research communications
Synthesis, H-1,5-benzodiazepin-2-ylidene)-6-methyl-3,4-dihydro-2H-pyran-2,4-dione
and Hirshfeld surface analysis of 3-(4,4-dimethyl-2,3,4,5-tetrahydro-1aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bUnité de Chimie Moléculaire et Environnement, Université de Sciences, de Technologie et de Médecine, BP 5026, Nouakchott, Mauritanie, Morocco, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, eDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, fLaboratoire de Chimie Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, and gMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat, Morocco
*Correspondence e-mail: nadouchsebbarkheira@gmail.com
The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant dihydropyran ring, where the benzene and pendant dihydropyran rings are oriented at a dihedral angle of 15.14 (4)°. Intramolecular N—HDiazp⋯ODhydp and C—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds link the seven-membered diazepine ring to the pendant dihydropyran ring, enclosing S(6) ring motifs. In the crystal, N—HDiazp⋯ODhydp hydrogen bonds link the molecules into infinite chains along [10]. These chains are further linked via C—HBnz⋯ODhydp, C—HDhydp⋯ODhydp and C—HMth⋯ODhydp (Bnz = benzene and Mth = methyl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazp ⋯ π interaction may further stabilize the structure. Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (51.1%), H⋯C/C⋯H (25.3%) and H⋯O/O⋯H (20.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.
Keywords: crystal structure; benzodiazepine; hydrogen bond; Hirshfeld surface.
CCDC reference: 1890950
1. Chemical context
Derivatives of 1,5-benzodiazepines have attracted considerable attention from researchers because of their bioactive and pharmaceutical properties. Many members of this family are widely used as anticonvulsant, anti-anxiety, anti-seizure, analgesic, sedative, antidepressive and hypnotic or anti-inflammatory agents (Kudo, 1982; Roma et al., 1991; Rajarao et al., 2007; Kumar & Joshi, 2007; Guerrini et al., 2006). Diversely substituted 1,5-benzodiazepines and their derivatives embedded with a variety of functional groups are important biological agents that have been the subject of a significant amount of research activity (Kotyatkina et al., 2001; Fruscella et al., 2001; Zellou et al., 1998a,b). Over the last decade, biological interest in 1,5-benzodiazepines has extended to include their use as antibacterial and antifungal agents (Kalkhambkar et al., 2008; Smith et al., 1998). Benzodiazepine derivatives also find commercial use as dyes for acrylic fibers and as intermediates in the synthesis of several heterocyclic systems (Essassi & Salem, 1985; Minnih et al., 2014; Rida et al., 2018). The search for new heterocyclic systems including the 1,5-benzodiazepine moiety for biological activities is therefore of much current importance (Essassi & Salem, 1985; Dardouri et al., 2011; Chkirate et al., 2018; Keita et al., 2003; Jabli et al., 2009). In this context, we synthesized the title compound namely 3-(4,4-dimethyl-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-ylidene)-6-methyl-3,4-dihydro-2H-pyran-2,4-dione by reacting dehydroacetic acid and o-phenylenediamine in ethanol, and we report here the synthesis, the molecular and crystal structures along with the Hirshfeld surface analysis.
2. Structural commentary
The title compound, (I), is built up from a benzodiazepine ring system linked to a pendant dihydropyran ring, (C: O3/C10–C14) (Fig. 1). Ring C is planar within 0.0381 (13) Å (for atom C10), and is oriented at a dihedral angle of 15.14 (4)° with respect to the benzene (B: C4–C9) ring. A puckering analysis of the seven-membered diazepine ring (A: N1/N2/C1–C4/C9) gave the parameters QT = 0.6874 (14), q2 = 0.5903 (14), q3 = 0.3523 (14) Å, φ2 = 352.88 (14), φ3 = 245.8 (2)°. In ring A, the N1—C1—C2 [117.10 (2)°], C1—C2—C3 [114.17 (11)°], C3—N2—C4 [128.91 (11)°], N2—C4—C9 [127.38 (12)°], C4—C9—N1 [126.21 (12)°] and C9—N1—C1 [130.71 (12)°] bond angles are enlarged, while the C2—C3—N2 [108.97 (11)°] bond angle is narrowed, when compared with the corresponding values in the seven-membered diazepine ring in the closely related compound, 3,4-dihydro-2-(2,4-dioxo-6-methylpyran-3-ylidene)-4-(4-pyridin-4-yl)-1,5-benzo- diazepine, (II), where the pendant dihydropyran ring is not planar (El Ghayati et al., 2019). On the other hand, the N1—C1 [1.3168 (18) Å], N2—C3 [1.4542 (17) Å], N2—C4 [1.3584 (19) Å], C1—C2 [1.4907 (18) Å] and C2—C3 [1.5444 (18) Å] bond lengths in ring A in (I) may be compared with the corresponding values of N2—C9 [1.3206 (18) Å], N1—C7 [1.4648 (18) Å], N1—C6 [1.3996 (18) Å], C8—C9 [1.5020 (18) Å] and C7—C8 [1.5291 (19) Å] in (II).
In the molecule of (I), N—HDiazp⋯ODhydp and C—HDiazp⋯ODhydp (Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds (Table 1) link the seven-membered diazepine ring A to the pendant dihydropyran ring C, enclosing S(6) ring motifs (Fig. 1).
3. Supramolecular features
In the crystal, N—HDiazp⋯ODhydp hydrogen bonds (Table 1) link the molecules into infinite chains along [10]. These chains are further linked via C—HBnz⋯ODhydp, C—HDhydp⋯ODhydp and C—HMth⋯ODhydp (Bnz = benzene and Mth = methyl) hydrogen bonds (Table 1), forming a three-dimensional network (Fig. 2). The weak C—HDiazp⋯π interaction (Table 1) may further stabilize the structure.
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over dnorm (Fig. 3), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near atoms O1 and O2 and hydrogen atoms H2, H12 and H16A indicate their roles as the respective donors and/or acceptors in the dominant N—H⋯O and C—H⋯O hydrogen bonds (Table 1); they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) shown in Fig. 4 where the blue regions indicate positive electrostatic potential (hydrogen-bond donors) and the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize the π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π interactions. Fig. 5 clearly suggest that there are no π–π interactions in (I).
The overall two-dimensional fingerprint plot, Fig. 6a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, O⋯O and H⋯N/N⋯H contacts (McKinnon et al., 2007) are illustrated in Fig. 6b–f, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯H, contributing 51.1% to the overall crystal packing, which is reflected in Fig. 6b as widely scattered points of high density due to the large hydrogen content of the molecule. The spike with the tip at de = di = 1.14 Å in Fig. 6b is due to the short interatomic H ⋯ H contacts (Table 2). In the presence of C—H ⋯ π interactions, the pair of wings in the fingerprint plot delineated into H ⋯ C/C ⋯ H contacts with 25.3% contribution to the HS show a nearly symmetrical distribution of points, Fig. 6c, with the thin edges at de + di ∼2.81 Å arising from the H ⋯ C/C ⋯ H contacts (Table 2). There is a pair of characteristic wings in the fingerprint plot delineated into H⋯O/O⋯H contacts, Fig. 6d: the 20.3% contribution to the HS arises from the N—H⋯O and C—H⋯O hydrogen bonds (Table 1) as well as from the H⋯O/O⋯H contacts (Table 2) and is shown as a pair of spikes with the tips at de + di = 2.00 Å. Finally, the weak O⋯O (Fig. 6e) and H⋯N/N⋯H (Fig. 6f) contacts in the structure contribute only 1.6 and 1.1%, respectively, to the HS. The Hirshfeld surface representations with the function dnorm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions in Fig. 7a–c, respectively.
|
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯O/O⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Synthesis and crystallization
A solution of dehydroacetic acid (0.168 g, 1 mmol) and o-phenylenediamine (0.108 g, 1 mmol) in ethanol (40 ml) was refluxed for 1 h. After cooling to room temperature, the colourless intermediate solid compound, a mono-Schiff base, was obtained in 70% yield. The intermediate (0.5 g, 1 mmol) was refluxed in acetone (10 ml) for 1h. After cooling, the crystals formed were filtered and dried (yield: 65%).
6. Refinement
Crystal data, data collection and structure . N- and C-bound H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively) and constrained to ride on their parent atoms, with Uiso(H) = kUeq(N, C), where k = 1.5 for methyl H atoms and 1.2 for the other H atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1890950
https://doi.org/10.1107/S2056989019000689/lh5890sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989019000689/lh5890Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989019000689/lh5890Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989019000689/lh5890Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C17H18N2O3 | F(000) = 632 |
Mr = 298.33 | Dx = 1.300 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 5.5373 (1) Å | Cell parameters from 4280 reflections |
b = 24.0197 (4) Å | θ = 3.8–71.5° |
c = 11.7815 (3) Å | µ = 0.74 mm−1 |
β = 103.488 (2)° | T = 296 K |
V = 1523.77 (6) Å3 | Prism, yellow |
Z = 4 | 0.42 × 0.38 × 0.16 mm |
Rigaku Oxford Diffraction diffractometer | 2934 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 2519 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 71.3°, θmin = 3.7° |
ω scans | h = −5→6 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD 2015) | k = −27→29 |
Tmin = 0.700, Tmax = 1.000 | l = −14→14 |
9860 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0578P)2 + 0.3037P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.112 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.20 e Å−3 |
2934 reflections | Δρmin = −0.16 e Å−3 |
203 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0020 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9607 (2) | 0.55040 (5) | 0.34659 (11) | 0.0620 (4) | |
O2 | 0.3736 (2) | 0.69299 (4) | 0.35380 (9) | 0.0499 (3) | |
O3 | 0.45601 (19) | 0.62933 (4) | 0.48899 (9) | 0.0430 (3) | |
N1 | 0.8514 (2) | 0.61406 (5) | 0.17042 (11) | 0.0406 (3) | |
H1 | 0.9435 | 0.5909 | 0.2170 | 0.049* | |
N2 | 0.7655 (3) | 0.71643 (5) | 0.01003 (11) | 0.0478 (3) | |
H2 | 0.7686 | 0.7426 | −0.0394 | 0.057* | |
C1 | 0.6776 (2) | 0.63806 (5) | 0.21295 (12) | 0.0350 (3) | |
C2 | 0.5128 (2) | 0.67882 (6) | 0.13633 (12) | 0.0382 (3) | |
H2A | 0.3856 | 0.6910 | 0.1752 | 0.046* | |
H2B | 0.4303 | 0.6602 | 0.0648 | 0.046* | |
C3 | 0.6492 (2) | 0.73059 (5) | 0.10487 (11) | 0.0342 (3) | |
C4 | 0.8700 (2) | 0.66752 (6) | −0.01123 (12) | 0.0377 (3) | |
C5 | 0.9507 (3) | 0.66471 (7) | −0.11604 (14) | 0.0491 (4) | |
H5 | 0.9191 | 0.6948 | −0.1670 | 0.059* | |
C6 | 1.0733 (4) | 0.61968 (8) | −0.14591 (17) | 0.0644 (5) | |
H6 | 1.1245 | 0.6198 | −0.2157 | 0.077* | |
C7 | 1.1215 (4) | 0.57393 (8) | −0.0726 (2) | 0.0733 (6) | |
H7 | 1.2073 | 0.5434 | −0.0917 | 0.088* | |
C8 | 1.0400 (4) | 0.57462 (7) | 0.02874 (18) | 0.0597 (5) | |
H8 | 1.0711 | 0.5439 | 0.0780 | 0.072* | |
C9 | 0.9117 (3) | 0.62000 (6) | 0.06068 (13) | 0.0406 (3) | |
C10 | 0.6538 (2) | 0.62144 (5) | 0.32672 (12) | 0.0355 (3) | |
C11 | 0.7997 (3) | 0.57556 (6) | 0.38662 (13) | 0.0434 (3) | |
C12 | 0.7494 (3) | 0.55810 (6) | 0.49603 (13) | 0.0483 (4) | |
H12 | 0.8365 | 0.5281 | 0.5357 | 0.058* | |
C13 | 0.5820 (3) | 0.58377 (6) | 0.54124 (13) | 0.0429 (3) | |
C14 | 0.4890 (2) | 0.65029 (5) | 0.38391 (11) | 0.0360 (3) | |
C15 | 0.5058 (4) | 0.56883 (8) | 0.65044 (15) | 0.0594 (4) | |
H15A | 0.5417 | 0.5993 | 0.7045 | 0.089* | |
H15B | 0.5957 | 0.5364 | 0.6845 | 0.089* | |
H15C | 0.3309 | 0.5611 | 0.6327 | 0.089* | |
C16 | 0.8401 (3) | 0.75272 (6) | 0.20995 (13) | 0.0459 (4) | |
H16A | 0.9684 | 0.7255 | 0.2348 | 0.069* | |
H16B | 0.7605 | 0.7602 | 0.2725 | 0.069* | |
H16C | 0.9118 | 0.7864 | 0.1888 | 0.069* | |
C17 | 0.4561 (3) | 0.77557 (6) | 0.05783 (13) | 0.0457 (4) | |
H17A | 0.5355 | 0.8065 | 0.0297 | 0.069* | |
H17B | 0.3814 | 0.7880 | 0.1192 | 0.069* | |
H17C | 0.3303 | 0.7605 | −0.0049 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0764 (8) | 0.0527 (7) | 0.0685 (8) | 0.0335 (6) | 0.0406 (6) | 0.0244 (6) |
O2 | 0.0595 (7) | 0.0469 (6) | 0.0441 (6) | 0.0227 (5) | 0.0136 (5) | 0.0028 (4) |
O3 | 0.0484 (6) | 0.0432 (5) | 0.0407 (5) | 0.0071 (4) | 0.0171 (4) | 0.0020 (4) |
N1 | 0.0468 (7) | 0.0331 (6) | 0.0463 (7) | 0.0048 (5) | 0.0197 (5) | 0.0062 (5) |
N2 | 0.0655 (8) | 0.0409 (6) | 0.0456 (7) | 0.0080 (6) | 0.0304 (6) | 0.0104 (5) |
C1 | 0.0371 (7) | 0.0296 (6) | 0.0400 (7) | −0.0031 (5) | 0.0122 (5) | 0.0007 (5) |
C2 | 0.0335 (6) | 0.0443 (7) | 0.0373 (7) | −0.0013 (5) | 0.0095 (5) | 0.0056 (6) |
C3 | 0.0351 (7) | 0.0353 (7) | 0.0338 (6) | 0.0037 (5) | 0.0110 (5) | 0.0048 (5) |
C4 | 0.0371 (7) | 0.0405 (7) | 0.0375 (7) | −0.0075 (5) | 0.0131 (5) | −0.0052 (5) |
C5 | 0.0563 (9) | 0.0541 (9) | 0.0424 (8) | −0.0096 (7) | 0.0225 (7) | −0.0055 (6) |
C6 | 0.0835 (13) | 0.0615 (10) | 0.0630 (11) | −0.0134 (9) | 0.0472 (10) | −0.0181 (9) |
C7 | 0.0968 (15) | 0.0455 (9) | 0.0989 (15) | −0.0026 (9) | 0.0660 (13) | −0.0179 (9) |
C8 | 0.0756 (12) | 0.0344 (7) | 0.0830 (12) | −0.0005 (7) | 0.0469 (10) | −0.0019 (7) |
C9 | 0.0441 (7) | 0.0350 (7) | 0.0486 (8) | −0.0060 (5) | 0.0223 (6) | −0.0053 (6) |
C10 | 0.0395 (7) | 0.0297 (6) | 0.0389 (7) | 0.0018 (5) | 0.0125 (6) | 0.0026 (5) |
C11 | 0.0495 (8) | 0.0355 (7) | 0.0492 (8) | 0.0087 (6) | 0.0197 (6) | 0.0079 (6) |
C12 | 0.0584 (9) | 0.0408 (7) | 0.0483 (8) | 0.0116 (6) | 0.0178 (7) | 0.0142 (6) |
C13 | 0.0509 (8) | 0.0389 (7) | 0.0398 (7) | −0.0001 (6) | 0.0128 (6) | 0.0038 (6) |
C14 | 0.0378 (7) | 0.0342 (6) | 0.0351 (6) | 0.0023 (5) | 0.0067 (5) | −0.0004 (5) |
C15 | 0.0751 (11) | 0.0606 (10) | 0.0477 (9) | 0.0014 (8) | 0.0251 (8) | 0.0077 (7) |
C16 | 0.0445 (8) | 0.0412 (8) | 0.0490 (8) | 0.0001 (6) | 0.0048 (6) | −0.0002 (6) |
C17 | 0.0462 (8) | 0.0482 (8) | 0.0437 (8) | 0.0121 (6) | 0.0127 (6) | 0.0121 (6) |
O1—C11 | 1.2569 (18) | C6—H6 | 0.9300 |
O2—C14 | 1.2167 (17) | C6—C7 | 1.385 (3) |
O3—C13 | 1.3649 (18) | C7—H7 | 0.9300 |
O3—C14 | 1.3874 (16) | C7—C8 | 1.372 (3) |
N1—H1 | 0.8600 | C8—H8 | 0.9300 |
N1—C1 | 1.3168 (18) | C8—C9 | 1.400 (2) |
N1—C9 | 1.4158 (18) | C10—C11 | 1.4487 (18) |
N2—H2 | 0.8600 | C10—C14 | 1.4331 (18) |
N2—C3 | 1.4542 (17) | C11—C12 | 1.443 (2) |
N2—C4 | 1.3584 (19) | C12—H12 | 0.9300 |
C1—C2 | 1.4907 (18) | C12—C13 | 1.324 (2) |
C1—C10 | 1.4338 (18) | C13—C15 | 1.488 (2) |
C2—H2A | 0.9700 | C15—H15A | 0.9600 |
C2—H2B | 0.9700 | C15—H15B | 0.9600 |
C2—C3 | 1.5444 (18) | C15—H15C | 0.9600 |
C3—C16 | 1.524 (2) | C16—H16A | 0.9600 |
C3—C17 | 1.5301 (18) | C16—H16B | 0.9600 |
C4—C5 | 1.4094 (19) | C16—H16C | 0.9600 |
C4—C9 | 1.408 (2) | C17—H17A | 0.9600 |
C5—H5 | 0.9300 | C17—H17B | 0.9600 |
C5—C6 | 1.366 (2) | C17—H17C | 0.9600 |
O1···N1 | 2.5351 (18) | C6···H2Biv | 2.95 |
O1···C12i | 3.379 (2) | C7···H2Biv | 2.92 |
O2···N2ii | 2.9990 (16) | C8···H2Biv | 2.94 |
O2···C2 | 2.8628 (17) | C9···H2B | 2.85 |
O1···H12i | 2.45 | C11···H1 | 2.35 |
O1···H1 | 1.79 | C14···H2A | 2.58 |
O2···H2A | 2.12 | C14···H17Ciii | 2.95 |
O2···H2ii | 2.16 | C16···O2iv | 3.3648 (19) |
O2···H5ii | 2.72 | H1···H8 | 2.24 |
O2···H17Ciii | 2.91 | H2···H5 | 2.21 |
N1···N2 | 3.0698 (17) | H2···H17A | 2.27 |
N1···C16 | 3.3656 (19) | H2···H17C | 2.59 |
N2···N1 | 3.0698 (17) | H2A···H17B | 2.42 |
N1···H16A | 2.8152 | H2B···H17C | 2.57 |
C4···C2iv | 3.5887 (17) | H5···H16Bv | 2.42 |
C9···C2iv | 3.533 (2) | H5···H17Bv | 2.51 |
C14···C17iii | 3.404 (2) | H12···H15B | 2.45 |
C1···H16A | 2.62 | H12···H12i | 2.55 |
C4···H2B | 2.79 | H16A···O2iv | 2.48 |
C5···H2Biv | 2.99 | H16B···H17B | 2.52 |
C5···H16Bv | 2.99 | H16C···H17A | 2.50 |
C13—O3—C14 | 122.24 (11) | C4—C9—N1 | 126.21 (12) |
C1—N1—H1 | 114.6 | C8—C9—N1 | 114.18 (14) |
C1—N1—C9 | 130.71 (12) | C8—C9—C4 | 119.45 (14) |
C9—N1—H1 | 114.6 | C1—C10—C11 | 120.32 (12) |
C3—N2—H2 | 115.5 | C14—C10—C1 | 120.82 (12) |
C4—N2—H2 | 115.5 | C14—C10—C11 | 118.85 (12) |
C4—N2—C3 | 128.91 (11) | O1—C11—C10 | 123.15 (13) |
N1—C1—C2 | 117.10 (12) | O1—C11—C12 | 119.80 (13) |
N1—C1—C10 | 117.94 (12) | C12—C11—C10 | 117.03 (12) |
C10—C1—C2 | 124.90 (12) | C11—C12—H12 | 119.2 |
C1—C2—H2A | 108.7 | C13—C12—C11 | 121.53 (13) |
C1—C2—H2B | 108.7 | C13—C12—H12 | 119.2 |
C1—C2—C3 | 114.17 (11) | O3—C13—C15 | 111.40 (13) |
H2A—C2—H2B | 107.6 | C12—C13—O3 | 121.61 (13) |
C3—C2—H2A | 108.7 | C12—C13—C15 | 126.99 (14) |
C3—C2—H2B | 108.7 | O2—C14—O3 | 113.36 (12) |
N2—C3—C2 | 108.97 (11) | O2—C14—C10 | 128.26 (13) |
N2—C3—C16 | 110.99 (12) | O3—C14—C10 | 118.35 (11) |
N2—C3—C17 | 106.51 (11) | C13—C15—H15A | 109.5 |
C16—C3—C2 | 111.80 (11) | C13—C15—H15B | 109.5 |
C16—C3—C17 | 109.98 (12) | C13—C15—H15C | 109.5 |
C17—C3—C2 | 108.41 (11) | H15A—C15—H15B | 109.5 |
N2—C4—C5 | 116.02 (13) | H15A—C15—H15C | 109.5 |
N2—C4—C9 | 127.38 (12) | H15B—C15—H15C | 109.5 |
C9—C4—C5 | 116.58 (13) | C3—C16—H16A | 109.5 |
C4—C5—H5 | 118.6 | C3—C16—H16B | 109.5 |
C6—C5—C4 | 122.80 (16) | C3—C16—H16C | 109.5 |
C6—C5—H5 | 118.6 | H16A—C16—H16B | 109.5 |
C5—C6—H6 | 119.9 | H16A—C16—H16C | 109.5 |
C5—C6—C7 | 120.20 (15) | H16B—C16—H16C | 109.5 |
C7—C6—H6 | 119.9 | C3—C17—H17A | 109.5 |
C6—C7—H7 | 120.7 | C3—C17—H17B | 109.5 |
C8—C7—C6 | 118.58 (16) | C3—C17—H17C | 109.5 |
C8—C7—H7 | 120.7 | H17A—C17—H17B | 109.5 |
C7—C8—H8 | 118.9 | H17A—C17—H17C | 109.5 |
C7—C8—C9 | 122.30 (17) | H17B—C17—H17C | 109.5 |
C9—C8—H8 | 118.9 | ||
C9—N1—C1—C10 | 177.02 (13) | C1—N1—C9—C8 | −157.26 (15) |
C9—N1—C1—C2 | −0.3 (2) | C1—N1—C9—C4 | 27.4 (2) |
N1—C1—C2—C3 | −63.12 (16) | N1—C1—C10—C14 | 172.65 (12) |
C10—C1—C2—C3 | 119.73 (14) | C2—C1—C10—C14 | −10.2 (2) |
C4—N2—C3—C16 | 88.57 (18) | N1—C1—C10—C11 | −6.4 (2) |
C4—N2—C3—C17 | −151.73 (15) | C2—C1—C10—C11 | 170.76 (13) |
C4—N2—C3—C2 | −35.0 (2) | C14—C10—C11—O1 | −175.06 (15) |
C1—C2—C3—N2 | 80.67 (14) | C1—C10—C11—O1 | 4.0 (2) |
C1—C2—C3—C16 | −42.38 (16) | C14—C10—C11—C12 | 6.4 (2) |
C1—C2—C3—C17 | −163.79 (12) | C1—C10—C11—C12 | −174.60 (13) |
C3—N2—C4—C9 | −6.6 (3) | O1—C11—C12—C13 | 179.64 (16) |
C3—N2—C4—C5 | 174.97 (14) | C10—C11—C12—C13 | −1.7 (2) |
N2—C4—C5—C6 | 175.76 (16) | C11—C12—C13—O3 | −2.6 (3) |
C9—C4—C5—C6 | −2.8 (2) | C11—C12—C13—C15 | 177.58 (16) |
C4—C5—C6—C7 | 0.6 (3) | C14—O3—C13—C12 | 2.2 (2) |
C5—C6—C7—C8 | 1.1 (3) | C14—O3—C13—C15 | −177.94 (13) |
C6—C7—C8—C9 | −0.4 (3) | C13—O3—C14—O2 | −175.69 (13) |
C7—C8—C9—C4 | −1.9 (3) | C13—O3—C14—C10 | 2.60 (19) |
C7—C8—C9—N1 | −177.57 (18) | C1—C10—C14—O2 | −7.8 (2) |
N2—C4—C9—C8 | −174.98 (16) | C11—C10—C14—O2 | 171.19 (14) |
C5—C4—C9—C8 | 3.4 (2) | C1—C10—C14—O3 | 174.15 (12) |
N2—C4—C9—N1 | 0.1 (2) | C11—C10—C14—O3 | −6.81 (19) |
C5—C4—C9—N1 | 178.49 (14) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1/2, −y+3/2, z+1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) x+1, y, z; (v) x+1/2, −y+3/2, z−1/2. |
Cg is the centroid of the C4–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 1.79 | 2.5351 (18) | 143 |
N2—H2···O2v | 0.86 | 2.16 | 2.9990 (16) | 166 |
C2—H2A···O2 | 0.97 | 2.12 | 2.8628 (17) | 132 |
C5—H5···O2v | 0.93 | 2.72 | 3.453 (2) | 136 |
C12—H12···O1i | 0.93 | 2.45 | 3.3789 (18) | 174 |
C16—H16A···O2iv | 0.96 | 2.48 | 3.3646 (18) | 154 |
C2—H2B···Cgvi | 0.97 | 2.63 | 3.4428 (15) | 141 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (iv) x+1, y, z; (v) x+1/2, −y+3/2, z−1/2; (vi) x−1, y, z. |
Funding information
JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer and TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Chkirate, K., Sebbar, N. K., Hökelek, T., Krishnan, D., Mague, J. T. & Essassi, E. M. (2018). Acta Cryst. E74, 1669–1673. CrossRef IUCr Journals Google Scholar
Dardouri, R., Ouazzani Chahdi, F., Saffon, N., Essassi, E. M. & Ng, S. W. (2011). Acta Cryst. E67, o674. Web of Science CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Ghayati, L., Ramli, Y., Hökelek, T., Labd Taha, M., Mague, J. T. & Essassi, E. M. (2019). Acta Cryst. E75, 94–98. CrossRef IUCr Journals Google Scholar
Essassi, E. M. & Salem, M. (1985). Bull. Soc. Chim. Belg. 94, 755–758. CrossRef CAS Google Scholar
Fruscella, P., Sottocorno, M., Di Braccio, M., Diomede, L., Piccardi, N., Cagnotto, A., Grossi, G., Romano, M., Mennini, T. & Roma, G. (2001). Pharmacol. Res. 43, 445–452. CrossRef CAS Google Scholar
Guerrini, G., Costanzo, A., Ciciani, G., Bruni, F., Selleri, S., Costagli, C., Besnard, F., Costa, B., Martini, C., De Siena, G. & Malmberg-Aiello, P. (2006). Bioorg. Med. Chem. 14, 758–775. CrossRef CAS Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jabli, H., Kandri Rodi, Y., Saffon, N., Essassi, E. M. & Ng, S. W. (2009). Acta Cryst. E65, o3150. Web of Science CrossRef IUCr Journals Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/ Google Scholar
Kalkhambkar, R. G., Kulkarni, G. M., Kamanavalli, C. M., Premkumar, N., Asdaq, S. M. & Sun, C. M. (2008). Eur. J. Med. Chem. 43, 2178–2188. Web of Science CrossRef PubMed CAS Google Scholar
Keita, A., Lazrak, F., Essassi, E. M., Alaoui, I. C., Rodi, Y. K., Bellan, J. & Pierrot, M. (2003). Phosphorus Sulfur Silicon, 178, 1541–1548. CrossRef CAS Google Scholar
Kotyatkina, A. I., Zhabinsky, V. N. & Khripach Russ, V. A. (2001). Chem. Rev. 70, 641–653. CAS Google Scholar
Kudo, Y. (1982). Int. Pharmacopsychiatry, 17, 49–64. CrossRef CAS PubMed Web of Science Google Scholar
Kumar, R. & Joshi, Y. C. (2007). Arkivoc XIII, 142–149. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Minnih, M. S., Kandri Rodi, Y. & Essassi, E. M. (2014). J. Mar. Chim. Heterocycl. 13, 1–24. CAS Google Scholar
Rajarao, S. J., Platt, B., Sukoff, S. J., Lin, Q., Bender, C. N., Nieuwenhuijsen, B. W., Ring, R. H., Schechter, L. E., Rosenzweig-Lipson, S. & Beyer, C. E. (2007). Neuropeptides, 41, 307–320. Web of Science CrossRef PubMed CAS Google Scholar
Rida, M., El Ghayati, L. & Essassi, E. M. (2018). J. Mar. Chim. Heterocycl. 17, 42–82. Google Scholar
Rigaku OD (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Roma, G., Grossi, G. C., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489–496. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, R. H., Jorgensen, W. L., Tirado-Rives, J., Lamb, M. L., Janssen, P. A. J., Michejda, C. J. & Kroeger Smith, M. B. (1998). J. Med. Chem. 41, 5272–5286. CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CrossRef CAS Google Scholar
Zellou, A., Cherrah, Y., Essassi, E. M. & Hassar, M. (1998b). Ann. Pharm. Fr. 56, 175–180. CAS PubMed Google Scholar
Zellou, A., Cherrah, Y., Hassar, M. & Essassi, E. M. (1998a). Ann. Pharm. Fr. 56, 169–174. CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.