research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 3-(4,4-di­methyl-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-yl­­idene)-6-methyl-3,4-di­hydro-2H-pyran-2,4-dione

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bUnité de Chimie Moléculaire et Environnement, Université de Sciences, de Technologie et de Médecine, BP 5026, Nouakchott, Mauritanie, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, eDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, fLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and gMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
*Correspondence e-mail: nadouchsebbarkheira@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 31 December 2018; accepted 14 January 2019; online 18 January 2019)

The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant di­hydro­pyran ring, where the benzene and pendant di­hydro­pyran rings are oriented at a dihedral angle of 15.14 (4)°. Intra­molecular N—HDiazp⋯ODhydp and C—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = di­hydro­pyran) hydrogen bonds link the seven-membered diazepine ring to the pendant di­hydro­pyran ring, enclosing S(6) ring motifs. In the crystal, N—HDiazp⋯ODhydp hydrogen bonds link the mol­ecules into infinite chains along [10[\overline{1}]]. These chains are further linked via C—HBnz⋯ODhydp, C—HDhydp⋯ODhydp and C—HMth⋯ODhydp (Bnz = benzene and Mth = meth­yl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazpπ inter­action may further stabilize the structure. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (51.1%), H⋯C/C⋯H (25.3%) and H⋯O/O⋯H (20.3%) inter­actions. Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing.

1. Chemical context

Derivatives of 1,5-benzodiazepines have attracted considerable attention from researchers because of their bioactive and pharmaceutical properties. Many members of this family are widely used as anti­convulsant, anti-anxiety, anti-seizure, analgesic, sedative, anti­depressive and hypnotic or anti-inflammatory agents (Kudo, 1982[Kudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49-64.]; Roma et al., 1991[Roma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489-496.]; Rajarao et al., 2007[Rajarao, S. J., Platt, B., Sukoff, S. J., Lin, Q., Bender, C. N., Nieuwenhuijsen, B. W., Ring, R. H., Schechter, L. E., Rosenzweig-Lipson, S. & Beyer, C. E. (2007). Neuropeptides, 41, 307-320.]; Kumar & Joshi, 2007[Kumar, R. & Joshi, Y. C. (2007). Arkivoc XIII, 142-149.]; Guerrini et al., 2006[Guerrini, G., Costanzo, A., Ciciani, G., Bruni, F., Selleri, S., Costagli, C., Besnard, F., Costa, B., Martini, C., De Siena, G. & Malmberg-Aiello, P. (2006). Bioorg. Med. Chem. 14, 758-775.]). Diversely substituted 1,5-benzodiazepines and their derivatives embedded with a variety of functional groups are important biological agents that have been the subject of a significant amount of research activity (Kotyatkina et al., 2001[Kotyatkina, A. I., Zhabinsky, V. N. & Khripach Russ, V. A. (2001). Chem. Rev. 70, 641-653.]; Fruscella et al., 2001[Fruscella, P., Sottocorno, M., Di Braccio, M., Diomede, L., Piccardi, N., Cagnotto, A., Grossi, G., Romano, M., Mennini, T. & Roma, G. (2001). Pharmacol. Res. 43, 445-452.]; Zellou et al., 1998a[Zellou, A., Cherrah, Y., Hassar, M. & Essassi, E. M. (1998a). Ann. Pharm. Fr. 56, 169-174.],b[Zellou, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1998b). Ann. Pharm. Fr. 56, 175-180.]). Over the last decade, biological inter­est in 1,5-benzodiazepines has extended to include their use as anti­bacterial and anti­fungal agents (Kalkhambkar et al., 2008[Kalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178-2188.]; Smith et al., 1998[Smith, R. H., Jorgensen, W. L., Tirado-Rives, J., Lamb, M. L., Janssen, P. A. J., Michejda, C. J. & Kroeger Smith, M. B. (1998). J. Med. Chem. 41, 5272-5286.]). Benzodiazepine derivatives also find commercial use as dyes for acrylic fibers and as inter­mediates in the synthesis of several heterocyclic systems (Essassi & Salem, 1985[Essassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755-758.]; Minnih et al., 2014[Minnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1-24.]; Rida et al., 2018[Rida, M., El Ghayati, L. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 42-82.]). The search for new heterocyclic systems including the 1,5-benzodiazepine moiety for bio­logical activities is therefore of much current importance (Essassi & Salem, 1985[Essassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755-758.]; Dardouri et al., 2011[Dardouri, R., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o674.]; Chkirate et al., 2018[Chkirate, K., Sebbar, N. K., Hökelek, T., Krishnan, D., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1669-1673.]; Keita et al., 2003[Keita, A., Lazrak, F., Essassi, E. M., Alaoui, I. C., Rodi, Y. K., Bellan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon, 178, 1541-1548.]; Jabli et al., 2009[Jabli, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o3150.]). In this context, we synthesized the title compound namely 3-(4,4-dimethyl-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-yl­idene)-6-methyl-3,4-di­hydro-2H-pyran-2,4-dione by reacting de­hydro­acetic acid and o-phenyl­enedi­amine in ethanol, and we report here the synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], is built up from a benzodiazepine ring system linked to a pendant di­hydro­pyran ring, (C: O3/C10–C14) (Fig. 1[link]). Ring C is planar within 0.0381 (13) Å (for atom C10), and is oriented at a dihedral angle of 15.14 (4)° with respect to the benzene (B: C4–C9) ring. A puckering analysis of the seven-membered diazepine ring (A: N1/N2/C1–C4/C9) gave the parameters QT = 0.6874 (14), q2 = 0.5903 (14), q3 = 0.3523 (14) Å, φ2 = 352.88 (14), φ3 = 245.8 (2)°. In ring A, the N1—C1—C2 [117.10 (2)°], C1—C2—C3 [114.17 (11)°], C3—N2—C4 [128.91 (11)°], N2—C4—C9 [127.38 (12)°], C4—C9—N1 [126.21 (12)°] and C9—N1—C1 [130.71 (12)°] bond angles are enlarged, while the C2—C3—N2 [108.97 (11)°] bond angle is narrowed, when compared with the corresponding values in the seven-membered diazepine ring in the closely related compound, 3,4-di­hydro-2-(2,4-dioxo-6-methyl­pyran-3-yl­id­ene)-4-(4-pyridin-4-yl)-1,5-benzo- diazepine, (II), where the pendant di­hydro­pyran ring is not planar (El Ghayati et al., 2019[El Ghayati, L., Ramli, Y., Hökelek, T., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 94-98.]). On the other hand, the N1—C1 [1.3168 (18) Å], N2—C3 [1.4542 (17) Å], N2—C4 [1.3584 (19) Å], C1—C2 [1.4907 (18) Å] and C2—C3 [1.5444 (18) Å] bond lengths in ring A in (I)[link] may be compared with the corresponding values of N2—C9 [1.3206 (18) Å], N1—C7 [1.4648 (18) Å], N1—C6 [1.3996 (18) Å], C8—C9 [1.5020 (18) Å] and C7—C8 [1.5291 (19) Å] in (II).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. N—HDiazp⋯ODhydp and C—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = di­hydro­pyran) hydrogen bonds are shown as dashed lines.

In the mol­ecule of (I)[link], N—HDiazp⋯ODhydp and C—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = di­hydro­pyran) hydrogen bonds (Table 1[link]) link the seven-membered diazepine ring A to the pendant di­hydro­pyran ring C, enclosing S(6) ring motifs (Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 1.79 2.5351 (18) 143
N2—H2⋯O2v 0.86 2.16 2.9990 (16) 166
C2—H2A⋯O2 0.97 2.12 2.8628 (17) 132
C5—H5⋯O2v 0.93 2.72 3.453 (2) 136
C12—H12⋯O1i 0.93 2.45 3.3789 (18) 174
C16—H16A⋯O2iv 0.96 2.48 3.3646 (18) 154
C2—H2BCgvi 0.97 2.63 3.4428 (15) 141
Symmetry codes: (i) -x+2, -y+1, -z+1; (iv) x+1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) x-1, y, z.

3. Supra­molecular features

In the crystal, N—HDiazp⋯ODhydp hydrogen bonds (Table 1[link]) link the mol­ecules into infinite chains along [10[\overline{1}]]. These chains are further linked via C—HBnz⋯ODhydp, C—HDhydp⋯ODhydp and C—HMth⋯ODhydp (Bnz = benzene and Mth = meth­yl) hydrogen bonds (Table 1[link]), forming a three-dimensional network (Fig. 2[link]). The weak C—HDiazpπ inter­action (Table 1[link]) may further stabilize the structure.

[Figure 2]
Figure 2
A partial packing diagram viewed along the a axis. N—H⋯O and C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out by using CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). In the HS plotted over dnorm (Fig. 3[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots appearing near atoms O1 and O2 and hydrogen atoms H2, H12 and H16A indicate their roles as the respective donors and/or acceptors in the dominant N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]); they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) shown in Fig. 4[link] where the blue regions indicate positive electrostatic potential (hydrogen-bond donors) and the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggest that there are no ππ inter­actions in (I)[link].

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.4583 to 1.6329 a.u.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 6[link]a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, O⋯O and H⋯N/N⋯H contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 6[link]bf, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 51.1% to the overall crystal packing, which is reflected in Fig. 6[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule. The spike with the tip at de = di = 1.14 Å in Fig. 6[link]b is due to the short inter­atomic H ⋯ H contacts (Table 2[link]). In the presence of C—H ⋯ π inter­actions, the pair of wings in the fingerprint plot delineated into H ⋯ C/C ⋯ H contacts with 25.3% contribution to the HS show a nearly symmetrical distribution of points, Fig. 6[link]c, with the thin edges at de + di ∼2.81 Å arising from the H ⋯ C/C ⋯ H contacts (Table 2[link]). There is a pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts, Fig. 6[link]d: the 20.3% contribution to the HS arises from the N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) as well as from the H⋯O/O⋯H contacts (Table 2[link]) and is shown as a pair of spikes with the tips at de + di = 2.00 Å. Finally, the weak O⋯O (Fig. 6[link]e) and H⋯N/N⋯H (Fig. 6[link]f) contacts in the structure contribute only 1.6 and 1.1%, respectively, to the HS. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 7[link]ac, respectively.

Table 2
Selected interatomic distances (Å)

O1⋯N1 2.5351 (18) C6⋯H2Biv 2.95
O1⋯C12i 3.379 (2) C7⋯H2Biv 2.92
O2⋯N2ii 2.9990 (16) C8⋯H2Biv 2.94
O2⋯C2 2.8628 (17) C9⋯H2B 2.85
O1⋯H12i 2.45 C11⋯H1 2.35
O1⋯H1 1.79 C14⋯H2A 2.58
O2⋯H2A 2.12 C14⋯H17Ciii 2.95
O2⋯H2ii 2.16 C16⋯O2iv 3.3648 (19)
O2⋯H5ii 2.72 H1⋯H8 2.24
O2⋯H17Ciii 2.91 H2⋯H5 2.21
N1⋯N2 3.0698 (17) H2⋯H17A 2.27
N1⋯C16 3.3656 (19) H2⋯H17C 2.59
N2⋯N1 3.0698 (17) H2A⋯H17B 2.42
N1⋯H16A 2.8152 H2B⋯H17C 2.57
C4⋯C2iv 3.5887 (17) H5⋯H16Bv 2.42
C9⋯C2iv 3.533 (2) H5⋯H17Bv 2.51
C14⋯C17iii 3.404 (2) H12⋯H15B 2.45
C1⋯H16A 2.62 H12⋯H12i 2.55
C4⋯H2B 2.79 H16A⋯O2iv 2.48
C5⋯H2Biv 2.99 H16B⋯H17B 2.52
C5⋯H16Bv 2.99 H16C⋯H17A 2.50
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) O⋯O and (f) H⋯N/N⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 7]
Figure 7
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Synthesis and crystallization

A solution of de­hydro­acetic acid (0.168 g, 1 mmol) and o-phenyl­enedi­amine (0.108 g, 1 mmol) in ethanol (40 ml) was refluxed for 1 h. After cooling to room temperature, the colourless inter­mediate solid compound, a mono-Schiff base, was obtained in 70% yield. The inter­mediate (0.5 g, 1 mmol) was refluxed in acetone (10 ml) for 1h. After cooling, the crystals formed were filtered and dried (yield: 65%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. N- and C-bound H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93, 0.97 and 0.96 Å for aromatic, methyl­ene and methyl H atoms, respectively) and constrained to ride on their parent atoms, with Uiso(H) = kUeq(N, C), where k = 1.5 for methyl H atoms and 1.2 for the other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C17H18N2O3
Mr 298.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 5.5373 (1), 24.0197 (4), 11.7815 (3)
β (°) 103.488 (2)
V3) 1523.77 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.74
Crystal size (mm) 0.42 × 0.38 × 0.16
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD 2015[Rigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.700, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9860, 2934, 2519
Rint 0.023
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.05
No. of reflections 2934
No. of parameters 203
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.16
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-(4,4-Dimethyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-ylidene)-6-methyl-3,4-dihydro-2H-pyran-2,4-dione top
Crystal data top
C17H18N2O3F(000) = 632
Mr = 298.33Dx = 1.300 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.5373 (1) ÅCell parameters from 4280 reflections
b = 24.0197 (4) Åθ = 3.8–71.5°
c = 11.7815 (3) ŵ = 0.74 mm1
β = 103.488 (2)°T = 296 K
V = 1523.77 (6) Å3Prism, yellow
Z = 40.42 × 0.38 × 0.16 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
2934 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 3.7°
ω scansh = 56
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD 2015)
k = 2729
Tmin = 0.700, Tmax = 1.000l = 1414
9860 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.3037P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.20 e Å3
2934 reflectionsΔρmin = 0.16 e Å3
203 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0020 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9607 (2)0.55040 (5)0.34659 (11)0.0620 (4)
O20.3736 (2)0.69299 (4)0.35380 (9)0.0499 (3)
O30.45601 (19)0.62933 (4)0.48899 (9)0.0430 (3)
N10.8514 (2)0.61406 (5)0.17042 (11)0.0406 (3)
H10.94350.59090.21700.049*
N20.7655 (3)0.71643 (5)0.01003 (11)0.0478 (3)
H20.76860.74260.03940.057*
C10.6776 (2)0.63806 (5)0.21295 (12)0.0350 (3)
C20.5128 (2)0.67882 (6)0.13633 (12)0.0382 (3)
H2A0.38560.69100.17520.046*
H2B0.43030.66020.06480.046*
C30.6492 (2)0.73059 (5)0.10487 (11)0.0342 (3)
C40.8700 (2)0.66752 (6)0.01123 (12)0.0377 (3)
C50.9507 (3)0.66471 (7)0.11604 (14)0.0491 (4)
H50.91910.69480.16700.059*
C61.0733 (4)0.61968 (8)0.14591 (17)0.0644 (5)
H61.12450.61980.21570.077*
C71.1215 (4)0.57393 (8)0.0726 (2)0.0733 (6)
H71.20730.54340.09170.088*
C81.0400 (4)0.57462 (7)0.02874 (18)0.0597 (5)
H81.07110.54390.07800.072*
C90.9117 (3)0.62000 (6)0.06068 (13)0.0406 (3)
C100.6538 (2)0.62144 (5)0.32672 (12)0.0355 (3)
C110.7997 (3)0.57556 (6)0.38662 (13)0.0434 (3)
C120.7494 (3)0.55810 (6)0.49603 (13)0.0483 (4)
H120.83650.52810.53570.058*
C130.5820 (3)0.58377 (6)0.54124 (13)0.0429 (3)
C140.4890 (2)0.65029 (5)0.38391 (11)0.0360 (3)
C150.5058 (4)0.56883 (8)0.65044 (15)0.0594 (4)
H15A0.54170.59930.70450.089*
H15B0.59570.53640.68450.089*
H15C0.33090.56110.63270.089*
C160.8401 (3)0.75272 (6)0.20995 (13)0.0459 (4)
H16A0.96840.72550.23480.069*
H16B0.76050.76020.27250.069*
H16C0.91180.78640.18880.069*
C170.4561 (3)0.77557 (6)0.05783 (13)0.0457 (4)
H17A0.53550.80650.02970.069*
H17B0.38140.78800.11920.069*
H17C0.33030.76050.00490.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0764 (8)0.0527 (7)0.0685 (8)0.0335 (6)0.0406 (6)0.0244 (6)
O20.0595 (7)0.0469 (6)0.0441 (6)0.0227 (5)0.0136 (5)0.0028 (4)
O30.0484 (6)0.0432 (5)0.0407 (5)0.0071 (4)0.0171 (4)0.0020 (4)
N10.0468 (7)0.0331 (6)0.0463 (7)0.0048 (5)0.0197 (5)0.0062 (5)
N20.0655 (8)0.0409 (6)0.0456 (7)0.0080 (6)0.0304 (6)0.0104 (5)
C10.0371 (7)0.0296 (6)0.0400 (7)0.0031 (5)0.0122 (5)0.0007 (5)
C20.0335 (6)0.0443 (7)0.0373 (7)0.0013 (5)0.0095 (5)0.0056 (6)
C30.0351 (7)0.0353 (7)0.0338 (6)0.0037 (5)0.0110 (5)0.0048 (5)
C40.0371 (7)0.0405 (7)0.0375 (7)0.0075 (5)0.0131 (5)0.0052 (5)
C50.0563 (9)0.0541 (9)0.0424 (8)0.0096 (7)0.0225 (7)0.0055 (6)
C60.0835 (13)0.0615 (10)0.0630 (11)0.0134 (9)0.0472 (10)0.0181 (9)
C70.0968 (15)0.0455 (9)0.0989 (15)0.0026 (9)0.0660 (13)0.0179 (9)
C80.0756 (12)0.0344 (7)0.0830 (12)0.0005 (7)0.0469 (10)0.0019 (7)
C90.0441 (7)0.0350 (7)0.0486 (8)0.0060 (5)0.0223 (6)0.0053 (6)
C100.0395 (7)0.0297 (6)0.0389 (7)0.0018 (5)0.0125 (6)0.0026 (5)
C110.0495 (8)0.0355 (7)0.0492 (8)0.0087 (6)0.0197 (6)0.0079 (6)
C120.0584 (9)0.0408 (7)0.0483 (8)0.0116 (6)0.0178 (7)0.0142 (6)
C130.0509 (8)0.0389 (7)0.0398 (7)0.0001 (6)0.0128 (6)0.0038 (6)
C140.0378 (7)0.0342 (6)0.0351 (6)0.0023 (5)0.0067 (5)0.0004 (5)
C150.0751 (11)0.0606 (10)0.0477 (9)0.0014 (8)0.0251 (8)0.0077 (7)
C160.0445 (8)0.0412 (8)0.0490 (8)0.0001 (6)0.0048 (6)0.0002 (6)
C170.0462 (8)0.0482 (8)0.0437 (8)0.0121 (6)0.0127 (6)0.0121 (6)
Geometric parameters (Å, º) top
O1—C111.2569 (18)C6—H60.9300
O2—C141.2167 (17)C6—C71.385 (3)
O3—C131.3649 (18)C7—H70.9300
O3—C141.3874 (16)C7—C81.372 (3)
N1—H10.8600C8—H80.9300
N1—C11.3168 (18)C8—C91.400 (2)
N1—C91.4158 (18)C10—C111.4487 (18)
N2—H20.8600C10—C141.4331 (18)
N2—C31.4542 (17)C11—C121.443 (2)
N2—C41.3584 (19)C12—H120.9300
C1—C21.4907 (18)C12—C131.324 (2)
C1—C101.4338 (18)C13—C151.488 (2)
C2—H2A0.9700C15—H15A0.9600
C2—H2B0.9700C15—H15B0.9600
C2—C31.5444 (18)C15—H15C0.9600
C3—C161.524 (2)C16—H16A0.9600
C3—C171.5301 (18)C16—H16B0.9600
C4—C51.4094 (19)C16—H16C0.9600
C4—C91.408 (2)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C5—C61.366 (2)C17—H17C0.9600
O1···N12.5351 (18)C6···H2Biv2.95
O1···C12i3.379 (2)C7···H2Biv2.92
O2···N2ii2.9990 (16)C8···H2Biv2.94
O2···C22.8628 (17)C9···H2B2.85
O1···H12i2.45C11···H12.35
O1···H11.79C14···H2A2.58
O2···H2A2.12C14···H17Ciii2.95
O2···H2ii2.16C16···O2iv3.3648 (19)
O2···H5ii2.72H1···H82.24
O2···H17Ciii2.91H2···H52.21
N1···N23.0698 (17)H2···H17A2.27
N1···C163.3656 (19)H2···H17C2.59
N2···N13.0698 (17)H2A···H17B2.42
N1···H16A2.8152H2B···H17C2.57
C4···C2iv3.5887 (17)H5···H16Bv2.42
C9···C2iv3.533 (2)H5···H17Bv2.51
C14···C17iii3.404 (2)H12···H15B2.45
C1···H16A2.62H12···H12i2.55
C4···H2B2.79H16A···O2iv2.48
C5···H2Biv2.99H16B···H17B2.52
C5···H16Bv2.99H16C···H17A2.50
C13—O3—C14122.24 (11)C4—C9—N1126.21 (12)
C1—N1—H1114.6C8—C9—N1114.18 (14)
C1—N1—C9130.71 (12)C8—C9—C4119.45 (14)
C9—N1—H1114.6C1—C10—C11120.32 (12)
C3—N2—H2115.5C14—C10—C1120.82 (12)
C4—N2—H2115.5C14—C10—C11118.85 (12)
C4—N2—C3128.91 (11)O1—C11—C10123.15 (13)
N1—C1—C2117.10 (12)O1—C11—C12119.80 (13)
N1—C1—C10117.94 (12)C12—C11—C10117.03 (12)
C10—C1—C2124.90 (12)C11—C12—H12119.2
C1—C2—H2A108.7C13—C12—C11121.53 (13)
C1—C2—H2B108.7C13—C12—H12119.2
C1—C2—C3114.17 (11)O3—C13—C15111.40 (13)
H2A—C2—H2B107.6C12—C13—O3121.61 (13)
C3—C2—H2A108.7C12—C13—C15126.99 (14)
C3—C2—H2B108.7O2—C14—O3113.36 (12)
N2—C3—C2108.97 (11)O2—C14—C10128.26 (13)
N2—C3—C16110.99 (12)O3—C14—C10118.35 (11)
N2—C3—C17106.51 (11)C13—C15—H15A109.5
C16—C3—C2111.80 (11)C13—C15—H15B109.5
C16—C3—C17109.98 (12)C13—C15—H15C109.5
C17—C3—C2108.41 (11)H15A—C15—H15B109.5
N2—C4—C5116.02 (13)H15A—C15—H15C109.5
N2—C4—C9127.38 (12)H15B—C15—H15C109.5
C9—C4—C5116.58 (13)C3—C16—H16A109.5
C4—C5—H5118.6C3—C16—H16B109.5
C6—C5—C4122.80 (16)C3—C16—H16C109.5
C6—C5—H5118.6H16A—C16—H16B109.5
C5—C6—H6119.9H16A—C16—H16C109.5
C5—C6—C7120.20 (15)H16B—C16—H16C109.5
C7—C6—H6119.9C3—C17—H17A109.5
C6—C7—H7120.7C3—C17—H17B109.5
C8—C7—C6118.58 (16)C3—C17—H17C109.5
C8—C7—H7120.7H17A—C17—H17B109.5
C7—C8—H8118.9H17A—C17—H17C109.5
C7—C8—C9122.30 (17)H17B—C17—H17C109.5
C9—C8—H8118.9
C9—N1—C1—C10177.02 (13)C1—N1—C9—C8157.26 (15)
C9—N1—C1—C20.3 (2)C1—N1—C9—C427.4 (2)
N1—C1—C2—C363.12 (16)N1—C1—C10—C14172.65 (12)
C10—C1—C2—C3119.73 (14)C2—C1—C10—C1410.2 (2)
C4—N2—C3—C1688.57 (18)N1—C1—C10—C116.4 (2)
C4—N2—C3—C17151.73 (15)C2—C1—C10—C11170.76 (13)
C4—N2—C3—C235.0 (2)C14—C10—C11—O1175.06 (15)
C1—C2—C3—N280.67 (14)C1—C10—C11—O14.0 (2)
C1—C2—C3—C1642.38 (16)C14—C10—C11—C126.4 (2)
C1—C2—C3—C17163.79 (12)C1—C10—C11—C12174.60 (13)
C3—N2—C4—C96.6 (3)O1—C11—C12—C13179.64 (16)
C3—N2—C4—C5174.97 (14)C10—C11—C12—C131.7 (2)
N2—C4—C5—C6175.76 (16)C11—C12—C13—O32.6 (3)
C9—C4—C5—C62.8 (2)C11—C12—C13—C15177.58 (16)
C4—C5—C6—C70.6 (3)C14—O3—C13—C122.2 (2)
C5—C6—C7—C81.1 (3)C14—O3—C13—C15177.94 (13)
C6—C7—C8—C90.4 (3)C13—O3—C14—O2175.69 (13)
C7—C8—C9—C41.9 (3)C13—O3—C14—C102.60 (19)
C7—C8—C9—N1177.57 (18)C1—C10—C14—O27.8 (2)
N2—C4—C9—C8174.98 (16)C11—C10—C14—O2171.19 (14)
C5—C4—C9—C83.4 (2)C1—C10—C14—O3174.15 (12)
N2—C4—C9—N10.1 (2)C11—C10—C14—O36.81 (19)
C5—C4—C9—N1178.49 (14)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y, z; (v) x+1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.792.5351 (18)143
N2—H2···O2v0.862.162.9990 (16)166
C2—H2A···O20.972.122.8628 (17)132
C5—H5···O2v0.932.723.453 (2)136
C12—H12···O1i0.932.453.3789 (18)174
C16—H16A···O2iv0.962.483.3646 (18)154
C2—H2B···Cgvi0.972.633.4428 (15)141
Symmetry codes: (i) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+1/2, y+3/2, z1/2; (vi) x1, y, z.
 

Funding information

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer and TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationChkirate, K., Sebbar, N. K., Hökelek, T., Krishnan, D., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1669–1673.  CrossRef IUCr Journals Google Scholar
First citationDardouri, R., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o674.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Ghayati, L., Ramli, Y., Hökelek, T., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 94–98.  CrossRef IUCr Journals Google Scholar
First citationEssassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755–758.  CrossRef CAS Google Scholar
First citationFruscella, P., Sottocorno, M., Di Braccio, M., Diomede, L., Piccardi, N., Cagnotto, A., Grossi, G., Romano, M., Mennini, T. & Roma, G. (2001). Pharmacol. Res. 43, 445–452.  CrossRef CAS Google Scholar
First citationGuerrini, G., Costanzo, A., Ciciani, G., Bruni, F., Selleri, S., Costagli, C., Besnard, F., Costa, B., Martini, C., De Siena, G. & Malmberg-Aiello, P. (2006). Bioorg. Med. Chem. 14, 758–775.  CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJabli, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o3150.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178–2188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKeita, A., Lazrak, F., Essassi, E. M., Alaoui, I. C., Rodi, Y. K., Bellan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon, 178, 1541–1548.  CrossRef CAS Google Scholar
First citationKotyatkina, A. I., Zhabinsky, V. N. & Khripach Russ, V. A. (2001). Chem. Rev. 70, 641–653.  CAS Google Scholar
First citationKudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49–64.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKumar, R. & Joshi, Y. C. (2007). Arkivoc XIII, 142–149.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMinnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1–24.  CAS Google Scholar
First citationRajarao, S. J., Platt, B., Sukoff, S. J., Lin, Q., Bender, C. N., Nieuwenhuijsen, B. W., Ring, R. H., Schechter, L. E., Rosenzweig-Lipson, S. & Beyer, C. E. (2007). Neuropeptides, 41, 307–320.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRida, M., El Ghayati, L. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 42–82.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationRoma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489–496.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, R. H., Jorgensen, W. L., Tirado-Rives, J., Lamb, M. L., Janssen, P. A. J., Michejda, C. J. & Kroeger Smith, M. B. (1998). J. Med. Chem. 41, 5272–5286.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CrossRef CAS Google Scholar
First citationZellou, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1998b). Ann. Pharm. Fr. 56, 175–180.  CAS PubMed Google Scholar
First citationZellou, A., Cherrah, Y., Hassar, M. & Essassi, E. M. (1998a). Ann. Pharm. Fr. 56, 169–174.  CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds