242 (5)0.2504 (2)0.65933 (7)0.0271 (3)
O40.58989 (5)0.6076 (3)0.70737 (8)0.0347 (4)
N10.81774 (6)0.2583 (3)0.63512 (8)0.0197 (3)
C140.74975 (6)0.5056 (3)0.68083 (8)0.0168 (3)
H140.7755660.6235010.6964670.020*
C90.76511 (6)0.2985 (3)0.64627 (8)0.0158 (3)
C120.65625 (6)0.3621 (3)0.66873 (8)0.0174 (4)
C150.59858 (7)0.3981 (3)0.67792 (9)0.0194 (4)
C70.86973 (6)0.6259 (3)0.60621 (9)0.0177 (4)
C100.72476 (7)0.1239 (3)0.62307 (9)0.0181 (4)
H100.7342540.0142040.5998770.022*
C130.69600 (7)0.5340 (3)0.69160 (8)0.0174 (3)
H130.6862320.6717110.7147560.021*
C50.92543 (7)0.9565 (3)0.57298 (9)0.0187 (4)
C60.91728 (6)0.7641 (3)0.61739 (8)0.0175 (4)
C20.83105 (7)0.6781 (3)0.54820 (9)0.0206 (4)
H20.7990810.5872230.5398220.025*
C80.86335 (6)0.4187 (3)0.65624 (9)0.0184 (4)
H8A0.8966290.3230160.6620650.022*
H8B0.8593920.4873460.7013260.022*
C40.88690 (7)1.0051 (3)0.51542 (9)0.0220 (4)
H40.8924321.1311500.4852320.026*
C110.67166 (7)0.1554 (3)0.63432 (9)0.0182 (4)
H110.6456590.0379230.6188890.022*
C30.83997 (7)0.8641 (3)0.50316 (9)0.0236 (4)
H30.8142450.8950450.4642420.028*
C10.98495 (8)1.2765 (3)0.54726 (10)0.0262 (4)
H1A0.9867481.2138110.5014350.039*
H1B1.0193601.3487970.5655390.039*
H1C0.9566741.3970430.5448260.039*
H50.5159 (12)0.891 (5)0.7772 (13)0.076 (10)*
H10.8246 (9)0.120 (4)0.6076 (12)0.038 (6)*
H2A0.9900 (10)0.771 (5)0.6651 (13)0.050 (7)*
H4A0.5536 (12)0.630 (6)0.7145 (15)0.073 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0122 (6)0.0235 (7)0.0262 (6)0.0025 (5)0.0029 (5)0.0043 (5)
O50.0150 (8)0.0244 (10)0.0277 (10)0.0000.0043 (7)0.000
O10.0199 (6)0.0212 (7)0.0313 (7)0.0052 (5)0.0067 (5)0.0063 (5)
O30.0136 (6)0.0270 (7)0.0411 (8)0.0032 (5)0.0055 (5)0.0011 (6)
O40.0173 (7)0.0366 (8)0.0524 (9)0.0000 (6)0.0127 (6)0.0187 (7)
N10.0137 (7)0.0186 (7)0.0280 (8)0.0020 (6)0.0071 (6)0.0034 (6)
C140.0150 (8)0.0163 (8)0.0191 (8)0.0038 (6)0.0020 (6)0.0007 (6)
C90.0132 (7)0.0169 (8)0.0173 (8)0.0001 (6)0.0025 (6)0.0030 (6)
C120.0148 (8)0.0192 (8)0.0184 (8)0.0004 (7)0.0037 (6)0.0024 (7)
C150.0166 (8)0.0220 (9)0.0201 (8)0.0010 (7)0.0042 (6)0.0013 (7)
C70.0156 (8)0.0184 (8)0.0207 (8)0.0012 (7)0.0084 (6)0.0023 (7)
C100.0176 (8)0.0145 (8)0.0224 (8)0.0004 (7)0.0035 (7)0.0002 (7)
C130.0176 (8)0.0172 (8)0.0178 (8)0.0012 (7)0.0039 (6)0.0011 (7)
C50.0161 (8)0.0180 (8)0.0236 (9)0.0000 (7)0.0083 (7)0.0010 (7)
C60.0149 (8)0.0187 (8)0.0198 (8)0.0030 (7)0.0057 (6)0.0020 (7)
C20.0159 (8)0.0232 (9)0.0230 (9)0.0007 (7)0.0038 (7)0.0033 (7)
C80.0116 (7)0.0196 (9)0.0246 (9)0.0012 (7)0.0043 (6)0.0003 (7)
C40.0249 (9)0.0215 (9)0.0211 (9)0.0028 (7)0.0082 (7)0.0034 (7)
C110.0157 (8)0.0150 (8)0.0239 (9)0.0040 (6)0.0026 (6)0.0009 (7)
C30.0217 (9)0.0287 (10)0.0202 (9)0.0018 (8)0.0025 (7)0.0001 (7)
C10.0290 (10)0.0180 (9)0.0351 (10)0.0029 (8)0.0159 (8)0.0043 (8)
Geometric parameters (Å, º) top
O2—C61.371 (2)C7—C61.391 (2)
O2—H2A0.93 (3)C7—C21.398 (2)
O5—H50.823 (17)C7—C81.519 (2)
O5—H5i0.823 (17)C10—C111.374 (2)
O1—C51.374 (2)C10—H100.9300
O1—C11.427 (2)C13—H130.9300
O3—C151.224 (2)C5—C41.385 (2)
O4—C151.317 (2)C5—C61.397 (2)
O4—H4A0.94 (3)C2—C31.383 (3)
N1—C91.368 (2)C2—H20.9300
N1—C81.445 (2)C8—H8A0.9700
N1—H10.96 (2)C8—H8B0.9700
C14—C131.384 (2)C4—C31.388 (3)
C14—C91.401 (2)C4—H40.9300
C14—H140.9300C11—H110.9300
C9—C101.411 (2)C3—H30.9300
C12—C131.390 (2)C1—H1A0.9600
C12—C111.399 (2)C1—H1B0.9600
C12—C151.477 (2)C1—H1C0.9600
C6—O2—H2A109.7 (15)O1—C5—C6114.50 (15)
H5—O5—H5i96 (4)C4—C5—C6119.92 (16)
C5—O1—C1117.37 (14)O2—C6—C7118.78 (15)
C15—O4—H4A113.6 (19)O2—C6—C5120.42 (15)
C9—N1—C8125.37 (15)C7—C6—C5120.79 (15)
C9—N1—H1117.7 (13)C3—C2—C7120.46 (16)
C8—N1—H1116.7 (13)C3—C2—H2119.8
C13—C14—C9119.78 (15)C7—C2—H2119.8
C13—C14—H14120.1N1—C8—C7115.22 (14)
C9—C14—H14120.1N1—C8—H8A108.5
N1—C9—C14122.47 (15)C7—C8—H8A108.5
N1—C9—C10119.03 (15)N1—C8—H8B108.5
C14—C9—C10118.50 (14)C7—C8—H8B108.5
C13—C12—C11118.44 (15)H8A—C8—H8B107.5
C13—C12—C15121.46 (15)C5—C4—C3119.45 (16)
C11—C12—C15120.06 (15)C5—C4—H4120.3
O3—C15—O4123.39 (15)C3—C4—H4120.3
O3—C15—C12123.62 (16)C10—C11—C12120.71 (15)
O4—C15—C12112.98 (15)C10—C11—H11119.6
C6—C7—C2118.60 (16)C12—C11—H11119.6
C6—C7—C8118.28 (15)C2—C3—C4120.72 (16)
C2—C7—C8123.08 (15)C2—C3—H3119.6
C11—C10—C9120.84 (15)C4—C3—H3119.6
C11—C10—H10119.6O1—C1—H1A109.5
C9—C10—H10119.6O1—C1—H1B109.5
C14—C13—C12121.73 (15)H1A—C1—H1B109.5
C14—C13—H13119.1O1—C1—H1C109.5
C12—C13—H13119.1H1A—C1—H1C109.5
O1—C5—C4125.57 (16)H1B—C1—H1C109.5
C8—N1—C9—C140.4 (3)C8—C7—C6—C5179.87 (15)
C8—N1—C9—C10179.51 (15)O1—C5—C6—O23.0 (2)
C13—C14—C9—N1178.88 (15)C4—C5—C6—O2176.85 (15)
C13—C14—C9—C100.2 (2)O1—C5—C6—C7177.53 (14)
C13—C12—C15—O3179.11 (16)C4—C5—C6—C72.7 (2)
C11—C12—C15—O33.0 (3)C6—C7—C2—C30.2 (2)
C13—C12—C15—O41.8 (2)C8—C7—C2—C3177.81 (16)
C11—C12—C15—O4176.06 (15)C9—N1—C8—C783.9 (2)
N1—C9—C10—C11178.86 (15)C6—C7—C8—N1170.01 (14)
C14—C9—C10—C110.3 (2)C2—C7—C8—N17.6 (2)
C9—C14—C13—C120.3 (2)O1—C5—C4—C3179.06 (16)
C11—C12—C13—C140.3 (2)C6—C5—C4—C31.2 (2)
C15—C12—C13—C14177.56 (15)C9—C10—C11—C120.4 (3)
C1—O1—C5—C42.0 (2)C13—C12—C11—C100.4 (2)
C1—O1—C5—C6177.78 (14)C15—C12—C11—C10177.54 (15)
C2—C7—C6—O2177.34 (14)C7—C2—C3—C41.3 (3)
C8—C7—C6—O20.3 (2)C5—C4—C3—C20.8 (3)
C2—C7—C6—C52.2 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O5—H5···O2ii0.82 (2)2.06 (2)2.8640 (19)164 (3)
O2—H2A···O3iii0.93 (3)1.82 (3)2.6844 (17)154 (2)
O4—H4A···O50.94 (3)1.81 (3)2.6776 (15)153 (3)
N1—H1···Cg1iv0.96 (2)2.40 (2)3.3008 (18)157 (2)
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x, y1, z.
 

Acknowledgements

The authors thank the Department of Chemistry, L. S. College, B. R. A. Bihar University, and the Department of Applied Chemistry, Faculty of Engineering & Technology, Aligarh Muslim University, for providing laboratory facilities.

Funding information

The authors are grateful to the Department of Chemistry, National Taras Shevchenko University, for financial support.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaizi, M. S. H., Alam, M. J., Haque, A., Ahmad, S., Shahid, M. & Ahmad, M. (2018a). J. Mol. Struct. 1156, 457–464.  CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Dege, N. & Iskenderov, T. S. (2018b). Acta Cryst. E74, 410–413.  CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJiang, H., Ma, J.-F. & Zhang, W.-L. (2006). Acta Cryst. E62, m2745–m2746.  CrossRef IUCr Journals Google Scholar
First citationKamaal, S., Faizi, M. S. H., Ali, A., Ahmad, M. & Iskenderov, T. (2018). Acta Cryst. E74, 1847–1850.  CrossRef IUCr Journals Google Scholar
First citationKumar, M., Kumar, A., Faizi, M. S. H., Kumar, S., Singh, M. K., Sahu, S. K., Kishor, S. & John, R. P. (2018). Sens. Actuators B Chem. 260, 888–899.  CrossRef CAS Google Scholar
First citationLing, J., Kavuru, P., Wojtas, L. & Chadwick, K. (2016). Acta Cryst. E72, 951–954.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMukherjee, P., Das, A., Faizi, M. S. H. & Sen, P. (2018). ChemistrySelect, 3, 3787–3796.  CrossRef CAS Google Scholar
First citationNeumcke, B., Schwarz, W. & Stampfli, R. (1981). Pflugers Arch. 390, 230–236.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRobinson, F. A. (1966). The Vitamin Co-factors of Enzyme Systems, pp. 541–662. London: Pergamon.  Google Scholar
First citationSalman, M., Abu-Yamin, A. A., Sarairah, I., Ibrahim, A. & Aldamen, M. A. (2017). Z. Kristallogr. 232, 631–632.  CAS Google Scholar
First citationShakir, R. M., Ariffin, A. & Ng, S. W. (2010). Acta Cryst. E66, o2916.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, J., Zhang, P.-Z., Lu, L., Yu, Q.-S., Hu, X.-R & Gu, J.-M. (2003). Chin. J. Struct. Chem. 22, 613–616.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds